github.com/robhaswell/grandperspective-scan@v0.1.0/test/go-go1.7.1/src/compress/flate/huffman_bit_writer.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package flate
     6  
     7  import (
     8  	"io"
     9  )
    10  
    11  const (
    12  	// The largest offset code.
    13  	offsetCodeCount = 30
    14  
    15  	// The special code used to mark the end of a block.
    16  	endBlockMarker = 256
    17  
    18  	// The first length code.
    19  	lengthCodesStart = 257
    20  
    21  	// The number of codegen codes.
    22  	codegenCodeCount = 19
    23  	badCode          = 255
    24  
    25  	// bufferFlushSize indicates the buffer size
    26  	// after which bytes are flushed to the writer.
    27  	// Should preferably be a multiple of 6, since
    28  	// we accumulate 6 bytes between writes to the buffer.
    29  	bufferFlushSize = 240
    30  
    31  	// bufferSize is the actual output byte buffer size.
    32  	// It must have additional headroom for a flush
    33  	// which can contain up to 8 bytes.
    34  	bufferSize = bufferFlushSize + 8
    35  )
    36  
    37  // The number of extra bits needed by length code X - LENGTH_CODES_START.
    38  var lengthExtraBits = []int8{
    39  	/* 257 */ 0, 0, 0,
    40  	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
    41  	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
    42  	/* 280 */ 4, 5, 5, 5, 5, 0,
    43  }
    44  
    45  // The length indicated by length code X - LENGTH_CODES_START.
    46  var lengthBase = []uint32{
    47  	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
    48  	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
    49  	64, 80, 96, 112, 128, 160, 192, 224, 255,
    50  }
    51  
    52  // offset code word extra bits.
    53  var offsetExtraBits = []int8{
    54  	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
    55  	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
    56  	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
    57  	/* extended window */
    58  	14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
    59  }
    60  
    61  var offsetBase = []uint32{
    62  	/* normal deflate */
    63  	0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
    64  	0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
    65  	0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
    66  	0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
    67  	0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
    68  	0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
    69  
    70  	/* extended window */
    71  	0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
    72  	0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
    73  	0x100000, 0x180000, 0x200000, 0x300000,
    74  }
    75  
    76  // The odd order in which the codegen code sizes are written.
    77  var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
    78  
    79  type huffmanBitWriter struct {
    80  	// writer is the underlying writer.
    81  	// Do not use it directly; use the write method, which ensures
    82  	// that Write errors are sticky.
    83  	writer io.Writer
    84  
    85  	// Data waiting to be written is bytes[0:nbytes]
    86  	// and then the low nbits of bits.
    87  	bits            uint64
    88  	nbits           uint
    89  	bytes           [bufferSize]byte
    90  	codegenFreq     [codegenCodeCount]int32
    91  	nbytes          int
    92  	literalFreq     []int32
    93  	offsetFreq      []int32
    94  	codegen         []uint8
    95  	literalEncoding *huffmanEncoder
    96  	offsetEncoding  *huffmanEncoder
    97  	codegenEncoding *huffmanEncoder
    98  	err             error
    99  }
   100  
   101  func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
   102  	return &huffmanBitWriter{
   103  		writer:          w,
   104  		literalFreq:     make([]int32, maxNumLit),
   105  		offsetFreq:      make([]int32, offsetCodeCount),
   106  		codegen:         make([]uint8, maxNumLit+offsetCodeCount+1),
   107  		literalEncoding: newHuffmanEncoder(maxNumLit),
   108  		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
   109  		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
   110  	}
   111  }
   112  
   113  func (w *huffmanBitWriter) reset(writer io.Writer) {
   114  	w.writer = writer
   115  	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
   116  	w.bytes = [bufferSize]byte{}
   117  }
   118  
   119  func (w *huffmanBitWriter) flush() {
   120  	if w.err != nil {
   121  		w.nbits = 0
   122  		return
   123  	}
   124  	n := w.nbytes
   125  	for w.nbits != 0 {
   126  		w.bytes[n] = byte(w.bits)
   127  		w.bits >>= 8
   128  		if w.nbits > 8 { // Avoid underflow
   129  			w.nbits -= 8
   130  		} else {
   131  			w.nbits = 0
   132  		}
   133  		n++
   134  	}
   135  	w.bits = 0
   136  	w.write(w.bytes[:n])
   137  	w.nbytes = 0
   138  }
   139  
   140  func (w *huffmanBitWriter) write(b []byte) {
   141  	if w.err != nil {
   142  		return
   143  	}
   144  	_, w.err = w.writer.Write(b)
   145  }
   146  
   147  func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
   148  	if w.err != nil {
   149  		return
   150  	}
   151  	w.bits |= uint64(b) << w.nbits
   152  	w.nbits += nb
   153  	if w.nbits >= 48 {
   154  		bits := w.bits
   155  		w.bits >>= 48
   156  		w.nbits -= 48
   157  		n := w.nbytes
   158  		bytes := w.bytes[n : n+6]
   159  		bytes[0] = byte(bits)
   160  		bytes[1] = byte(bits >> 8)
   161  		bytes[2] = byte(bits >> 16)
   162  		bytes[3] = byte(bits >> 24)
   163  		bytes[4] = byte(bits >> 32)
   164  		bytes[5] = byte(bits >> 40)
   165  		n += 6
   166  		if n >= bufferFlushSize {
   167  			w.write(w.bytes[:n])
   168  			n = 0
   169  		}
   170  		w.nbytes = n
   171  	}
   172  }
   173  
   174  func (w *huffmanBitWriter) writeBytes(bytes []byte) {
   175  	if w.err != nil {
   176  		return
   177  	}
   178  	n := w.nbytes
   179  	if w.nbits&7 != 0 {
   180  		w.err = InternalError("writeBytes with unfinished bits")
   181  		return
   182  	}
   183  	for w.nbits != 0 {
   184  		w.bytes[n] = byte(w.bits)
   185  		w.bits >>= 8
   186  		w.nbits -= 8
   187  		n++
   188  	}
   189  	if n != 0 {
   190  		w.write(w.bytes[:n])
   191  	}
   192  	w.nbytes = 0
   193  	w.write(bytes)
   194  }
   195  
   196  // RFC 1951 3.2.7 specifies a special run-length encoding for specifying
   197  // the literal and offset lengths arrays (which are concatenated into a single
   198  // array).  This method generates that run-length encoding.
   199  //
   200  // The result is written into the codegen array, and the frequencies
   201  // of each code is written into the codegenFreq array.
   202  // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
   203  // information. Code badCode is an end marker
   204  //
   205  //  numLiterals      The number of literals in literalEncoding
   206  //  numOffsets       The number of offsets in offsetEncoding
   207  //  litenc, offenc   The literal and offset encoder to use
   208  func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
   209  	for i := range w.codegenFreq {
   210  		w.codegenFreq[i] = 0
   211  	}
   212  	// Note that we are using codegen both as a temporary variable for holding
   213  	// a copy of the frequencies, and as the place where we put the result.
   214  	// This is fine because the output is always shorter than the input used
   215  	// so far.
   216  	codegen := w.codegen // cache
   217  	// Copy the concatenated code sizes to codegen. Put a marker at the end.
   218  	cgnl := codegen[:numLiterals]
   219  	for i := range cgnl {
   220  		cgnl[i] = uint8(litEnc.codes[i].len)
   221  	}
   222  
   223  	cgnl = codegen[numLiterals : numLiterals+numOffsets]
   224  	for i := range cgnl {
   225  		cgnl[i] = uint8(offEnc.codes[i].len)
   226  	}
   227  	codegen[numLiterals+numOffsets] = badCode
   228  
   229  	size := codegen[0]
   230  	count := 1
   231  	outIndex := 0
   232  	for inIndex := 1; size != badCode; inIndex++ {
   233  		// INVARIANT: We have seen "count" copies of size that have not yet
   234  		// had output generated for them.
   235  		nextSize := codegen[inIndex]
   236  		if nextSize == size {
   237  			count++
   238  			continue
   239  		}
   240  		// We need to generate codegen indicating "count" of size.
   241  		if size != 0 {
   242  			codegen[outIndex] = size
   243  			outIndex++
   244  			w.codegenFreq[size]++
   245  			count--
   246  			for count >= 3 {
   247  				n := 6
   248  				if n > count {
   249  					n = count
   250  				}
   251  				codegen[outIndex] = 16
   252  				outIndex++
   253  				codegen[outIndex] = uint8(n - 3)
   254  				outIndex++
   255  				w.codegenFreq[16]++
   256  				count -= n
   257  			}
   258  		} else {
   259  			for count >= 11 {
   260  				n := 138
   261  				if n > count {
   262  					n = count
   263  				}
   264  				codegen[outIndex] = 18
   265  				outIndex++
   266  				codegen[outIndex] = uint8(n - 11)
   267  				outIndex++
   268  				w.codegenFreq[18]++
   269  				count -= n
   270  			}
   271  			if count >= 3 {
   272  				// count >= 3 && count <= 10
   273  				codegen[outIndex] = 17
   274  				outIndex++
   275  				codegen[outIndex] = uint8(count - 3)
   276  				outIndex++
   277  				w.codegenFreq[17]++
   278  				count = 0
   279  			}
   280  		}
   281  		count--
   282  		for ; count >= 0; count-- {
   283  			codegen[outIndex] = size
   284  			outIndex++
   285  			w.codegenFreq[size]++
   286  		}
   287  		// Set up invariant for next time through the loop.
   288  		size = nextSize
   289  		count = 1
   290  	}
   291  	// Marker indicating the end of the codegen.
   292  	codegen[outIndex] = badCode
   293  }
   294  
   295  // dynamicSize returns the size of dynamically encoded data in bits.
   296  func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
   297  	numCodegens = len(w.codegenFreq)
   298  	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
   299  		numCodegens--
   300  	}
   301  	header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
   302  		w.codegenEncoding.bitLength(w.codegenFreq[:]) +
   303  		int(w.codegenFreq[16])*2 +
   304  		int(w.codegenFreq[17])*3 +
   305  		int(w.codegenFreq[18])*7
   306  	size = header +
   307  		litEnc.bitLength(w.literalFreq) +
   308  		offEnc.bitLength(w.offsetFreq) +
   309  		extraBits
   310  
   311  	return size, numCodegens
   312  }
   313  
   314  // fixedSize returns the size of dynamically encoded data in bits.
   315  func (w *huffmanBitWriter) fixedSize(extraBits int) int {
   316  	return 3 +
   317  		fixedLiteralEncoding.bitLength(w.literalFreq) +
   318  		fixedOffsetEncoding.bitLength(w.offsetFreq) +
   319  		extraBits
   320  }
   321  
   322  // storedSize calculates the stored size, including header.
   323  // The function returns the size in bits and whether the block
   324  // fits inside a single block.
   325  func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
   326  	if in == nil {
   327  		return 0, false
   328  	}
   329  	if len(in) <= maxStoreBlockSize {
   330  		return (len(in) + 5) * 8, true
   331  	}
   332  	return 0, false
   333  }
   334  
   335  func (w *huffmanBitWriter) writeCode(c hcode) {
   336  	if w.err != nil {
   337  		return
   338  	}
   339  	w.bits |= uint64(c.code) << w.nbits
   340  	w.nbits += uint(c.len)
   341  	if w.nbits >= 48 {
   342  		bits := w.bits
   343  		w.bits >>= 48
   344  		w.nbits -= 48
   345  		n := w.nbytes
   346  		bytes := w.bytes[n : n+6]
   347  		bytes[0] = byte(bits)
   348  		bytes[1] = byte(bits >> 8)
   349  		bytes[2] = byte(bits >> 16)
   350  		bytes[3] = byte(bits >> 24)
   351  		bytes[4] = byte(bits >> 32)
   352  		bytes[5] = byte(bits >> 40)
   353  		n += 6
   354  		if n >= bufferFlushSize {
   355  			w.write(w.bytes[:n])
   356  			n = 0
   357  		}
   358  		w.nbytes = n
   359  	}
   360  }
   361  
   362  // Write the header of a dynamic Huffman block to the output stream.
   363  //
   364  //  numLiterals  The number of literals specified in codegen
   365  //  numOffsets   The number of offsets specified in codegen
   366  //  numCodegens  The number of codegens used in codegen
   367  func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
   368  	if w.err != nil {
   369  		return
   370  	}
   371  	var firstBits int32 = 4
   372  	if isEof {
   373  		firstBits = 5
   374  	}
   375  	w.writeBits(firstBits, 3)
   376  	w.writeBits(int32(numLiterals-257), 5)
   377  	w.writeBits(int32(numOffsets-1), 5)
   378  	w.writeBits(int32(numCodegens-4), 4)
   379  
   380  	for i := 0; i < numCodegens; i++ {
   381  		value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
   382  		w.writeBits(int32(value), 3)
   383  	}
   384  
   385  	i := 0
   386  	for {
   387  		var codeWord int = int(w.codegen[i])
   388  		i++
   389  		if codeWord == badCode {
   390  			break
   391  		}
   392  		w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
   393  
   394  		switch codeWord {
   395  		case 16:
   396  			w.writeBits(int32(w.codegen[i]), 2)
   397  			i++
   398  			break
   399  		case 17:
   400  			w.writeBits(int32(w.codegen[i]), 3)
   401  			i++
   402  			break
   403  		case 18:
   404  			w.writeBits(int32(w.codegen[i]), 7)
   405  			i++
   406  			break
   407  		}
   408  	}
   409  }
   410  
   411  func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
   412  	if w.err != nil {
   413  		return
   414  	}
   415  	var flag int32
   416  	if isEof {
   417  		flag = 1
   418  	}
   419  	w.writeBits(flag, 3)
   420  	w.flush()
   421  	w.writeBits(int32(length), 16)
   422  	w.writeBits(int32(^uint16(length)), 16)
   423  }
   424  
   425  func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
   426  	if w.err != nil {
   427  		return
   428  	}
   429  	// Indicate that we are a fixed Huffman block
   430  	var value int32 = 2
   431  	if isEof {
   432  		value = 3
   433  	}
   434  	w.writeBits(value, 3)
   435  }
   436  
   437  // writeBlock will write a block of tokens with the smallest encoding.
   438  // The original input can be supplied, and if the huffman encoded data
   439  // is larger than the original bytes, the data will be written as a
   440  // stored block.
   441  // If the input is nil, the tokens will always be Huffman encoded.
   442  func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
   443  	if w.err != nil {
   444  		return
   445  	}
   446  
   447  	tokens = append(tokens, endBlockMarker)
   448  	numLiterals, numOffsets := w.indexTokens(tokens)
   449  
   450  	var extraBits int
   451  	storedSize, storable := w.storedSize(input)
   452  	if storable {
   453  		// We only bother calculating the costs of the extra bits required by
   454  		// the length of offset fields (which will be the same for both fixed
   455  		// and dynamic encoding), if we need to compare those two encodings
   456  		// against stored encoding.
   457  		for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
   458  			// First eight length codes have extra size = 0.
   459  			extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
   460  		}
   461  		for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
   462  			// First four offset codes have extra size = 0.
   463  			extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
   464  		}
   465  	}
   466  
   467  	// Figure out smallest code.
   468  	// Fixed Huffman baseline.
   469  	var literalEncoding = fixedLiteralEncoding
   470  	var offsetEncoding = fixedOffsetEncoding
   471  	var size = w.fixedSize(extraBits)
   472  
   473  	// Dynamic Huffman?
   474  	var numCodegens int
   475  
   476  	// Generate codegen and codegenFrequencies, which indicates how to encode
   477  	// the literalEncoding and the offsetEncoding.
   478  	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
   479  	w.codegenEncoding.generate(w.codegenFreq[:], 7)
   480  	dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
   481  
   482  	if dynamicSize < size {
   483  		size = dynamicSize
   484  		literalEncoding = w.literalEncoding
   485  		offsetEncoding = w.offsetEncoding
   486  	}
   487  
   488  	// Stored bytes?
   489  	if storable && storedSize < size {
   490  		w.writeStoredHeader(len(input), eof)
   491  		w.writeBytes(input)
   492  		return
   493  	}
   494  
   495  	// Huffman.
   496  	if literalEncoding == fixedLiteralEncoding {
   497  		w.writeFixedHeader(eof)
   498  	} else {
   499  		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
   500  	}
   501  
   502  	// Write the tokens.
   503  	w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
   504  }
   505  
   506  // writeBlockDynamic encodes a block using a dynamic Huffman table.
   507  // This should be used if the symbols used have a disproportionate
   508  // histogram distribution.
   509  // If input is supplied and the compression savings are below 1/16th of the
   510  // input size the block is stored.
   511  func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
   512  	if w.err != nil {
   513  		return
   514  	}
   515  
   516  	tokens = append(tokens, endBlockMarker)
   517  	numLiterals, numOffsets := w.indexTokens(tokens)
   518  
   519  	// Generate codegen and codegenFrequencies, which indicates how to encode
   520  	// the literalEncoding and the offsetEncoding.
   521  	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
   522  	w.codegenEncoding.generate(w.codegenFreq[:], 7)
   523  	size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
   524  
   525  	// Store bytes, if we don't get a reasonable improvement.
   526  	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
   527  		w.writeStoredHeader(len(input), eof)
   528  		w.writeBytes(input)
   529  		return
   530  	}
   531  
   532  	// Write Huffman table.
   533  	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
   534  
   535  	// Write the tokens.
   536  	w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
   537  }
   538  
   539  // indexTokens indexes a slice of tokens, and updates
   540  // literalFreq and offsetFreq, and generates literalEncoding
   541  // and offsetEncoding.
   542  // The number of literal and offset tokens is returned.
   543  func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
   544  	for i := range w.literalFreq {
   545  		w.literalFreq[i] = 0
   546  	}
   547  	for i := range w.offsetFreq {
   548  		w.offsetFreq[i] = 0
   549  	}
   550  
   551  	for _, t := range tokens {
   552  		if t < matchType {
   553  			w.literalFreq[t.literal()]++
   554  			continue
   555  		}
   556  		length := t.length()
   557  		offset := t.offset()
   558  		w.literalFreq[lengthCodesStart+lengthCode(length)]++
   559  		w.offsetFreq[offsetCode(offset)]++
   560  	}
   561  
   562  	// get the number of literals
   563  	numLiterals = len(w.literalFreq)
   564  	for w.literalFreq[numLiterals-1] == 0 {
   565  		numLiterals--
   566  	}
   567  	// get the number of offsets
   568  	numOffsets = len(w.offsetFreq)
   569  	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
   570  		numOffsets--
   571  	}
   572  	if numOffsets == 0 {
   573  		// We haven't found a single match. If we want to go with the dynamic encoding,
   574  		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
   575  		w.offsetFreq[0] = 1
   576  		numOffsets = 1
   577  	}
   578  	w.literalEncoding.generate(w.literalFreq, 15)
   579  	w.offsetEncoding.generate(w.offsetFreq, 15)
   580  	return
   581  }
   582  
   583  // writeTokens writes a slice of tokens to the output.
   584  // codes for literal and offset encoding must be supplied.
   585  func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
   586  	if w.err != nil {
   587  		return
   588  	}
   589  	for _, t := range tokens {
   590  		if t < matchType {
   591  			w.writeCode(leCodes[t.literal()])
   592  			continue
   593  		}
   594  		// Write the length
   595  		length := t.length()
   596  		lengthCode := lengthCode(length)
   597  		w.writeCode(leCodes[lengthCode+lengthCodesStart])
   598  		extraLengthBits := uint(lengthExtraBits[lengthCode])
   599  		if extraLengthBits > 0 {
   600  			extraLength := int32(length - lengthBase[lengthCode])
   601  			w.writeBits(extraLength, extraLengthBits)
   602  		}
   603  		// Write the offset
   604  		offset := t.offset()
   605  		offsetCode := offsetCode(offset)
   606  		w.writeCode(oeCodes[offsetCode])
   607  		extraOffsetBits := uint(offsetExtraBits[offsetCode])
   608  		if extraOffsetBits > 0 {
   609  			extraOffset := int32(offset - offsetBase[offsetCode])
   610  			w.writeBits(extraOffset, extraOffsetBits)
   611  		}
   612  	}
   613  }
   614  
   615  // huffOffset is a static offset encoder used for huffman only encoding.
   616  // It can be reused since we will not be encoding offset values.
   617  var huffOffset *huffmanEncoder
   618  
   619  func init() {
   620  	w := newHuffmanBitWriter(nil)
   621  	w.offsetFreq[0] = 1
   622  	huffOffset = newHuffmanEncoder(offsetCodeCount)
   623  	huffOffset.generate(w.offsetFreq, 15)
   624  }
   625  
   626  // writeBlockHuff encodes a block of bytes as either
   627  // Huffman encoded literals or uncompressed bytes if the
   628  // results only gains very little from compression.
   629  func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
   630  	if w.err != nil {
   631  		return
   632  	}
   633  
   634  	// Clear histogram
   635  	for i := range w.literalFreq {
   636  		w.literalFreq[i] = 0
   637  	}
   638  
   639  	// Add everything as literals
   640  	histogram(input, w.literalFreq)
   641  
   642  	w.literalFreq[endBlockMarker] = 1
   643  
   644  	const numLiterals = endBlockMarker + 1
   645  	const numOffsets = 1
   646  
   647  	w.literalEncoding.generate(w.literalFreq, 15)
   648  
   649  	// Figure out smallest code.
   650  	// Always use dynamic Huffman or Store
   651  	var numCodegens int
   652  
   653  	// Generate codegen and codegenFrequencies, which indicates how to encode
   654  	// the literalEncoding and the offsetEncoding.
   655  	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
   656  	w.codegenEncoding.generate(w.codegenFreq[:], 7)
   657  	size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
   658  
   659  	// Store bytes, if we don't get a reasonable improvement.
   660  	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
   661  		w.writeStoredHeader(len(input), eof)
   662  		w.writeBytes(input)
   663  		return
   664  	}
   665  
   666  	// Huffman.
   667  	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
   668  	encoding := w.literalEncoding.codes[:257]
   669  	n := w.nbytes
   670  	for _, t := range input {
   671  		// Bitwriting inlined, ~30% speedup
   672  		c := encoding[t]
   673  		w.bits |= uint64(c.code) << w.nbits
   674  		w.nbits += uint(c.len)
   675  		if w.nbits < 48 {
   676  			continue
   677  		}
   678  		// Store 6 bytes
   679  		bits := w.bits
   680  		w.bits >>= 48
   681  		w.nbits -= 48
   682  		bytes := w.bytes[n : n+6]
   683  		bytes[0] = byte(bits)
   684  		bytes[1] = byte(bits >> 8)
   685  		bytes[2] = byte(bits >> 16)
   686  		bytes[3] = byte(bits >> 24)
   687  		bytes[4] = byte(bits >> 32)
   688  		bytes[5] = byte(bits >> 40)
   689  		n += 6
   690  		if n < bufferFlushSize {
   691  			continue
   692  		}
   693  		w.write(w.bytes[:n])
   694  		if w.err != nil {
   695  			return // Return early in the event of write failures
   696  		}
   697  		n = 0
   698  	}
   699  	w.nbytes = n
   700  	w.writeCode(encoding[endBlockMarker])
   701  }
   702  
   703  // histogram accumulates a histogram of b in h.
   704  //
   705  // len(h) must be >= 256, and h's elements must be all zeroes.
   706  func histogram(b []byte, h []int32) {
   707  	h = h[:256]
   708  	for _, t := range b {
   709  		h[t]++
   710  	}
   711  }