github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/test/chan/powser2.go (about)

     1  // run
     2  
     3  // Copyright 2009 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  // Test concurrency primitives: power series.
     8  
     9  // Like powser1.go but uses channels of interfaces.
    10  // Has not been cleaned up as much as powser1.go, to keep
    11  // it distinct and therefore a different test.
    12  
    13  // Power series package
    14  // A power series is a channel, along which flow rational
    15  // coefficients.  A denominator of zero signifies the end.
    16  // Original code in Newsqueak by Doug McIlroy.
    17  // See Squinting at Power Series by Doug McIlroy,
    18  //   http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf
    19  
    20  package main
    21  
    22  import "os"
    23  
    24  type rat struct  {
    25  	num, den  int64	// numerator, denominator
    26  }
    27  
    28  type item interface {
    29  	pr()
    30  	eq(c item) bool
    31  }
    32  
    33  func (u *rat) pr(){
    34  	if u.den==1 {
    35  		print(u.num)
    36  	} else {
    37  		print(u.num, "/", u.den)
    38  	}
    39  	print(" ")
    40  }
    41  
    42  func (u *rat) eq(c item) bool {
    43  	c1 := c.(*rat)
    44  	return u.num == c1.num && u.den == c1.den
    45  }
    46  
    47  type dch struct {
    48  	req chan  int
    49  	dat chan  item
    50  	nam int
    51  }
    52  
    53  type dch2 [2] *dch
    54  
    55  var chnames string
    56  var chnameserial int
    57  var seqno int
    58  
    59  func mkdch() *dch {
    60  	c := chnameserial % len(chnames)
    61  	chnameserial++
    62  	d := new(dch)
    63  	d.req = make(chan int)
    64  	d.dat = make(chan item)
    65  	d.nam = c
    66  	return d
    67  }
    68  
    69  func mkdch2() *dch2 {
    70  	d2 := new(dch2)
    71  	d2[0] = mkdch()
    72  	d2[1] = mkdch()
    73  	return d2
    74  }
    75  
    76  // split reads a single demand channel and replicates its
    77  // output onto two, which may be read at different rates.
    78  // A process is created at first demand for an item and dies
    79  // after the item has been sent to both outputs.
    80  
    81  // When multiple generations of split exist, the newest
    82  // will service requests on one channel, which is
    83  // always renamed to be out[0]; the oldest will service
    84  // requests on the other channel, out[1].  All generations but the
    85  // newest hold queued data that has already been sent to
    86  // out[0].  When data has finally been sent to out[1],
    87  // a signal on the release-wait channel tells the next newer
    88  // generation to begin servicing out[1].
    89  
    90  func dosplit(in *dch, out *dch2, wait chan int ){
    91  	both := false	// do not service both channels
    92  
    93  	select {
    94  	case <-out[0].req:
    95  		
    96  	case <-wait:
    97  		both = true
    98  		select {
    99  		case <-out[0].req:
   100  			
   101  		case <-out[1].req:
   102  			out[0],out[1] = out[1], out[0]
   103  		}
   104  	}
   105  
   106  	seqno++
   107  	in.req <- seqno
   108  	release := make(chan  int)
   109  	go dosplit(in, out, release)
   110  	dat := <-in.dat
   111  	out[0].dat <- dat
   112  	if !both {
   113  		<-wait
   114  	}
   115  	<-out[1].req
   116  	out[1].dat <- dat
   117  	release <- 0
   118  }
   119  
   120  func split(in *dch, out *dch2){
   121  	release := make(chan int)
   122  	go dosplit(in, out, release)
   123  	release <- 0
   124  }
   125  
   126  func put(dat item, out *dch){
   127  	<-out.req
   128  	out.dat <- dat
   129  }
   130  
   131  func get(in *dch) *rat {
   132  	seqno++
   133  	in.req <- seqno
   134  	return (<-in.dat).(*rat)
   135  }
   136  
   137  // Get one item from each of n demand channels
   138  
   139  func getn(in []*dch) []item {
   140  	n:=len(in)
   141  	if n != 2 { panic("bad n in getn") }
   142  	req := make([] chan int, 2)
   143  	dat := make([] chan item, 2)
   144  	out := make([]item, 2)
   145  	var i int
   146  	var it item
   147  	for i=0; i<n; i++ {
   148  		req[i] = in[i].req
   149  		dat[i] = nil
   150  	}
   151  	for n=2*n; n>0; n-- {
   152  		seqno++
   153  
   154  		select{
   155  		case req[0] <- seqno:
   156  			dat[0] = in[0].dat
   157  			req[0] = nil
   158  		case req[1] <- seqno:
   159  			dat[1] = in[1].dat
   160  			req[1] = nil
   161  		case it = <-dat[0]:
   162  			out[0] = it
   163  			dat[0] = nil
   164  		case it = <-dat[1]:
   165  			out[1] = it
   166  			dat[1] = nil
   167  		}
   168  	}
   169  	return out
   170  }
   171  
   172  // Get one item from each of 2 demand channels
   173  
   174  func get2(in0 *dch, in1 *dch)  []item {
   175  	return getn([]*dch{in0, in1})
   176  }
   177  
   178  func copy(in *dch, out *dch){
   179  	for {
   180  		<-out.req
   181  		out.dat <- get(in)
   182  	}
   183  }
   184  
   185  func repeat(dat item, out *dch){
   186  	for {
   187  		put(dat, out)
   188  	}
   189  }
   190  
   191  type PS *dch	// power series
   192  type PS2 *[2] PS // pair of power series
   193  
   194  var Ones PS
   195  var Twos PS
   196  
   197  func mkPS() *dch {
   198  	return mkdch()
   199  }
   200  
   201  func mkPS2() *dch2 {
   202  	return mkdch2()
   203  }
   204  
   205  // Conventions
   206  // Upper-case for power series.
   207  // Lower-case for rationals.
   208  // Input variables: U,V,...
   209  // Output variables: ...,Y,Z
   210  
   211  // Integer gcd; needed for rational arithmetic
   212  
   213  func gcd (u, v int64) int64{
   214  	if u < 0 { return gcd(-u, v) }
   215  	if u == 0 { return v }
   216  	return gcd(v%u, u)
   217  }
   218  
   219  // Make a rational from two ints and from one int
   220  
   221  func i2tor(u, v int64) *rat{
   222  	g := gcd(u,v)
   223  	r := new(rat)
   224  	if v > 0 {
   225  		r.num = u/g
   226  		r.den = v/g
   227  	} else {
   228  		r.num = -u/g
   229  		r.den = -v/g
   230  	}
   231  	return r
   232  }
   233  
   234  func itor(u int64) *rat{
   235  	return i2tor(u, 1)
   236  }
   237  
   238  var zero *rat
   239  var one *rat
   240  
   241  
   242  // End mark and end test
   243  
   244  var finis *rat
   245  
   246  func end(u *rat) int64 {
   247  	if u.den==0 { return 1 }
   248  	return 0
   249  }
   250  
   251  // Operations on rationals
   252  
   253  func add(u, v *rat) *rat {
   254  	g := gcd(u.den,v.den)
   255  	return  i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
   256  }
   257  
   258  func mul(u, v *rat) *rat{
   259  	g1 := gcd(u.num,v.den)
   260  	g2 := gcd(u.den,v.num)
   261  	r := new(rat)
   262  	r.num =(u.num/g1)*(v.num/g2)
   263  	r.den = (u.den/g2)*(v.den/g1)
   264  	return r
   265  }
   266  
   267  func neg(u *rat) *rat{
   268  	return i2tor(-u.num, u.den)
   269  }
   270  
   271  func sub(u, v *rat) *rat{
   272  	return add(u, neg(v))
   273  }
   274  
   275  func inv(u *rat) *rat{	// invert a rat
   276  	if u.num == 0 { panic("zero divide in inv") }
   277  	return i2tor(u.den, u.num)
   278  }
   279  
   280  // print eval in floating point of PS at x=c to n terms
   281  func Evaln(c *rat, U PS, n int) {
   282  	xn := float64(1)
   283  	x := float64(c.num)/float64(c.den)
   284  	val := float64(0)
   285  	for i:=0; i<n; i++ {
   286  		u := get(U)
   287  		if end(u) != 0 {
   288  			break
   289  		}
   290  		val = val + x * float64(u.num)/float64(u.den)
   291  		xn = xn*x
   292  	}
   293  	print(val, "\n")
   294  }
   295  
   296  // Print n terms of a power series
   297  func Printn(U PS, n int){
   298  	done := false
   299  	for ; !done && n>0; n-- {
   300  		u := get(U)
   301  		if end(u) != 0 {
   302  			done = true
   303  		} else {
   304  			u.pr()
   305  		}
   306  	}
   307  	print(("\n"))
   308  }
   309  
   310  func Print(U PS){
   311  	Printn(U,1000000000)
   312  }
   313  
   314  // Evaluate n terms of power series U at x=c
   315  func eval(c *rat, U PS, n int) *rat{
   316  	if n==0 { return zero }
   317  	y := get(U)
   318  	if end(y) != 0 { return zero }
   319  	return add(y,mul(c,eval(c,U,n-1)))
   320  }
   321  
   322  // Power-series constructors return channels on which power
   323  // series flow.  They start an encapsulated generator that
   324  // puts the terms of the series on the channel.
   325  
   326  // Make a pair of power series identical to a given power series
   327  
   328  func Split(U PS) *dch2{
   329  	UU := mkdch2()
   330  	go split(U,UU)
   331  	return UU
   332  }
   333  
   334  // Add two power series
   335  func Add(U, V PS) PS{
   336  	Z := mkPS()
   337  	go func(U, V, Z PS){
   338  		var uv [] item
   339  		for {
   340  			<-Z.req
   341  			uv = get2(U,V)
   342  			switch end(uv[0].(*rat))+2*end(uv[1].(*rat)) {
   343  			case 0:
   344  				Z.dat <- add(uv[0].(*rat), uv[1].(*rat))
   345  			case 1:
   346  				Z.dat <- uv[1]
   347  				copy(V,Z)
   348  			case 2:
   349  				Z.dat <- uv[0]
   350  				copy(U,Z)
   351  			case 3:
   352  				Z.dat <- finis
   353  			}
   354  		}
   355  	}(U, V, Z)
   356  	return Z
   357  }
   358  
   359  // Multiply a power series by a constant
   360  func Cmul(c *rat,U PS) PS{
   361  	Z := mkPS()
   362  	go func(c *rat, U, Z PS){
   363  		done := false
   364  		for !done {
   365  			<-Z.req
   366  			u := get(U)
   367  			if end(u) != 0 {
   368  				done = true
   369  			} else {
   370  				Z.dat <- mul(c,u)
   371  			}
   372  		}
   373  		Z.dat <- finis
   374  	}(c, U, Z)
   375  	return Z
   376  }
   377  
   378  // Subtract
   379  
   380  func Sub(U, V PS) PS{
   381  	return Add(U, Cmul(neg(one), V))
   382  }
   383  
   384  // Multiply a power series by the monomial x^n
   385  
   386  func Monmul(U PS, n int) PS{
   387  	Z := mkPS()
   388  	go func(n int, U PS, Z PS){
   389  		for ; n>0; n-- { put(zero,Z) }
   390  		copy(U,Z)
   391  	}(n, U, Z)
   392  	return Z
   393  }
   394  
   395  // Multiply by x
   396  
   397  func Xmul(U PS) PS{
   398  	return Monmul(U,1)
   399  }
   400  
   401  func Rep(c *rat) PS{
   402  	Z := mkPS()
   403  	go repeat(c,Z)
   404  	return Z
   405  }
   406  
   407  // Monomial c*x^n
   408  
   409  func Mon(c *rat, n int) PS{
   410  	Z:=mkPS()
   411  	go func(c *rat, n int, Z PS){
   412  		if(c.num!=0) {
   413  			for ; n>0; n=n-1 { put(zero,Z) }
   414  			put(c,Z)
   415  		}
   416  		put(finis,Z)
   417  	}(c, n, Z)
   418  	return Z
   419  }
   420  
   421  func Shift(c *rat, U PS) PS{
   422  	Z := mkPS()
   423  	go func(c *rat, U, Z PS){
   424  		put(c,Z)
   425  		copy(U,Z)
   426  	}(c, U, Z)
   427  	return Z
   428  }
   429  
   430  // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
   431  
   432  // Convert array of coefficients, constant term first
   433  // to a (finite) power series
   434  
   435  /*
   436  func Poly(a [] *rat) PS{
   437  	Z:=mkPS()
   438  	begin func(a [] *rat, Z PS){
   439  		j:=0
   440  		done:=0
   441  		for j=len(a); !done&&j>0; j=j-1)
   442  			if(a[j-1].num!=0) done=1
   443  		i:=0
   444  		for(; i<j; i=i+1) put(a[i],Z)
   445  		put(finis,Z)
   446  	}()
   447  	return Z
   448  }
   449  */
   450  
   451  // Multiply. The algorithm is
   452  //	let U = u + x*UU
   453  //	let V = v + x*VV
   454  //	then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
   455  
   456  func Mul(U, V PS) PS{
   457  	Z:=mkPS()
   458  	go func(U, V, Z PS){
   459  		<-Z.req
   460  		uv := get2(U,V)
   461  		if end(uv[0].(*rat))!=0 || end(uv[1].(*rat)) != 0 {
   462  			Z.dat <- finis
   463  		} else {
   464  			Z.dat <- mul(uv[0].(*rat),uv[1].(*rat))
   465  			UU := Split(U)
   466  			VV := Split(V)
   467  			W := Add(Cmul(uv[0].(*rat),VV[0]),Cmul(uv[1].(*rat),UU[0]))
   468  			<-Z.req
   469  			Z.dat <- get(W)
   470  			copy(Add(W,Mul(UU[1],VV[1])),Z)
   471  		}
   472  	}(U, V, Z)
   473  	return Z
   474  }
   475  
   476  // Differentiate
   477  
   478  func Diff(U PS) PS{
   479  	Z:=mkPS()
   480  	go func(U, Z PS){
   481  		<-Z.req
   482  		u := get(U)
   483  		if end(u) == 0 {
   484  			done:=false
   485  			for i:=1; !done; i++ {
   486  				u = get(U)
   487  				if end(u) != 0 {
   488  					done=true
   489  				} else {
   490  					Z.dat <- mul(itor(int64(i)),u)
   491  					<-Z.req
   492  				}
   493  			}
   494  		}
   495  		Z.dat <- finis
   496  	}(U, Z)
   497  	return Z
   498  }
   499  
   500  // Integrate, with const of integration
   501  func Integ(c *rat,U PS) PS{
   502  	Z:=mkPS()
   503  	go func(c *rat, U, Z PS){
   504  		put(c,Z)
   505  		done:=false
   506  		for i:=1; !done; i++ {
   507  			<-Z.req
   508  			u := get(U)
   509  			if end(u) != 0 { done= true }
   510  			Z.dat <- mul(i2tor(1,int64(i)),u)
   511  		}
   512  		Z.dat <- finis
   513  	}(c, U, Z)
   514  	return Z
   515  }
   516  
   517  // Binomial theorem (1+x)^c
   518  
   519  func Binom(c *rat) PS{
   520  	Z:=mkPS()
   521  	go func(c *rat, Z PS){
   522  		n := 1
   523  		t := itor(1)
   524  		for c.num!=0 {
   525  			put(t,Z)
   526  			t = mul(mul(t,c),i2tor(1,int64(n)))
   527  			c = sub(c,one)
   528  			n++
   529  		}
   530  		put(finis,Z)
   531  	}(c, Z)
   532  	return Z
   533  }
   534  
   535  // Reciprocal of a power series
   536  //	let U = u + x*UU
   537  //	let Z = z + x*ZZ
   538  //	(u+x*UU)*(z+x*ZZ) = 1
   539  //	z = 1/u
   540  //	u*ZZ + z*UU +x*UU*ZZ = 0
   541  //	ZZ = -UU*(z+x*ZZ)/u
   542  
   543  func Recip(U PS) PS{
   544  	Z:=mkPS()
   545  	go func(U, Z PS){
   546  		ZZ:=mkPS2()
   547  		<-Z.req
   548  		z := inv(get(U))
   549  		Z.dat <- z
   550  		split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
   551  		copy(ZZ[1],Z)
   552  	}(U, Z)
   553  	return Z
   554  }
   555  
   556  // Exponential of a power series with constant term 0
   557  // (nonzero constant term would make nonrational coefficients)
   558  // bug: the constant term is simply ignored
   559  //	Z = exp(U)
   560  //	DZ = Z*DU
   561  //	integrate to get Z
   562  
   563  func Exp(U PS) PS{
   564  	ZZ := mkPS2()
   565  	split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
   566  	return ZZ[1]
   567  }
   568  
   569  // Substitute V for x in U, where the leading term of V is zero
   570  //	let U = u + x*UU
   571  //	let V = v + x*VV
   572  //	then S(U,V) = u + VV*S(V,UU)
   573  // bug: a nonzero constant term is ignored
   574  
   575  func Subst(U, V PS) PS {
   576  	Z:= mkPS()
   577  	go func(U, V, Z PS) {
   578  		VV := Split(V)
   579  		<-Z.req
   580  		u := get(U)
   581  		Z.dat <- u
   582  		if end(u) == 0 {
   583  			if end(get(VV[0])) != 0 {
   584  				put(finis,Z)
   585  			} else {
   586  				copy(Mul(VV[0],Subst(U,VV[1])),Z)
   587  			}
   588  		}
   589  	}(U, V, Z)
   590  	return Z
   591  }
   592  
   593  // Monomial Substition: U(c x^n)
   594  // Each Ui is multiplied by c^i and followed by n-1 zeros
   595  
   596  func MonSubst(U PS, c0 *rat, n int) PS {
   597  	Z:= mkPS()
   598  	go func(U, Z PS, c0 *rat, n int) {
   599  		c := one
   600  		for {
   601  			<-Z.req
   602  			u := get(U)
   603  			Z.dat <- mul(u, c)
   604  			c = mul(c, c0)
   605  			if end(u) != 0 {
   606  				Z.dat <- finis
   607  				break
   608  			}
   609  			for i := 1; i < n; i++ {
   610  				<-Z.req
   611  				Z.dat <- zero
   612  			}
   613  		}
   614  	}(U, Z, c0, n)
   615  	return Z
   616  }
   617  
   618  
   619  func Init() {
   620  	chnameserial = -1
   621  	seqno = 0
   622  	chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
   623  	zero = itor(0)
   624  	one = itor(1)
   625  	finis = i2tor(1,0)
   626  	Ones = Rep(one)
   627  	Twos = Rep(itor(2))
   628  }
   629  
   630  func check(U PS, c *rat, count int, str string) {
   631  	for i := 0; i < count; i++ {
   632  		r := get(U)
   633  		if !r.eq(c) {
   634  			print("got: ")
   635  			r.pr()
   636  			print("should get ")
   637  			c.pr()
   638  			print("\n")
   639  			panic(str)
   640  		}
   641  	}
   642  }
   643  
   644  const N=10
   645  func checka(U PS, a []*rat, str string) {
   646  	for i := 0; i < N; i++ {
   647  		check(U, a[i], 1, str)
   648  	}
   649  }
   650  
   651  func main() {
   652  	Init()
   653  	if len(os.Args) > 1 {  // print
   654  		print("Ones: "); Printn(Ones, 10)
   655  		print("Twos: "); Printn(Twos, 10)
   656  		print("Add: "); Printn(Add(Ones, Twos), 10)
   657  		print("Diff: "); Printn(Diff(Ones), 10)
   658  		print("Integ: "); Printn(Integ(zero, Ones), 10)
   659  		print("CMul: "); Printn(Cmul(neg(one), Ones), 10)
   660  		print("Sub: "); Printn(Sub(Ones, Twos), 10)
   661  		print("Mul: "); Printn(Mul(Ones, Ones), 10)
   662  		print("Exp: "); Printn(Exp(Ones), 15)
   663  		print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10)
   664  		print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
   665  	} else {  // test
   666  		check(Ones, one, 5, "Ones")
   667  		check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones")  // 1 1 1 1 1
   668  		check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
   669  		a := make([]*rat, N)
   670  		d := Diff(Ones)
   671  		for i:=0; i < N; i++ {
   672  			a[i] = itor(int64(i+1))
   673  		}
   674  		checka(d, a, "Diff")  // 1 2 3 4 5
   675  		in := Integ(zero, Ones)
   676  		a[0] = zero  // integration constant
   677  		for i:=1; i < N; i++ {
   678  			a[i] = i2tor(1, int64(i))
   679  		}
   680  		checka(in, a, "Integ")  // 0 1 1/2 1/3 1/4 1/5
   681  		check(Cmul(neg(one), Twos), itor(-2), 10, "CMul")  // -1 -1 -1 -1 -1
   682  		check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos")  // -1 -1 -1 -1 -1
   683  		m := Mul(Ones, Ones)
   684  		for i:=0; i < N; i++ {
   685  			a[i] = itor(int64(i+1))
   686  		}
   687  		checka(m, a, "Mul")  // 1 2 3 4 5
   688  		e := Exp(Ones)
   689  		a[0] = itor(1)
   690  		a[1] = itor(1)
   691  		a[2] = i2tor(3,2)
   692  		a[3] = i2tor(13,6)
   693  		a[4] = i2tor(73,24)
   694  		a[5] = i2tor(167,40)
   695  		a[6] = i2tor(4051,720)
   696  		a[7] = i2tor(37633,5040)
   697  		a[8] = i2tor(43817,4480)
   698  		a[9] = i2tor(4596553,362880)
   699  		checka(e, a, "Exp")  // 1 1 3/2 13/6 73/24
   700  		at := Integ(zero, MonSubst(Ones, neg(one), 2))
   701  		for c, i := 1, 0; i < N; i++ {
   702  			if i%2 == 0 {
   703  				a[i] = zero
   704  			} else {
   705  				a[i] = i2tor(int64(c), int64(i))
   706  				c *= -1
   707  			}
   708  		}
   709  		checka(at, a, "ATan");  // 0 -1 0 -1/3 0 -1/5
   710  /*
   711  		t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
   712  		a[0] = zero
   713  		a[1] = itor(1)
   714  		a[2] = zero
   715  		a[3] = i2tor(1,3)
   716  		a[4] = zero
   717  		a[5] = i2tor(2,15)
   718  		a[6] = zero
   719  		a[7] = i2tor(17,315)
   720  		a[8] = zero
   721  		a[9] = i2tor(62,2835)
   722  		checka(t, a, "Tan")  // 0 1 0 1/3 0 2/15
   723  */
   724  	}
   725  }