github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/time/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  //
    10  // Monotonic Clocks
    11  //
    12  // Operating systems provide both a “wall clock,” which is subject to
    13  // changes for clock synchronization, and a “monotonic clock,” which is
    14  // not. The general rule is that the wall clock is for telling time and
    15  // the monotonic clock is for measuring time. Rather than split the API,
    16  // in this package the Time returned by time.Now contains both a wall
    17  // clock reading and a monotonic clock reading; later time-telling
    18  // operations use the wall clock reading, but later time-measuring
    19  // operations, specifically comparisons and subtractions, use the
    20  // monotonic clock reading.
    21  //
    22  // For example, this code always computes a positive elapsed time of
    23  // approximately 20 milliseconds, even if the wall clock is changed during
    24  // the operation being timed:
    25  //
    26  //	t := time.Now()
    27  //	... operation that takes 20 milliseconds ...
    28  //	u := time.Now()
    29  //	elapsed := t.Sub(u)
    30  //
    31  // Other idioms, such as time.Since(start), time.Until(deadline), and
    32  // time.Now().Before(deadline), are similarly robust against wall clock
    33  // resets.
    34  //
    35  // The rest of this section gives the precise details of how operations
    36  // use monotonic clocks, but understanding those details is not required
    37  // to use this package.
    38  //
    39  // The Time returned by time.Now contains a monotonic clock reading.
    40  // If Time t has a monotonic clock reading, t.Add, t.Round, and
    41  // t.Truncate add the same duration to both the wall clock and
    42  // monotonic clock readings to compute the result. Similarly, t.In,
    43  // t.Local, and t.UTC, which are defined to change only the Time's
    44  // Location, pass any monotonic clock reading through unmodified.
    45  // Because t.AddDate(y, m, d) is a wall time computation, it always
    46  // strips any monotonic clock reading from its result.
    47  //
    48  // If Times t and u both contain monotonic clock readings, the operations
    49  // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
    50  // using the monotonic clock readings alone, ignoring the wall clock
    51  // readings. If either t or u contains no monotonic clock reading, these
    52  // operations fall back to using the wall clock readings.
    53  //
    54  // Because the monotonic clock reading has no meaning outside
    55  // the current process, the serialized forms generated by t.GobEncode,
    56  // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
    57  // clock reading, and t.Format provides no format for it. Similarly, the
    58  // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
    59  // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
    60  // t.UnmarshalJSON, and t.UnmarshalText always create times with
    61  // no monotonic clock reading.
    62  //
    63  // Note that the Go == operator includes the monotonic clock reading in
    64  // its comparison. If time values returned from time.Now and time values
    65  // constructed by other means (for example, by time.Parse or time.Unix)
    66  // are meant to compare equal when used as map keys, the times returned
    67  // by time.Now must have the monotonic clock reading stripped, by setting
    68  // t = t.AddDate(0, 0, 0). In general, prefer t.Equal(u) to t == u, since
    69  // t.Equal uses the most accurate comparison available and correctly
    70  // handles the case when only one of its arguments has a monotonic clock
    71  // reading.
    72  //
    73  // For debugging, the result of t.String does include the monotonic
    74  // clock reading if present. If t != u because of different monotonic clock readings,
    75  // that difference will be visible when printing t.String() and u.String().
    76  //
    77  package time
    78  
    79  import "errors"
    80  
    81  // A Time represents an instant in time with nanosecond precision.
    82  //
    83  // Programs using times should typically store and pass them as values,
    84  // not pointers. That is, time variables and struct fields should be of
    85  // type time.Time, not *time.Time. A Time value can be used by
    86  // multiple goroutines simultaneously.
    87  //
    88  // Time instants can be compared using the Before, After, and Equal methods.
    89  // The Sub method subtracts two instants, producing a Duration.
    90  // The Add method adds a Time and a Duration, producing a Time.
    91  //
    92  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    93  // As this time is unlikely to come up in practice, the IsZero method gives
    94  // a simple way of detecting a time that has not been initialized explicitly.
    95  //
    96  // Each Time has associated with it a Location, consulted when computing the
    97  // presentation form of the time, such as in the Format, Hour, and Year methods.
    98  // The methods Local, UTC, and In return a Time with a specific location.
    99  // Changing the location in this way changes only the presentation; it does not
   100  // change the instant in time being denoted and therefore does not affect the
   101  // computations described in earlier paragraphs.
   102  //
   103  // Note that the Go == operator compares not just the time instant but also the
   104  // Location. Therefore, Time values should not be used as map or database keys
   105  // without first guaranteeing that the identical Location has been set for all
   106  // values, which can be achieved through use of the UTC or Local method.
   107  //
   108  // In addition to the required “wall clock” reading, a Time may contain an optional
   109  // reading of the current process's monotonic clock, to provide additional precision
   110  // for comparison or subtraction.
   111  // See the “Monotonic Clocks” section in the package documentation for details.
   112  //
   113  type Time struct {
   114  	// wall and ext encode the wall time seconds, wall time nanoseconds,
   115  	// and optional monotonic clock reading in nanoseconds.
   116  	//
   117  	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
   118  	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
   119  	// The nanoseconds field is in the range [0, 999999999].
   120  	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
   121  	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
   122  	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
   123  	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
   124  	// signed 64-bit monotonic clock reading, nanoseconds since process start.
   125  	wall uint64
   126  	ext  int64
   127  
   128  	// loc specifies the Location that should be used to
   129  	// determine the minute, hour, month, day, and year
   130  	// that correspond to this Time.
   131  	// The nil location means UTC.
   132  	// All UTC times are represented with loc==nil, never loc==&utcLoc.
   133  	loc *Location
   134  }
   135  
   136  const (
   137  	hasMonotonic = 1 << 63
   138  	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
   139  	minWall      = wallToInternal               // year 1885
   140  	nsecMask     = 1<<30 - 1
   141  	nsecShift    = 30
   142  )
   143  
   144  // These helpers for manipulating the wall and monotonic clock readings
   145  // take pointer receivers, even when they don't modify the time,
   146  // to make them cheaper to call.
   147  
   148  // nsec returns the time's nanoseconds.
   149  func (t *Time) nsec() int32 {
   150  	return int32(t.wall & nsecMask)
   151  }
   152  
   153  // sec returns the time's seconds since Jan 1 year 1.
   154  func (t *Time) sec() int64 {
   155  	if t.wall&hasMonotonic != 0 {
   156  		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
   157  	}
   158  	return int64(t.ext)
   159  }
   160  
   161  // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
   162  func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
   163  
   164  // addSec adds d seconds to the time.
   165  func (t *Time) addSec(d int64) {
   166  	if t.wall&hasMonotonic != 0 {
   167  		sec := int64(t.wall << 1 >> (nsecShift + 1))
   168  		dsec := sec + d
   169  		if 0 <= dsec && dsec <= 1<<33-1 {
   170  			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
   171  			return
   172  		}
   173  		// Wall second now out of range for packed field.
   174  		// Move to ext.
   175  		t.ext = t.sec()
   176  		t.wall &= nsecMask
   177  	}
   178  
   179  	// TODO: Check for overflow.
   180  	t.ext += d
   181  }
   182  
   183  // setLoc sets the location associated with the time.
   184  func (t *Time) setLoc(loc *Location) {
   185  	if loc == &utcLoc {
   186  		loc = nil
   187  	}
   188  	t.loc = loc
   189  }
   190  
   191  // setMono sets the monotonic clock reading in t.
   192  // If t cannot hold a monotonic clock reading,
   193  // because its wall time is too large,
   194  // setMono is a no-op.
   195  func (t *Time) setMono(m int64) {
   196  	if t.wall&hasMonotonic == 0 {
   197  		sec := int64(t.ext)
   198  		if sec < minWall || maxWall < sec {
   199  			return
   200  		}
   201  		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
   202  	}
   203  	t.ext = m
   204  }
   205  
   206  // mono returns t's monotonic clock reading.
   207  // It returns 0 for a missing reading.
   208  // This function is used only for testing,
   209  // so it's OK that technically 0 is a valid
   210  // monotonic clock reading as well.
   211  func (t *Time) mono() int64 {
   212  	if t.wall&hasMonotonic == 0 {
   213  		return 0
   214  	}
   215  	return t.ext
   216  }
   217  
   218  // After reports whether the time instant t is after u.
   219  func (t Time) After(u Time) bool {
   220  	if t.wall&u.wall&hasMonotonic != 0 {
   221  		return t.ext > u.ext
   222  	}
   223  	ts := t.sec()
   224  	us := u.sec()
   225  	return ts > us || ts == us && t.nsec() > u.nsec()
   226  }
   227  
   228  // Before reports whether the time instant t is before u.
   229  func (t Time) Before(u Time) bool {
   230  	if t.wall&u.wall&hasMonotonic != 0 {
   231  		return t.ext < u.ext
   232  	}
   233  	return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec()
   234  }
   235  
   236  // Equal reports whether t and u represent the same time instant.
   237  // Two times can be equal even if they are in different locations.
   238  // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
   239  // Do not use == with Time values.
   240  func (t Time) Equal(u Time) bool {
   241  	if t.wall&u.wall&hasMonotonic != 0 {
   242  		return t.ext == u.ext
   243  	}
   244  	return t.sec() == u.sec() && t.nsec() == u.nsec()
   245  }
   246  
   247  // A Month specifies a month of the year (January = 1, ...).
   248  type Month int
   249  
   250  const (
   251  	January Month = 1 + iota
   252  	February
   253  	March
   254  	April
   255  	May
   256  	June
   257  	July
   258  	August
   259  	September
   260  	October
   261  	November
   262  	December
   263  )
   264  
   265  var months = [...]string{
   266  	"January",
   267  	"February",
   268  	"March",
   269  	"April",
   270  	"May",
   271  	"June",
   272  	"July",
   273  	"August",
   274  	"September",
   275  	"October",
   276  	"November",
   277  	"December",
   278  }
   279  
   280  // String returns the English name of the month ("January", "February", ...).
   281  func (m Month) String() string {
   282  	if January <= m && m <= December {
   283  		return months[m-1]
   284  	}
   285  	buf := make([]byte, 20)
   286  	n := fmtInt(buf, uint64(m))
   287  	return "%!Month(" + string(buf[n:]) + ")"
   288  }
   289  
   290  // A Weekday specifies a day of the week (Sunday = 0, ...).
   291  type Weekday int
   292  
   293  const (
   294  	Sunday Weekday = iota
   295  	Monday
   296  	Tuesday
   297  	Wednesday
   298  	Thursday
   299  	Friday
   300  	Saturday
   301  )
   302  
   303  var days = [...]string{
   304  	"Sunday",
   305  	"Monday",
   306  	"Tuesday",
   307  	"Wednesday",
   308  	"Thursday",
   309  	"Friday",
   310  	"Saturday",
   311  }
   312  
   313  // String returns the English name of the day ("Sunday", "Monday", ...).
   314  func (d Weekday) String() string { return days[d] }
   315  
   316  // Computations on time.
   317  //
   318  // The zero value for a Time is defined to be
   319  //	January 1, year 1, 00:00:00.000000000 UTC
   320  // which (1) looks like a zero, or as close as you can get in a date
   321  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   322  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   323  // non-negative year even in time zones west of UTC, unlike 1-1-0
   324  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   325  //
   326  // The zero Time value does not force a specific epoch for the time
   327  // representation. For example, to use the Unix epoch internally, we
   328  // could define that to distinguish a zero value from Jan 1 1970, that
   329  // time would be represented by sec=-1, nsec=1e9.  However, it does
   330  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   331  // epoch, and that's what we do.
   332  //
   333  // The Add and Sub computations are oblivious to the choice of epoch.
   334  //
   335  // The presentation computations - year, month, minute, and so on - all
   336  // rely heavily on division and modulus by positive constants. For
   337  // calendrical calculations we want these divisions to round down, even
   338  // for negative values, so that the remainder is always positive, but
   339  // Go's division (like most hardware division instructions) rounds to
   340  // zero. We can still do those computations and then adjust the result
   341  // for a negative numerator, but it's annoying to write the adjustment
   342  // over and over. Instead, we can change to a different epoch so long
   343  // ago that all the times we care about will be positive, and then round
   344  // to zero and round down coincide. These presentation routines already
   345  // have to add the zone offset, so adding the translation to the
   346  // alternate epoch is cheap. For example, having a non-negative time t
   347  // means that we can write
   348  //
   349  //	sec = t % 60
   350  //
   351  // instead of
   352  //
   353  //	sec = t % 60
   354  //	if sec < 0 {
   355  //		sec += 60
   356  //	}
   357  //
   358  // everywhere.
   359  //
   360  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   361  // printed for 1970-2469 will apply as well to 2370-2769.  Even the days
   362  // of the week match up. It simplifies the computations to choose the
   363  // cycle boundaries so that the exceptional years are always delayed as
   364  // long as possible. That means choosing a year equal to 1 mod 400, so
   365  // that the first leap year is the 4th year, the first missed leap year
   366  // is the 100th year, and the missed missed leap year is the 400th year.
   367  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   368  // for 2401-2800.
   369  //
   370  // Finally, it's convenient if the delta between the Unix epoch and
   371  // long-ago epoch is representable by an int64 constant.
   372  //
   373  // These three considerations—choose an epoch as early as possible, that
   374  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   375  // earlier than 1970—bring us to the year -292277022399.  We refer to
   376  // this year as the absolute zero year, and to times measured as a uint64
   377  // seconds since this year as absolute times.
   378  //
   379  // Times measured as an int64 seconds since the year 1—the representation
   380  // used for Time's sec field—are called internal times.
   381  //
   382  // Times measured as an int64 seconds since the year 1970 are called Unix
   383  // times.
   384  //
   385  // It is tempting to just use the year 1 as the absolute epoch, defining
   386  // that the routines are only valid for years >= 1.  However, the
   387  // routines would then be invalid when displaying the epoch in time zones
   388  // west of UTC, since it is year 0.  It doesn't seem tenable to say that
   389  // printing the zero time correctly isn't supported in half the time
   390  // zones. By comparison, it's reasonable to mishandle some times in
   391  // the year -292277022399.
   392  //
   393  // All this is opaque to clients of the API and can be changed if a
   394  // better implementation presents itself.
   395  
   396  const (
   397  	// The unsigned zero year for internal calculations.
   398  	// Must be 1 mod 400, and times before it will not compute correctly,
   399  	// but otherwise can be changed at will.
   400  	absoluteZeroYear = -292277022399
   401  
   402  	// The year of the zero Time.
   403  	// Assumed by the unixToInternal computation below.
   404  	internalYear = 1
   405  
   406  	// Offsets to convert between internal and absolute or Unix times.
   407  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   408  	internalToAbsolute       = -absoluteToInternal
   409  
   410  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   411  	internalToUnix int64 = -unixToInternal
   412  
   413  	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
   414  	internalToWall int64 = -wallToInternal
   415  )
   416  
   417  // IsZero reports whether t represents the zero time instant,
   418  // January 1, year 1, 00:00:00 UTC.
   419  func (t Time) IsZero() bool {
   420  	return t.sec() == 0 && t.nsec() == 0
   421  }
   422  
   423  // abs returns the time t as an absolute time, adjusted by the zone offset.
   424  // It is called when computing a presentation property like Month or Hour.
   425  func (t Time) abs() uint64 {
   426  	l := t.loc
   427  	// Avoid function calls when possible.
   428  	if l == nil || l == &localLoc {
   429  		l = l.get()
   430  	}
   431  	sec := t.unixSec()
   432  	if l != &utcLoc {
   433  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   434  			sec += int64(l.cacheZone.offset)
   435  		} else {
   436  			_, offset, _, _, _ := l.lookup(sec)
   437  			sec += int64(offset)
   438  		}
   439  	}
   440  	return uint64(sec + (unixToInternal + internalToAbsolute))
   441  }
   442  
   443  // locabs is a combination of the Zone and abs methods,
   444  // extracting both return values from a single zone lookup.
   445  func (t Time) locabs() (name string, offset int, abs uint64) {
   446  	l := t.loc
   447  	if l == nil || l == &localLoc {
   448  		l = l.get()
   449  	}
   450  	// Avoid function call if we hit the local time cache.
   451  	sec := t.unixSec()
   452  	if l != &utcLoc {
   453  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   454  			name = l.cacheZone.name
   455  			offset = l.cacheZone.offset
   456  		} else {
   457  			name, offset, _, _, _ = l.lookup(sec)
   458  		}
   459  		sec += int64(offset)
   460  	} else {
   461  		name = "UTC"
   462  	}
   463  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   464  	return
   465  }
   466  
   467  // Date returns the year, month, and day in which t occurs.
   468  func (t Time) Date() (year int, month Month, day int) {
   469  	year, month, day, _ = t.date(true)
   470  	return
   471  }
   472  
   473  // Year returns the year in which t occurs.
   474  func (t Time) Year() int {
   475  	year, _, _, _ := t.date(false)
   476  	return year
   477  }
   478  
   479  // Month returns the month of the year specified by t.
   480  func (t Time) Month() Month {
   481  	_, month, _, _ := t.date(true)
   482  	return month
   483  }
   484  
   485  // Day returns the day of the month specified by t.
   486  func (t Time) Day() int {
   487  	_, _, day, _ := t.date(true)
   488  	return day
   489  }
   490  
   491  // Weekday returns the day of the week specified by t.
   492  func (t Time) Weekday() Weekday {
   493  	return absWeekday(t.abs())
   494  }
   495  
   496  // absWeekday is like Weekday but operates on an absolute time.
   497  func absWeekday(abs uint64) Weekday {
   498  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   499  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   500  	return Weekday(int(sec) / secondsPerDay)
   501  }
   502  
   503  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   504  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   505  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   506  // of year n+1.
   507  func (t Time) ISOWeek() (year, week int) {
   508  	year, month, day, yday := t.date(true)
   509  	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   510  	const (
   511  		Mon int = iota
   512  		Tue
   513  		Wed
   514  		Thu
   515  		Fri
   516  		Sat
   517  		Sun
   518  	)
   519  
   520  	// Calculate week as number of Mondays in year up to
   521  	// and including today, plus 1 because the first week is week 0.
   522  	// Putting the + 1 inside the numerator as a + 7 keeps the
   523  	// numerator from being negative, which would cause it to
   524  	// round incorrectly.
   525  	week = (yday - wday + 7) / 7
   526  
   527  	// The week number is now correct under the assumption
   528  	// that the first Monday of the year is in week 1.
   529  	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   530  	// is actually in week 2.
   531  	jan1wday := (wday - yday + 7*53) % 7
   532  	if Tue <= jan1wday && jan1wday <= Thu {
   533  		week++
   534  	}
   535  
   536  	// If the week number is still 0, we're in early January but in
   537  	// the last week of last year.
   538  	if week == 0 {
   539  		year--
   540  		week = 52
   541  		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   542  		// meaning Jan 1 of the next year is a Friday
   543  		// or it was a leap year and Jan 1 of the next year is a Saturday.
   544  		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   545  			week++
   546  		}
   547  	}
   548  
   549  	// December 29 to 31 are in week 1 of next year if
   550  	// they are after the last Thursday of the year and
   551  	// December 31 is a Monday, Tuesday, or Wednesday.
   552  	if month == December && day >= 29 && wday < Thu {
   553  		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   554  			year++
   555  			week = 1
   556  		}
   557  	}
   558  
   559  	return
   560  }
   561  
   562  // Clock returns the hour, minute, and second within the day specified by t.
   563  func (t Time) Clock() (hour, min, sec int) {
   564  	return absClock(t.abs())
   565  }
   566  
   567  // absClock is like clock but operates on an absolute time.
   568  func absClock(abs uint64) (hour, min, sec int) {
   569  	sec = int(abs % secondsPerDay)
   570  	hour = sec / secondsPerHour
   571  	sec -= hour * secondsPerHour
   572  	min = sec / secondsPerMinute
   573  	sec -= min * secondsPerMinute
   574  	return
   575  }
   576  
   577  // Hour returns the hour within the day specified by t, in the range [0, 23].
   578  func (t Time) Hour() int {
   579  	return int(t.abs()%secondsPerDay) / secondsPerHour
   580  }
   581  
   582  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   583  func (t Time) Minute() int {
   584  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   585  }
   586  
   587  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   588  func (t Time) Second() int {
   589  	return int(t.abs() % secondsPerMinute)
   590  }
   591  
   592  // Nanosecond returns the nanosecond offset within the second specified by t,
   593  // in the range [0, 999999999].
   594  func (t Time) Nanosecond() int {
   595  	return int(t.nsec())
   596  }
   597  
   598  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   599  // and [1,366] in leap years.
   600  func (t Time) YearDay() int {
   601  	_, _, _, yday := t.date(false)
   602  	return yday + 1
   603  }
   604  
   605  // A Duration represents the elapsed time between two instants
   606  // as an int64 nanosecond count. The representation limits the
   607  // largest representable duration to approximately 290 years.
   608  type Duration int64
   609  
   610  const (
   611  	minDuration Duration = -1 << 63
   612  	maxDuration Duration = 1<<63 - 1
   613  )
   614  
   615  // Common durations. There is no definition for units of Day or larger
   616  // to avoid confusion across daylight savings time zone transitions.
   617  //
   618  // To count the number of units in a Duration, divide:
   619  //	second := time.Second
   620  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   621  //
   622  // To convert an integer number of units to a Duration, multiply:
   623  //	seconds := 10
   624  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   625  //
   626  const (
   627  	Nanosecond  Duration = 1
   628  	Microsecond          = 1000 * Nanosecond
   629  	Millisecond          = 1000 * Microsecond
   630  	Second               = 1000 * Millisecond
   631  	Minute               = 60 * Second
   632  	Hour                 = 60 * Minute
   633  )
   634  
   635  // String returns a string representing the duration in the form "72h3m0.5s".
   636  // Leading zero units are omitted. As a special case, durations less than one
   637  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   638  // that the leading digit is non-zero. The zero duration formats as 0s.
   639  func (d Duration) String() string {
   640  	// Largest time is 2540400h10m10.000000000s
   641  	var buf [32]byte
   642  	w := len(buf)
   643  
   644  	u := uint64(d)
   645  	neg := d < 0
   646  	if neg {
   647  		u = -u
   648  	}
   649  
   650  	if u < uint64(Second) {
   651  		// Special case: if duration is smaller than a second,
   652  		// use smaller units, like 1.2ms
   653  		var prec int
   654  		w--
   655  		buf[w] = 's'
   656  		w--
   657  		switch {
   658  		case u == 0:
   659  			return "0s"
   660  		case u < uint64(Microsecond):
   661  			// print nanoseconds
   662  			prec = 0
   663  			buf[w] = 'n'
   664  		case u < uint64(Millisecond):
   665  			// print microseconds
   666  			prec = 3
   667  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   668  			w-- // Need room for two bytes.
   669  			copy(buf[w:], "µ")
   670  		default:
   671  			// print milliseconds
   672  			prec = 6
   673  			buf[w] = 'm'
   674  		}
   675  		w, u = fmtFrac(buf[:w], u, prec)
   676  		w = fmtInt(buf[:w], u)
   677  	} else {
   678  		w--
   679  		buf[w] = 's'
   680  
   681  		w, u = fmtFrac(buf[:w], u, 9)
   682  
   683  		// u is now integer seconds
   684  		w = fmtInt(buf[:w], u%60)
   685  		u /= 60
   686  
   687  		// u is now integer minutes
   688  		if u > 0 {
   689  			w--
   690  			buf[w] = 'm'
   691  			w = fmtInt(buf[:w], u%60)
   692  			u /= 60
   693  
   694  			// u is now integer hours
   695  			// Stop at hours because days can be different lengths.
   696  			if u > 0 {
   697  				w--
   698  				buf[w] = 'h'
   699  				w = fmtInt(buf[:w], u)
   700  			}
   701  		}
   702  	}
   703  
   704  	if neg {
   705  		w--
   706  		buf[w] = '-'
   707  	}
   708  
   709  	return string(buf[w:])
   710  }
   711  
   712  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   713  // tail of buf, omitting trailing zeros.  it omits the decimal
   714  // point too when the fraction is 0.  It returns the index where the
   715  // output bytes begin and the value v/10**prec.
   716  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   717  	// Omit trailing zeros up to and including decimal point.
   718  	w := len(buf)
   719  	print := false
   720  	for i := 0; i < prec; i++ {
   721  		digit := v % 10
   722  		print = print || digit != 0
   723  		if print {
   724  			w--
   725  			buf[w] = byte(digit) + '0'
   726  		}
   727  		v /= 10
   728  	}
   729  	if print {
   730  		w--
   731  		buf[w] = '.'
   732  	}
   733  	return w, v
   734  }
   735  
   736  // fmtInt formats v into the tail of buf.
   737  // It returns the index where the output begins.
   738  func fmtInt(buf []byte, v uint64) int {
   739  	w := len(buf)
   740  	if v == 0 {
   741  		w--
   742  		buf[w] = '0'
   743  	} else {
   744  		for v > 0 {
   745  			w--
   746  			buf[w] = byte(v%10) + '0'
   747  			v /= 10
   748  		}
   749  	}
   750  	return w
   751  }
   752  
   753  // Nanoseconds returns the duration as an integer nanosecond count.
   754  func (d Duration) Nanoseconds() int64 { return int64(d) }
   755  
   756  // These methods return float64 because the dominant
   757  // use case is for printing a floating point number like 1.5s, and
   758  // a truncation to integer would make them not useful in those cases.
   759  // Splitting the integer and fraction ourselves guarantees that
   760  // converting the returned float64 to an integer rounds the same
   761  // way that a pure integer conversion would have, even in cases
   762  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   763  // differently.
   764  
   765  // Seconds returns the duration as a floating point number of seconds.
   766  func (d Duration) Seconds() float64 {
   767  	sec := d / Second
   768  	nsec := d % Second
   769  	return float64(sec) + float64(nsec)/1e9
   770  }
   771  
   772  // Minutes returns the duration as a floating point number of minutes.
   773  func (d Duration) Minutes() float64 {
   774  	min := d / Minute
   775  	nsec := d % Minute
   776  	return float64(min) + float64(nsec)/(60*1e9)
   777  }
   778  
   779  // Hours returns the duration as a floating point number of hours.
   780  func (d Duration) Hours() float64 {
   781  	hour := d / Hour
   782  	nsec := d % Hour
   783  	return float64(hour) + float64(nsec)/(60*60*1e9)
   784  }
   785  
   786  // Add returns the time t+d.
   787  func (t Time) Add(d Duration) Time {
   788  	dsec := int64(d / 1e9)
   789  	nsec := t.nsec() + int32(d%1e9)
   790  	if nsec >= 1e9 {
   791  		dsec++
   792  		nsec -= 1e9
   793  	} else if nsec < 0 {
   794  		dsec--
   795  		nsec += 1e9
   796  	}
   797  	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
   798  	t.addSec(dsec)
   799  	if t.wall&hasMonotonic != 0 {
   800  		te := t.ext + int64(d)
   801  		if d < 0 && te > int64(t.ext) || d > 0 && te < int64(t.ext) {
   802  			// Monotonic clock reading now out of range; degrade to wall-only.
   803  			t.ext = t.sec()
   804  			t.wall &= nsecMask
   805  		} else {
   806  			t.ext = te
   807  		}
   808  	}
   809  	return t
   810  }
   811  
   812  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   813  // value that can be stored in a Duration, the maximum (or minimum) duration
   814  // will be returned.
   815  // To compute t-d for a duration d, use t.Add(-d).
   816  func (t Time) Sub(u Time) Duration {
   817  	if t.wall&u.wall&hasMonotonic != 0 {
   818  		te := int64(t.ext)
   819  		ue := int64(u.ext)
   820  		d := Duration(te - ue)
   821  		if d < 0 && te > ue {
   822  			return maxDuration // t - u is positive out of range
   823  		}
   824  		if d > 0 && te < ue {
   825  			return minDuration // t - u is negative out of range
   826  		}
   827  		return d
   828  	}
   829  	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
   830  	// Check for overflow or underflow.
   831  	switch {
   832  	case u.Add(d).Equal(t):
   833  		return d // d is correct
   834  	case t.Before(u):
   835  		return minDuration // t - u is negative out of range
   836  	default:
   837  		return maxDuration // t - u is positive out of range
   838  	}
   839  }
   840  
   841  // Since returns the time elapsed since t.
   842  // It is shorthand for time.Now().Sub(t).
   843  func Since(t Time) Duration {
   844  	return Now().Sub(t)
   845  }
   846  
   847  // Until returns the duration until t.
   848  // It is shorthand for t.Sub(time.Now()).
   849  func Until(t Time) Duration {
   850  	return t.Sub(Now())
   851  }
   852  
   853  // AddDate returns the time corresponding to adding the
   854  // given number of years, months, and days to t.
   855  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   856  // returns March 4, 2010.
   857  //
   858  // AddDate normalizes its result in the same way that Date does,
   859  // so, for example, adding one month to October 31 yields
   860  // December 1, the normalized form for November 31.
   861  func (t Time) AddDate(years int, months int, days int) Time {
   862  	year, month, day := t.Date()
   863  	hour, min, sec := t.Clock()
   864  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
   865  }
   866  
   867  const (
   868  	secondsPerMinute = 60
   869  	secondsPerHour   = 60 * 60
   870  	secondsPerDay    = 24 * secondsPerHour
   871  	secondsPerWeek   = 7 * secondsPerDay
   872  	daysPer400Years  = 365*400 + 97
   873  	daysPer100Years  = 365*100 + 24
   874  	daysPer4Years    = 365*4 + 1
   875  )
   876  
   877  // date computes the year, day of year, and when full=true,
   878  // the month and day in which t occurs.
   879  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   880  	return absDate(t.abs(), full)
   881  }
   882  
   883  // absDate is like date but operates on an absolute time.
   884  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   885  	// Split into time and day.
   886  	d := abs / secondsPerDay
   887  
   888  	// Account for 400 year cycles.
   889  	n := d / daysPer400Years
   890  	y := 400 * n
   891  	d -= daysPer400Years * n
   892  
   893  	// Cut off 100-year cycles.
   894  	// The last cycle has one extra leap year, so on the last day
   895  	// of that year, day / daysPer100Years will be 4 instead of 3.
   896  	// Cut it back down to 3 by subtracting n>>2.
   897  	n = d / daysPer100Years
   898  	n -= n >> 2
   899  	y += 100 * n
   900  	d -= daysPer100Years * n
   901  
   902  	// Cut off 4-year cycles.
   903  	// The last cycle has a missing leap year, which does not
   904  	// affect the computation.
   905  	n = d / daysPer4Years
   906  	y += 4 * n
   907  	d -= daysPer4Years * n
   908  
   909  	// Cut off years within a 4-year cycle.
   910  	// The last year is a leap year, so on the last day of that year,
   911  	// day / 365 will be 4 instead of 3.  Cut it back down to 3
   912  	// by subtracting n>>2.
   913  	n = d / 365
   914  	n -= n >> 2
   915  	y += n
   916  	d -= 365 * n
   917  
   918  	year = int(int64(y) + absoluteZeroYear)
   919  	yday = int(d)
   920  
   921  	if !full {
   922  		return
   923  	}
   924  
   925  	day = yday
   926  	if isLeap(year) {
   927  		// Leap year
   928  		switch {
   929  		case day > 31+29-1:
   930  			// After leap day; pretend it wasn't there.
   931  			day--
   932  		case day == 31+29-1:
   933  			// Leap day.
   934  			month = February
   935  			day = 29
   936  			return
   937  		}
   938  	}
   939  
   940  	// Estimate month on assumption that every month has 31 days.
   941  	// The estimate may be too low by at most one month, so adjust.
   942  	month = Month(day / 31)
   943  	end := int(daysBefore[month+1])
   944  	var begin int
   945  	if day >= end {
   946  		month++
   947  		begin = end
   948  	} else {
   949  		begin = int(daysBefore[month])
   950  	}
   951  
   952  	month++ // because January is 1
   953  	day = day - begin + 1
   954  	return
   955  }
   956  
   957  // daysBefore[m] counts the number of days in a non-leap year
   958  // before month m begins. There is an entry for m=12, counting
   959  // the number of days before January of next year (365).
   960  var daysBefore = [...]int32{
   961  	0,
   962  	31,
   963  	31 + 28,
   964  	31 + 28 + 31,
   965  	31 + 28 + 31 + 30,
   966  	31 + 28 + 31 + 30 + 31,
   967  	31 + 28 + 31 + 30 + 31 + 30,
   968  	31 + 28 + 31 + 30 + 31 + 30 + 31,
   969  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
   970  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
   971  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
   972  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
   973  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
   974  }
   975  
   976  func daysIn(m Month, year int) int {
   977  	if m == February && isLeap(year) {
   978  		return 29
   979  	}
   980  	return int(daysBefore[m] - daysBefore[m-1])
   981  }
   982  
   983  // Provided by package runtime.
   984  func now() (sec int64, nsec int32, mono uint64)
   985  
   986  // Now returns the current local time.
   987  func Now() Time {
   988  	sec, nsec, mono := now()
   989  	t := unixTime(sec, nsec)
   990  	t.setMono(int64(mono))
   991  	return t
   992  }
   993  
   994  func unixTime(sec int64, nsec int32) Time {
   995  	return Time{uint64(nsec), sec + unixToInternal, Local}
   996  }
   997  
   998  // UTC returns t with the location set to UTC.
   999  func (t Time) UTC() Time {
  1000  	t.setLoc(&utcLoc)
  1001  	return t
  1002  }
  1003  
  1004  // Local returns t with the location set to local time.
  1005  func (t Time) Local() Time {
  1006  	t.setLoc(Local)
  1007  	return t
  1008  }
  1009  
  1010  // In returns t with the location information set to loc.
  1011  //
  1012  // In panics if loc is nil.
  1013  func (t Time) In(loc *Location) Time {
  1014  	if loc == nil {
  1015  		panic("time: missing Location in call to Time.In")
  1016  	}
  1017  	t.setLoc(loc)
  1018  	return t
  1019  }
  1020  
  1021  // Location returns the time zone information associated with t.
  1022  func (t Time) Location() *Location {
  1023  	l := t.loc
  1024  	if l == nil {
  1025  		l = UTC
  1026  	}
  1027  	return l
  1028  }
  1029  
  1030  // Zone computes the time zone in effect at time t, returning the abbreviated
  1031  // name of the zone (such as "CET") and its offset in seconds east of UTC.
  1032  func (t Time) Zone() (name string, offset int) {
  1033  	name, offset, _, _, _ = t.loc.lookup(t.unixSec())
  1034  	return
  1035  }
  1036  
  1037  // Unix returns t as a Unix time, the number of seconds elapsed
  1038  // since January 1, 1970 UTC.
  1039  func (t Time) Unix() int64 {
  1040  	return t.unixSec()
  1041  }
  1042  
  1043  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
  1044  // since January 1, 1970 UTC. The result is undefined if the Unix time
  1045  // in nanoseconds cannot be represented by an int64 (a date before the year
  1046  // 1678 or after 2262). Note that this means the result of calling UnixNano
  1047  // on the zero Time is undefined.
  1048  func (t Time) UnixNano() int64 {
  1049  	return (t.unixSec())*1e9 + int64(t.nsec())
  1050  }
  1051  
  1052  const timeBinaryVersion byte = 1
  1053  
  1054  // MarshalBinary implements the encoding.BinaryMarshaler interface.
  1055  func (t Time) MarshalBinary() ([]byte, error) {
  1056  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
  1057  
  1058  	if t.Location() == UTC {
  1059  		offsetMin = -1
  1060  	} else {
  1061  		_, offset := t.Zone()
  1062  		if offset%60 != 0 {
  1063  			return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
  1064  		}
  1065  		offset /= 60
  1066  		if offset < -32768 || offset == -1 || offset > 32767 {
  1067  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
  1068  		}
  1069  		offsetMin = int16(offset)
  1070  	}
  1071  
  1072  	sec := t.sec()
  1073  	nsec := t.nsec()
  1074  	enc := []byte{
  1075  		timeBinaryVersion, // byte 0 : version
  1076  		byte(sec >> 56),   // bytes 1-8: seconds
  1077  		byte(sec >> 48),
  1078  		byte(sec >> 40),
  1079  		byte(sec >> 32),
  1080  		byte(sec >> 24),
  1081  		byte(sec >> 16),
  1082  		byte(sec >> 8),
  1083  		byte(sec),
  1084  		byte(nsec >> 24), // bytes 9-12: nanoseconds
  1085  		byte(nsec >> 16),
  1086  		byte(nsec >> 8),
  1087  		byte(nsec),
  1088  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
  1089  		byte(offsetMin),
  1090  	}
  1091  
  1092  	return enc, nil
  1093  }
  1094  
  1095  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
  1096  func (t *Time) UnmarshalBinary(data []byte) error {
  1097  	buf := data
  1098  	if len(buf) == 0 {
  1099  		return errors.New("Time.UnmarshalBinary: no data")
  1100  	}
  1101  
  1102  	if buf[0] != timeBinaryVersion {
  1103  		return errors.New("Time.UnmarshalBinary: unsupported version")
  1104  	}
  1105  
  1106  	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
  1107  		return errors.New("Time.UnmarshalBinary: invalid length")
  1108  	}
  1109  
  1110  	buf = buf[1:]
  1111  	sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
  1112  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
  1113  
  1114  	buf = buf[8:]
  1115  	nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
  1116  
  1117  	buf = buf[4:]
  1118  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
  1119  
  1120  	*t = Time{}
  1121  	t.wall = uint64(nsec)
  1122  	t.ext = sec
  1123  
  1124  	if offset == -1*60 {
  1125  		t.setLoc(&utcLoc)
  1126  	} else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
  1127  		t.setLoc(Local)
  1128  	} else {
  1129  		t.setLoc(FixedZone("", offset))
  1130  	}
  1131  
  1132  	return nil
  1133  }
  1134  
  1135  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
  1136  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
  1137  // UnmarshalBinary, UnmarshalText.
  1138  
  1139  // GobEncode implements the gob.GobEncoder interface.
  1140  func (t Time) GobEncode() ([]byte, error) {
  1141  	return t.MarshalBinary()
  1142  }
  1143  
  1144  // GobDecode implements the gob.GobDecoder interface.
  1145  func (t *Time) GobDecode(data []byte) error {
  1146  	return t.UnmarshalBinary(data)
  1147  }
  1148  
  1149  // MarshalJSON implements the json.Marshaler interface.
  1150  // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
  1151  func (t Time) MarshalJSON() ([]byte, error) {
  1152  	if y := t.Year(); y < 0 || y >= 10000 {
  1153  		// RFC 3339 is clear that years are 4 digits exactly.
  1154  		// See golang.org/issue/4556#c15 for more discussion.
  1155  		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
  1156  	}
  1157  
  1158  	b := make([]byte, 0, len(RFC3339Nano)+2)
  1159  	b = append(b, '"')
  1160  	b = t.AppendFormat(b, RFC3339Nano)
  1161  	b = append(b, '"')
  1162  	return b, nil
  1163  }
  1164  
  1165  // UnmarshalJSON implements the json.Unmarshaler interface.
  1166  // The time is expected to be a quoted string in RFC 3339 format.
  1167  func (t *Time) UnmarshalJSON(data []byte) error {
  1168  	// Ignore null, like in the main JSON package.
  1169  	if string(data) == "null" {
  1170  		return nil
  1171  	}
  1172  	// Fractional seconds are handled implicitly by Parse.
  1173  	var err error
  1174  	*t, err = Parse(`"`+RFC3339+`"`, string(data))
  1175  	return err
  1176  }
  1177  
  1178  // MarshalText implements the encoding.TextMarshaler interface.
  1179  // The time is formatted in RFC 3339 format, with sub-second precision added if present.
  1180  func (t Time) MarshalText() ([]byte, error) {
  1181  	if y := t.Year(); y < 0 || y >= 10000 {
  1182  		return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
  1183  	}
  1184  
  1185  	b := make([]byte, 0, len(RFC3339Nano))
  1186  	return t.AppendFormat(b, RFC3339Nano), nil
  1187  }
  1188  
  1189  // UnmarshalText implements the encoding.TextUnmarshaler interface.
  1190  // The time is expected to be in RFC 3339 format.
  1191  func (t *Time) UnmarshalText(data []byte) error {
  1192  	// Fractional seconds are handled implicitly by Parse.
  1193  	var err error
  1194  	*t, err = Parse(RFC3339, string(data))
  1195  	return err
  1196  }
  1197  
  1198  // Unix returns the local Time corresponding to the given Unix time,
  1199  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
  1200  // It is valid to pass nsec outside the range [0, 999999999].
  1201  // Not all sec values have a corresponding time value. One such
  1202  // value is 1<<63-1 (the largest int64 value).
  1203  func Unix(sec int64, nsec int64) Time {
  1204  	if nsec < 0 || nsec >= 1e9 {
  1205  		n := nsec / 1e9
  1206  		sec += n
  1207  		nsec -= n * 1e9
  1208  		if nsec < 0 {
  1209  			nsec += 1e9
  1210  			sec--
  1211  		}
  1212  	}
  1213  	return unixTime(sec, int32(nsec))
  1214  }
  1215  
  1216  func isLeap(year int) bool {
  1217  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1218  }
  1219  
  1220  // norm returns nhi, nlo such that
  1221  //	hi * base + lo == nhi * base + nlo
  1222  //	0 <= nlo < base
  1223  func norm(hi, lo, base int) (nhi, nlo int) {
  1224  	if lo < 0 {
  1225  		n := (-lo-1)/base + 1
  1226  		hi -= n
  1227  		lo += n * base
  1228  	}
  1229  	if lo >= base {
  1230  		n := lo / base
  1231  		hi += n
  1232  		lo -= n * base
  1233  	}
  1234  	return hi, lo
  1235  }
  1236  
  1237  // Date returns the Time corresponding to
  1238  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1239  // in the appropriate zone for that time in the given location.
  1240  //
  1241  // The month, day, hour, min, sec, and nsec values may be outside
  1242  // their usual ranges and will be normalized during the conversion.
  1243  // For example, October 32 converts to November 1.
  1244  //
  1245  // A daylight savings time transition skips or repeats times.
  1246  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1247  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1248  // choice of time zone, and therefore the time, is not well-defined.
  1249  // Date returns a time that is correct in one of the two zones involved
  1250  // in the transition, but it does not guarantee which.
  1251  //
  1252  // Date panics if loc is nil.
  1253  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1254  	if loc == nil {
  1255  		panic("time: missing Location in call to Date")
  1256  	}
  1257  
  1258  	// Normalize month, overflowing into year.
  1259  	m := int(month) - 1
  1260  	year, m = norm(year, m, 12)
  1261  	month = Month(m) + 1
  1262  
  1263  	// Normalize nsec, sec, min, hour, overflowing into day.
  1264  	sec, nsec = norm(sec, nsec, 1e9)
  1265  	min, sec = norm(min, sec, 60)
  1266  	hour, min = norm(hour, min, 60)
  1267  	day, hour = norm(day, hour, 24)
  1268  
  1269  	y := uint64(int64(year) - absoluteZeroYear)
  1270  
  1271  	// Compute days since the absolute epoch.
  1272  
  1273  	// Add in days from 400-year cycles.
  1274  	n := y / 400
  1275  	y -= 400 * n
  1276  	d := daysPer400Years * n
  1277  
  1278  	// Add in 100-year cycles.
  1279  	n = y / 100
  1280  	y -= 100 * n
  1281  	d += daysPer100Years * n
  1282  
  1283  	// Add in 4-year cycles.
  1284  	n = y / 4
  1285  	y -= 4 * n
  1286  	d += daysPer4Years * n
  1287  
  1288  	// Add in non-leap years.
  1289  	n = y
  1290  	d += 365 * n
  1291  
  1292  	// Add in days before this month.
  1293  	d += uint64(daysBefore[month-1])
  1294  	if isLeap(year) && month >= March {
  1295  		d++ // February 29
  1296  	}
  1297  
  1298  	// Add in days before today.
  1299  	d += uint64(day - 1)
  1300  
  1301  	// Add in time elapsed today.
  1302  	abs := d * secondsPerDay
  1303  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1304  
  1305  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1306  
  1307  	// Look for zone offset for t, so we can adjust to UTC.
  1308  	// The lookup function expects UTC, so we pass t in the
  1309  	// hope that it will not be too close to a zone transition,
  1310  	// and then adjust if it is.
  1311  	_, offset, _, start, end := loc.lookup(unix)
  1312  	if offset != 0 {
  1313  		switch utc := unix - int64(offset); {
  1314  		case utc < start:
  1315  			_, offset, _, _, _ = loc.lookup(start - 1)
  1316  		case utc >= end:
  1317  			_, offset, _, _, _ = loc.lookup(end)
  1318  		}
  1319  		unix -= int64(offset)
  1320  	}
  1321  
  1322  	t := unixTime(unix, int32(nsec))
  1323  	t.setLoc(loc)
  1324  	return t
  1325  }
  1326  
  1327  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1328  // If d <= 0, Truncate returns t unchanged.
  1329  //
  1330  // Truncate operates on the time as an absolute duration since the
  1331  // zero time; it does not operate on the presentation form of the
  1332  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1333  // minute, depending on the time's Location.
  1334  func (t Time) Truncate(d Duration) Time {
  1335  	if d <= 0 {
  1336  		return t
  1337  	}
  1338  	_, r := div(t, d)
  1339  	return t.Add(-r)
  1340  }
  1341  
  1342  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1343  // The rounding behavior for halfway values is to round up.
  1344  // If d <= 0, Round returns t unchanged.
  1345  //
  1346  // Round operates on the time as an absolute duration since the
  1347  // zero time; it does not operate on the presentation form of the
  1348  // time. Thus, Round(Hour) may return a time with a non-zero
  1349  // minute, depending on the time's Location.
  1350  func (t Time) Round(d Duration) Time {
  1351  	if d <= 0 {
  1352  		return t
  1353  	}
  1354  	_, r := div(t, d)
  1355  	if r+r < d {
  1356  		return t.Add(-r)
  1357  	}
  1358  	return t.Add(d - r)
  1359  }
  1360  
  1361  // div divides t by d and returns the quotient parity and remainder.
  1362  // We don't use the quotient parity anymore (round half up instead of round to even)
  1363  // but it's still here in case we change our minds.
  1364  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1365  	neg := false
  1366  	nsec := t.nsec()
  1367  	sec := t.sec()
  1368  	if sec < 0 {
  1369  		// Operate on absolute value.
  1370  		neg = true
  1371  		sec = -sec
  1372  		nsec = -nsec
  1373  		if nsec < 0 {
  1374  			nsec += 1e9
  1375  			sec-- // sec >= 1 before the -- so safe
  1376  		}
  1377  	}
  1378  
  1379  	switch {
  1380  	// Special case: 2d divides 1 second.
  1381  	case d < Second && Second%(d+d) == 0:
  1382  		qmod2 = int(nsec/int32(d)) & 1
  1383  		r = Duration(nsec % int32(d))
  1384  
  1385  	// Special case: d is a multiple of 1 second.
  1386  	case d%Second == 0:
  1387  		d1 := int64(d / Second)
  1388  		qmod2 = int(sec/d1) & 1
  1389  		r = Duration(sec%d1)*Second + Duration(nsec)
  1390  
  1391  	// General case.
  1392  	// This could be faster if more cleverness were applied,
  1393  	// but it's really only here to avoid special case restrictions in the API.
  1394  	// No one will care about these cases.
  1395  	default:
  1396  		// Compute nanoseconds as 128-bit number.
  1397  		sec := uint64(sec)
  1398  		tmp := (sec >> 32) * 1e9
  1399  		u1 := tmp >> 32
  1400  		u0 := tmp << 32
  1401  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1402  		u0x, u0 := u0, u0+tmp
  1403  		if u0 < u0x {
  1404  			u1++
  1405  		}
  1406  		u0x, u0 = u0, u0+uint64(nsec)
  1407  		if u0 < u0x {
  1408  			u1++
  1409  		}
  1410  
  1411  		// Compute remainder by subtracting r<<k for decreasing k.
  1412  		// Quotient parity is whether we subtract on last round.
  1413  		d1 := uint64(d)
  1414  		for d1>>63 != 1 {
  1415  			d1 <<= 1
  1416  		}
  1417  		d0 := uint64(0)
  1418  		for {
  1419  			qmod2 = 0
  1420  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1421  				// subtract
  1422  				qmod2 = 1
  1423  				u0x, u0 = u0, u0-d0
  1424  				if u0 > u0x {
  1425  					u1--
  1426  				}
  1427  				u1 -= d1
  1428  			}
  1429  			if d1 == 0 && d0 == uint64(d) {
  1430  				break
  1431  			}
  1432  			d0 >>= 1
  1433  			d0 |= (d1 & 1) << 63
  1434  			d1 >>= 1
  1435  		}
  1436  		r = Duration(u0)
  1437  	}
  1438  
  1439  	if neg && r != 0 {
  1440  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1441  		//	q*d + r = -t
  1442  		// But the right answers are given by -(q-1), d-r:
  1443  		//	q*d + r = -t
  1444  		//	-q*d - r = t
  1445  		//	-(q-1)*d + (d - r) = t
  1446  		qmod2 ^= 1
  1447  		r = d - r
  1448  	}
  1449  	return
  1450  }