github.com/robhaswell/grandperspective-scan@v0.1.0/test/go-go1.7.1/src/net/ip.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // IP address manipulations
     6  //
     7  // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
     8  // An IPv4 address can be converted to an IPv6 address by
     9  // adding a canonical prefix (10 zeros, 2 0xFFs).
    10  // This library accepts either size of byte slice but always
    11  // returns 16-byte addresses.
    12  
    13  package net
    14  
    15  // IP address lengths (bytes).
    16  const (
    17  	IPv4len = 4
    18  	IPv6len = 16
    19  )
    20  
    21  // An IP is a single IP address, a slice of bytes.
    22  // Functions in this package accept either 4-byte (IPv4)
    23  // or 16-byte (IPv6) slices as input.
    24  //
    25  // Note that in this documentation, referring to an
    26  // IP address as an IPv4 address or an IPv6 address
    27  // is a semantic property of the address, not just the
    28  // length of the byte slice: a 16-byte slice can still
    29  // be an IPv4 address.
    30  type IP []byte
    31  
    32  // An IP mask is an IP address.
    33  type IPMask []byte
    34  
    35  // An IPNet represents an IP network.
    36  type IPNet struct {
    37  	IP   IP     // network number
    38  	Mask IPMask // network mask
    39  }
    40  
    41  // IPv4 returns the IP address (in 16-byte form) of the
    42  // IPv4 address a.b.c.d.
    43  func IPv4(a, b, c, d byte) IP {
    44  	p := make(IP, IPv6len)
    45  	copy(p, v4InV6Prefix)
    46  	p[12] = a
    47  	p[13] = b
    48  	p[14] = c
    49  	p[15] = d
    50  	return p
    51  }
    52  
    53  var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
    54  
    55  // IPv4Mask returns the IP mask (in 4-byte form) of the
    56  // IPv4 mask a.b.c.d.
    57  func IPv4Mask(a, b, c, d byte) IPMask {
    58  	p := make(IPMask, IPv4len)
    59  	p[0] = a
    60  	p[1] = b
    61  	p[2] = c
    62  	p[3] = d
    63  	return p
    64  }
    65  
    66  // CIDRMask returns an IPMask consisting of `ones' 1 bits
    67  // followed by 0s up to a total length of `bits' bits.
    68  // For a mask of this form, CIDRMask is the inverse of IPMask.Size.
    69  func CIDRMask(ones, bits int) IPMask {
    70  	if bits != 8*IPv4len && bits != 8*IPv6len {
    71  		return nil
    72  	}
    73  	if ones < 0 || ones > bits {
    74  		return nil
    75  	}
    76  	l := bits / 8
    77  	m := make(IPMask, l)
    78  	n := uint(ones)
    79  	for i := 0; i < l; i++ {
    80  		if n >= 8 {
    81  			m[i] = 0xff
    82  			n -= 8
    83  			continue
    84  		}
    85  		m[i] = ^byte(0xff >> n)
    86  		n = 0
    87  	}
    88  	return m
    89  }
    90  
    91  // Well-known IPv4 addresses
    92  var (
    93  	IPv4bcast     = IPv4(255, 255, 255, 255) // broadcast
    94  	IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
    95  	IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
    96  	IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
    97  )
    98  
    99  // Well-known IPv6 addresses
   100  var (
   101  	IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   102  	IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   103  	IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   104  	IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   105  	IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   106  	IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
   107  )
   108  
   109  // IsUnspecified reports whether ip is an unspecified address.
   110  func (ip IP) IsUnspecified() bool {
   111  	return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
   112  }
   113  
   114  // IsLoopback reports whether ip is a loopback address.
   115  func (ip IP) IsLoopback() bool {
   116  	if ip4 := ip.To4(); ip4 != nil {
   117  		return ip4[0] == 127
   118  	}
   119  	return ip.Equal(IPv6loopback)
   120  }
   121  
   122  // IsMulticast reports whether ip is a multicast address.
   123  func (ip IP) IsMulticast() bool {
   124  	if ip4 := ip.To4(); ip4 != nil {
   125  		return ip4[0]&0xf0 == 0xe0
   126  	}
   127  	return len(ip) == IPv6len && ip[0] == 0xff
   128  }
   129  
   130  // IsInterfaceLocalMulticast reports whether ip is
   131  // an interface-local multicast address.
   132  func (ip IP) IsInterfaceLocalMulticast() bool {
   133  	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
   134  }
   135  
   136  // IsLinkLocalMulticast reports whether ip is a link-local
   137  // multicast address.
   138  func (ip IP) IsLinkLocalMulticast() bool {
   139  	if ip4 := ip.To4(); ip4 != nil {
   140  		return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
   141  	}
   142  	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
   143  }
   144  
   145  // IsLinkLocalUnicast reports whether ip is a link-local
   146  // unicast address.
   147  func (ip IP) IsLinkLocalUnicast() bool {
   148  	if ip4 := ip.To4(); ip4 != nil {
   149  		return ip4[0] == 169 && ip4[1] == 254
   150  	}
   151  	return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
   152  }
   153  
   154  // IsGlobalUnicast reports whether ip is a global unicast
   155  // address.
   156  func (ip IP) IsGlobalUnicast() bool {
   157  	return (len(ip) == IPv4len || len(ip) == IPv6len) &&
   158  		!ip.Equal(IPv4bcast) &&
   159  		!ip.IsUnspecified() &&
   160  		!ip.IsLoopback() &&
   161  		!ip.IsMulticast() &&
   162  		!ip.IsLinkLocalUnicast()
   163  }
   164  
   165  // Is p all zeros?
   166  func isZeros(p IP) bool {
   167  	for i := 0; i < len(p); i++ {
   168  		if p[i] != 0 {
   169  			return false
   170  		}
   171  	}
   172  	return true
   173  }
   174  
   175  // To4 converts the IPv4 address ip to a 4-byte representation.
   176  // If ip is not an IPv4 address, To4 returns nil.
   177  func (ip IP) To4() IP {
   178  	if len(ip) == IPv4len {
   179  		return ip
   180  	}
   181  	if len(ip) == IPv6len &&
   182  		isZeros(ip[0:10]) &&
   183  		ip[10] == 0xff &&
   184  		ip[11] == 0xff {
   185  		return ip[12:16]
   186  	}
   187  	return nil
   188  }
   189  
   190  // To16 converts the IP address ip to a 16-byte representation.
   191  // If ip is not an IP address (it is the wrong length), To16 returns nil.
   192  func (ip IP) To16() IP {
   193  	if len(ip) == IPv4len {
   194  		return IPv4(ip[0], ip[1], ip[2], ip[3])
   195  	}
   196  	if len(ip) == IPv6len {
   197  		return ip
   198  	}
   199  	return nil
   200  }
   201  
   202  // Default route masks for IPv4.
   203  var (
   204  	classAMask = IPv4Mask(0xff, 0, 0, 0)
   205  	classBMask = IPv4Mask(0xff, 0xff, 0, 0)
   206  	classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
   207  )
   208  
   209  // DefaultMask returns the default IP mask for the IP address ip.
   210  // Only IPv4 addresses have default masks; DefaultMask returns
   211  // nil if ip is not a valid IPv4 address.
   212  func (ip IP) DefaultMask() IPMask {
   213  	if ip = ip.To4(); ip == nil {
   214  		return nil
   215  	}
   216  	switch true {
   217  	case ip[0] < 0x80:
   218  		return classAMask
   219  	case ip[0] < 0xC0:
   220  		return classBMask
   221  	default:
   222  		return classCMask
   223  	}
   224  }
   225  
   226  func allFF(b []byte) bool {
   227  	for _, c := range b {
   228  		if c != 0xff {
   229  			return false
   230  		}
   231  	}
   232  	return true
   233  }
   234  
   235  // Mask returns the result of masking the IP address ip with mask.
   236  func (ip IP) Mask(mask IPMask) IP {
   237  	if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
   238  		mask = mask[12:]
   239  	}
   240  	if len(mask) == IPv4len && len(ip) == IPv6len && bytesEqual(ip[:12], v4InV6Prefix) {
   241  		ip = ip[12:]
   242  	}
   243  	n := len(ip)
   244  	if n != len(mask) {
   245  		return nil
   246  	}
   247  	out := make(IP, n)
   248  	for i := 0; i < n; i++ {
   249  		out[i] = ip[i] & mask[i]
   250  	}
   251  	return out
   252  }
   253  
   254  // String returns the string form of the IP address ip.
   255  // It returns one of 4 forms:
   256  //   - "<nil>", if ip has length 0
   257  //   - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address
   258  //   - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address
   259  //   - the hexadecimal form of ip, without punctuation, if no other cases apply
   260  func (ip IP) String() string {
   261  	p := ip
   262  
   263  	if len(ip) == 0 {
   264  		return "<nil>"
   265  	}
   266  
   267  	// If IPv4, use dotted notation.
   268  	if p4 := p.To4(); len(p4) == IPv4len {
   269  		return uitoa(uint(p4[0])) + "." +
   270  			uitoa(uint(p4[1])) + "." +
   271  			uitoa(uint(p4[2])) + "." +
   272  			uitoa(uint(p4[3]))
   273  	}
   274  	if len(p) != IPv6len {
   275  		return "?" + hexString(ip)
   276  	}
   277  
   278  	// Find longest run of zeros.
   279  	e0 := -1
   280  	e1 := -1
   281  	for i := 0; i < IPv6len; i += 2 {
   282  		j := i
   283  		for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
   284  			j += 2
   285  		}
   286  		if j > i && j-i > e1-e0 {
   287  			e0 = i
   288  			e1 = j
   289  			i = j
   290  		}
   291  	}
   292  	// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
   293  	if e1-e0 <= 2 {
   294  		e0 = -1
   295  		e1 = -1
   296  	}
   297  
   298  	const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
   299  	b := make([]byte, 0, maxLen)
   300  
   301  	// Print with possible :: in place of run of zeros
   302  	for i := 0; i < IPv6len; i += 2 {
   303  		if i == e0 {
   304  			b = append(b, ':', ':')
   305  			i = e1
   306  			if i >= IPv6len {
   307  				break
   308  			}
   309  		} else if i > 0 {
   310  			b = append(b, ':')
   311  		}
   312  		b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
   313  	}
   314  	return string(b)
   315  }
   316  
   317  func hexString(b []byte) string {
   318  	s := make([]byte, len(b)*2)
   319  	for i, tn := range b {
   320  		s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf]
   321  	}
   322  	return string(s)
   323  }
   324  
   325  // ipEmptyString is like ip.String except that it returns
   326  // an empty string when ip is unset.
   327  func ipEmptyString(ip IP) string {
   328  	if len(ip) == 0 {
   329  		return ""
   330  	}
   331  	return ip.String()
   332  }
   333  
   334  // MarshalText implements the encoding.TextMarshaler interface.
   335  // The encoding is the same as returned by String.
   336  func (ip IP) MarshalText() ([]byte, error) {
   337  	if len(ip) == 0 {
   338  		return []byte(""), nil
   339  	}
   340  	if len(ip) != IPv4len && len(ip) != IPv6len {
   341  		return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)}
   342  	}
   343  	return []byte(ip.String()), nil
   344  }
   345  
   346  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   347  // The IP address is expected in a form accepted by ParseIP.
   348  func (ip *IP) UnmarshalText(text []byte) error {
   349  	if len(text) == 0 {
   350  		*ip = nil
   351  		return nil
   352  	}
   353  	s := string(text)
   354  	x := ParseIP(s)
   355  	if x == nil {
   356  		return &ParseError{Type: "IP address", Text: s}
   357  	}
   358  	*ip = x
   359  	return nil
   360  }
   361  
   362  // Equal reports whether ip and x are the same IP address.
   363  // An IPv4 address and that same address in IPv6 form are
   364  // considered to be equal.
   365  func (ip IP) Equal(x IP) bool {
   366  	if len(ip) == len(x) {
   367  		return bytesEqual(ip, x)
   368  	}
   369  	if len(ip) == IPv4len && len(x) == IPv6len {
   370  		return bytesEqual(x[0:12], v4InV6Prefix) && bytesEqual(ip, x[12:])
   371  	}
   372  	if len(ip) == IPv6len && len(x) == IPv4len {
   373  		return bytesEqual(ip[0:12], v4InV6Prefix) && bytesEqual(ip[12:], x)
   374  	}
   375  	return false
   376  }
   377  
   378  func bytesEqual(x, y []byte) bool {
   379  	if len(x) != len(y) {
   380  		return false
   381  	}
   382  	for i, b := range x {
   383  		if y[i] != b {
   384  			return false
   385  		}
   386  	}
   387  	return true
   388  }
   389  
   390  func (ip IP) matchAddrFamily(x IP) bool {
   391  	return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil
   392  }
   393  
   394  // If mask is a sequence of 1 bits followed by 0 bits,
   395  // return the number of 1 bits.
   396  func simpleMaskLength(mask IPMask) int {
   397  	var n int
   398  	for i, v := range mask {
   399  		if v == 0xff {
   400  			n += 8
   401  			continue
   402  		}
   403  		// found non-ff byte
   404  		// count 1 bits
   405  		for v&0x80 != 0 {
   406  			n++
   407  			v <<= 1
   408  		}
   409  		// rest must be 0 bits
   410  		if v != 0 {
   411  			return -1
   412  		}
   413  		for i++; i < len(mask); i++ {
   414  			if mask[i] != 0 {
   415  				return -1
   416  			}
   417  		}
   418  		break
   419  	}
   420  	return n
   421  }
   422  
   423  // Size returns the number of leading ones and total bits in the mask.
   424  // If the mask is not in the canonical form--ones followed by zeros--then
   425  // Size returns 0, 0.
   426  func (m IPMask) Size() (ones, bits int) {
   427  	ones, bits = simpleMaskLength(m), len(m)*8
   428  	if ones == -1 {
   429  		return 0, 0
   430  	}
   431  	return
   432  }
   433  
   434  // String returns the hexadecimal form of m, with no punctuation.
   435  func (m IPMask) String() string {
   436  	if len(m) == 0 {
   437  		return "<nil>"
   438  	}
   439  	return hexString(m)
   440  }
   441  
   442  func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
   443  	if ip = n.IP.To4(); ip == nil {
   444  		ip = n.IP
   445  		if len(ip) != IPv6len {
   446  			return nil, nil
   447  		}
   448  	}
   449  	m = n.Mask
   450  	switch len(m) {
   451  	case IPv4len:
   452  		if len(ip) != IPv4len {
   453  			return nil, nil
   454  		}
   455  	case IPv6len:
   456  		if len(ip) == IPv4len {
   457  			m = m[12:]
   458  		}
   459  	default:
   460  		return nil, nil
   461  	}
   462  	return
   463  }
   464  
   465  // Contains reports whether the network includes ip.
   466  func (n *IPNet) Contains(ip IP) bool {
   467  	nn, m := networkNumberAndMask(n)
   468  	if x := ip.To4(); x != nil {
   469  		ip = x
   470  	}
   471  	l := len(ip)
   472  	if l != len(nn) {
   473  		return false
   474  	}
   475  	for i := 0; i < l; i++ {
   476  		if nn[i]&m[i] != ip[i]&m[i] {
   477  			return false
   478  		}
   479  	}
   480  	return true
   481  }
   482  
   483  // Network returns the address's network name, "ip+net".
   484  func (n *IPNet) Network() string { return "ip+net" }
   485  
   486  // String returns the CIDR notation of n like "192.0.2.1/24"
   487  // or "2001:db8::/48" as defined in RFC 4632 and RFC 4291.
   488  // If the mask is not in the canonical form, it returns the
   489  // string which consists of an IP address, followed by a slash
   490  // character and a mask expressed as hexadecimal form with no
   491  // punctuation like "198.51.100.1/c000ff00".
   492  func (n *IPNet) String() string {
   493  	nn, m := networkNumberAndMask(n)
   494  	if nn == nil || m == nil {
   495  		return "<nil>"
   496  	}
   497  	l := simpleMaskLength(m)
   498  	if l == -1 {
   499  		return nn.String() + "/" + m.String()
   500  	}
   501  	return nn.String() + "/" + uitoa(uint(l))
   502  }
   503  
   504  // Parse IPv4 address (d.d.d.d).
   505  func parseIPv4(s string) IP {
   506  	var p [IPv4len]byte
   507  	i := 0
   508  	for j := 0; j < IPv4len; j++ {
   509  		if i >= len(s) {
   510  			// Missing octets.
   511  			return nil
   512  		}
   513  		if j > 0 {
   514  			if s[i] != '.' {
   515  				return nil
   516  			}
   517  			i++
   518  		}
   519  		var (
   520  			n  int
   521  			ok bool
   522  		)
   523  		n, i, ok = dtoi(s, i)
   524  		if !ok || n > 0xFF {
   525  			return nil
   526  		}
   527  		p[j] = byte(n)
   528  	}
   529  	if i != len(s) {
   530  		return nil
   531  	}
   532  	return IPv4(p[0], p[1], p[2], p[3])
   533  }
   534  
   535  // parseIPv6 parses s as a literal IPv6 address described in RFC 4291
   536  // and RFC 5952.  It can also parse a literal scoped IPv6 address with
   537  // zone identifier which is described in RFC 4007 when zoneAllowed is
   538  // true.
   539  func parseIPv6(s string, zoneAllowed bool) (ip IP, zone string) {
   540  	ip = make(IP, IPv6len)
   541  	ellipsis := -1 // position of ellipsis in p
   542  	i := 0         // index in string s
   543  
   544  	if zoneAllowed {
   545  		s, zone = splitHostZone(s)
   546  	}
   547  
   548  	// Might have leading ellipsis
   549  	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
   550  		ellipsis = 0
   551  		i = 2
   552  		// Might be only ellipsis
   553  		if i == len(s) {
   554  			return ip, zone
   555  		}
   556  	}
   557  
   558  	// Loop, parsing hex numbers followed by colon.
   559  	j := 0
   560  	for j < IPv6len {
   561  		// Hex number.
   562  		n, i1, ok := xtoi(s, i)
   563  		if !ok || n > 0xFFFF {
   564  			return nil, zone
   565  		}
   566  
   567  		// If followed by dot, might be in trailing IPv4.
   568  		if i1 < len(s) && s[i1] == '.' {
   569  			if ellipsis < 0 && j != IPv6len-IPv4len {
   570  				// Not the right place.
   571  				return nil, zone
   572  			}
   573  			if j+IPv4len > IPv6len {
   574  				// Not enough room.
   575  				return nil, zone
   576  			}
   577  			ip4 := parseIPv4(s[i:])
   578  			if ip4 == nil {
   579  				return nil, zone
   580  			}
   581  			ip[j] = ip4[12]
   582  			ip[j+1] = ip4[13]
   583  			ip[j+2] = ip4[14]
   584  			ip[j+3] = ip4[15]
   585  			i = len(s)
   586  			j += IPv4len
   587  			break
   588  		}
   589  
   590  		// Save this 16-bit chunk.
   591  		ip[j] = byte(n >> 8)
   592  		ip[j+1] = byte(n)
   593  		j += 2
   594  
   595  		// Stop at end of string.
   596  		i = i1
   597  		if i == len(s) {
   598  			break
   599  		}
   600  
   601  		// Otherwise must be followed by colon and more.
   602  		if s[i] != ':' || i+1 == len(s) {
   603  			return nil, zone
   604  		}
   605  		i++
   606  
   607  		// Look for ellipsis.
   608  		if s[i] == ':' {
   609  			if ellipsis >= 0 { // already have one
   610  				return nil, zone
   611  			}
   612  			ellipsis = j
   613  			if i++; i == len(s) { // can be at end
   614  				break
   615  			}
   616  		}
   617  	}
   618  
   619  	// Must have used entire string.
   620  	if i != len(s) {
   621  		return nil, zone
   622  	}
   623  
   624  	// If didn't parse enough, expand ellipsis.
   625  	if j < IPv6len {
   626  		if ellipsis < 0 {
   627  			return nil, zone
   628  		}
   629  		n := IPv6len - j
   630  		for k := j - 1; k >= ellipsis; k-- {
   631  			ip[k+n] = ip[k]
   632  		}
   633  		for k := ellipsis + n - 1; k >= ellipsis; k-- {
   634  			ip[k] = 0
   635  		}
   636  	} else if ellipsis >= 0 {
   637  		// Ellipsis must represent at least one 0 group.
   638  		return nil, zone
   639  	}
   640  	return ip, zone
   641  }
   642  
   643  // ParseIP parses s as an IP address, returning the result.
   644  // The string s can be in dotted decimal ("192.0.2.1")
   645  // or IPv6 ("2001:db8::68") form.
   646  // If s is not a valid textual representation of an IP address,
   647  // ParseIP returns nil.
   648  func ParseIP(s string) IP {
   649  	for i := 0; i < len(s); i++ {
   650  		switch s[i] {
   651  		case '.':
   652  			return parseIPv4(s)
   653  		case ':':
   654  			ip, _ := parseIPv6(s, false)
   655  			return ip
   656  		}
   657  	}
   658  	return nil
   659  }
   660  
   661  // ParseCIDR parses s as a CIDR notation IP address and mask,
   662  // like "192.0.2.0/24" or "2001:db8::/32", as defined in
   663  // RFC 4632 and RFC 4291.
   664  //
   665  // It returns the IP address and the network implied by the IP
   666  // and mask. For example, ParseCIDR("198.51.100.1/24") returns
   667  // the IP address 198.51.100.1 and the network 198.51.100.0/24.
   668  func ParseCIDR(s string) (IP, *IPNet, error) {
   669  	i := byteIndex(s, '/')
   670  	if i < 0 {
   671  		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   672  	}
   673  	addr, mask := s[:i], s[i+1:]
   674  	iplen := IPv4len
   675  	ip := parseIPv4(addr)
   676  	if ip == nil {
   677  		iplen = IPv6len
   678  		ip, _ = parseIPv6(addr, false)
   679  	}
   680  	n, i, ok := dtoi(mask, 0)
   681  	if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
   682  		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   683  	}
   684  	m := CIDRMask(n, 8*iplen)
   685  	return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
   686  }