github.com/robhaswell/grandperspective-scan@v0.1.0/test/go-go1.7.1/src/reflect/value.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package reflect
     6  
     7  import (
     8  	"math"
     9  	"runtime"
    10  	"unsafe"
    11  )
    12  
    13  const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
    14  
    15  // Value is the reflection interface to a Go value.
    16  //
    17  // Not all methods apply to all kinds of values. Restrictions,
    18  // if any, are noted in the documentation for each method.
    19  // Use the Kind method to find out the kind of value before
    20  // calling kind-specific methods. Calling a method
    21  // inappropriate to the kind of type causes a run time panic.
    22  //
    23  // The zero Value represents no value.
    24  // Its IsValid method returns false, its Kind method returns Invalid,
    25  // its String method returns "<invalid Value>", and all other methods panic.
    26  // Most functions and methods never return an invalid value.
    27  // If one does, its documentation states the conditions explicitly.
    28  //
    29  // A Value can be used concurrently by multiple goroutines provided that
    30  // the underlying Go value can be used concurrently for the equivalent
    31  // direct operations.
    32  //
    33  // Using == on two Values does not compare the underlying values
    34  // they represent, but rather the contents of the Value structs.
    35  // To compare two Values, compare the results of the Interface method.
    36  type Value struct {
    37  	// typ holds the type of the value represented by a Value.
    38  	typ *rtype
    39  
    40  	// Pointer-valued data or, if flagIndir is set, pointer to data.
    41  	// Valid when either flagIndir is set or typ.pointers() is true.
    42  	ptr unsafe.Pointer
    43  
    44  	// flag holds metadata about the value.
    45  	// The lowest bits are flag bits:
    46  	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
    47  	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
    48  	//	- flagIndir: val holds a pointer to the data
    49  	//	- flagAddr: v.CanAddr is true (implies flagIndir)
    50  	//	- flagMethod: v is a method value.
    51  	// The next five bits give the Kind of the value.
    52  	// This repeats typ.Kind() except for method values.
    53  	// The remaining 23+ bits give a method number for method values.
    54  	// If flag.kind() != Func, code can assume that flagMethod is unset.
    55  	// If ifaceIndir(typ), code can assume that flagIndir is set.
    56  	flag
    57  
    58  	// A method value represents a curried method invocation
    59  	// like r.Read for some receiver r. The typ+val+flag bits describe
    60  	// the receiver r, but the flag's Kind bits say Func (methods are
    61  	// functions), and the top bits of the flag give the method number
    62  	// in r's type's method table.
    63  }
    64  
    65  type flag uintptr
    66  
    67  const (
    68  	flagKindWidth        = 5 // there are 27 kinds
    69  	flagKindMask    flag = 1<<flagKindWidth - 1
    70  	flagStickyRO    flag = 1 << 5
    71  	flagEmbedRO     flag = 1 << 6
    72  	flagIndir       flag = 1 << 7
    73  	flagAddr        flag = 1 << 8
    74  	flagMethod      flag = 1 << 9
    75  	flagMethodShift      = 10
    76  	flagRO          flag = flagStickyRO | flagEmbedRO
    77  )
    78  
    79  func (f flag) kind() Kind {
    80  	return Kind(f & flagKindMask)
    81  }
    82  
    83  // pointer returns the underlying pointer represented by v.
    84  // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
    85  func (v Value) pointer() unsafe.Pointer {
    86  	if v.typ.size != ptrSize || !v.typ.pointers() {
    87  		panic("can't call pointer on a non-pointer Value")
    88  	}
    89  	if v.flag&flagIndir != 0 {
    90  		return *(*unsafe.Pointer)(v.ptr)
    91  	}
    92  	return v.ptr
    93  }
    94  
    95  // packEface converts v to the empty interface.
    96  func packEface(v Value) interface{} {
    97  	t := v.typ
    98  	var i interface{}
    99  	e := (*emptyInterface)(unsafe.Pointer(&i))
   100  	// First, fill in the data portion of the interface.
   101  	switch {
   102  	case ifaceIndir(t):
   103  		if v.flag&flagIndir == 0 {
   104  			panic("bad indir")
   105  		}
   106  		// Value is indirect, and so is the interface we're making.
   107  		ptr := v.ptr
   108  		if v.flag&flagAddr != 0 {
   109  			// TODO: pass safe boolean from valueInterface so
   110  			// we don't need to copy if safe==true?
   111  			c := unsafe_New(t)
   112  			typedmemmove(t, c, ptr)
   113  			ptr = c
   114  		}
   115  		e.word = ptr
   116  	case v.flag&flagIndir != 0:
   117  		// Value is indirect, but interface is direct. We need
   118  		// to load the data at v.ptr into the interface data word.
   119  		e.word = *(*unsafe.Pointer)(v.ptr)
   120  	default:
   121  		// Value is direct, and so is the interface.
   122  		e.word = v.ptr
   123  	}
   124  	// Now, fill in the type portion. We're very careful here not
   125  	// to have any operation between the e.word and e.typ assignments
   126  	// that would let the garbage collector observe the partially-built
   127  	// interface value.
   128  	e.typ = t
   129  	return i
   130  }
   131  
   132  // unpackEface converts the empty interface i to a Value.
   133  func unpackEface(i interface{}) Value {
   134  	e := (*emptyInterface)(unsafe.Pointer(&i))
   135  	// NOTE: don't read e.word until we know whether it is really a pointer or not.
   136  	t := e.typ
   137  	if t == nil {
   138  		return Value{}
   139  	}
   140  	f := flag(t.Kind())
   141  	if ifaceIndir(t) {
   142  		f |= flagIndir
   143  	}
   144  	return Value{t, e.word, f}
   145  }
   146  
   147  // A ValueError occurs when a Value method is invoked on
   148  // a Value that does not support it. Such cases are documented
   149  // in the description of each method.
   150  type ValueError struct {
   151  	Method string
   152  	Kind   Kind
   153  }
   154  
   155  func (e *ValueError) Error() string {
   156  	if e.Kind == 0 {
   157  		return "reflect: call of " + e.Method + " on zero Value"
   158  	}
   159  	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
   160  }
   161  
   162  // methodName returns the name of the calling method,
   163  // assumed to be two stack frames above.
   164  func methodName() string {
   165  	pc, _, _, _ := runtime.Caller(2)
   166  	f := runtime.FuncForPC(pc)
   167  	if f == nil {
   168  		return "unknown method"
   169  	}
   170  	return f.Name()
   171  }
   172  
   173  // emptyInterface is the header for an interface{} value.
   174  type emptyInterface struct {
   175  	typ  *rtype
   176  	word unsafe.Pointer
   177  }
   178  
   179  // nonEmptyInterface is the header for a interface value with methods.
   180  type nonEmptyInterface struct {
   181  	// see ../runtime/iface.go:/Itab
   182  	itab *struct {
   183  		ityp   *rtype // static interface type
   184  		typ    *rtype // dynamic concrete type
   185  		link   unsafe.Pointer
   186  		bad    int32
   187  		unused int32
   188  		fun    [100000]unsafe.Pointer // method table
   189  	}
   190  	word unsafe.Pointer
   191  }
   192  
   193  // mustBe panics if f's kind is not expected.
   194  // Making this a method on flag instead of on Value
   195  // (and embedding flag in Value) means that we can write
   196  // the very clear v.mustBe(Bool) and have it compile into
   197  // v.flag.mustBe(Bool), which will only bother to copy the
   198  // single important word for the receiver.
   199  func (f flag) mustBe(expected Kind) {
   200  	if f.kind() != expected {
   201  		panic(&ValueError{methodName(), f.kind()})
   202  	}
   203  }
   204  
   205  // mustBeExported panics if f records that the value was obtained using
   206  // an unexported field.
   207  func (f flag) mustBeExported() {
   208  	if f == 0 {
   209  		panic(&ValueError{methodName(), 0})
   210  	}
   211  	if f&flagRO != 0 {
   212  		panic("reflect: " + methodName() + " using value obtained using unexported field")
   213  	}
   214  }
   215  
   216  // mustBeAssignable panics if f records that the value is not assignable,
   217  // which is to say that either it was obtained using an unexported field
   218  // or it is not addressable.
   219  func (f flag) mustBeAssignable() {
   220  	if f == 0 {
   221  		panic(&ValueError{methodName(), Invalid})
   222  	}
   223  	// Assignable if addressable and not read-only.
   224  	if f&flagRO != 0 {
   225  		panic("reflect: " + methodName() + " using value obtained using unexported field")
   226  	}
   227  	if f&flagAddr == 0 {
   228  		panic("reflect: " + methodName() + " using unaddressable value")
   229  	}
   230  }
   231  
   232  // Addr returns a pointer value representing the address of v.
   233  // It panics if CanAddr() returns false.
   234  // Addr is typically used to obtain a pointer to a struct field
   235  // or slice element in order to call a method that requires a
   236  // pointer receiver.
   237  func (v Value) Addr() Value {
   238  	if v.flag&flagAddr == 0 {
   239  		panic("reflect.Value.Addr of unaddressable value")
   240  	}
   241  	return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)}
   242  }
   243  
   244  // Bool returns v's underlying value.
   245  // It panics if v's kind is not Bool.
   246  func (v Value) Bool() bool {
   247  	v.mustBe(Bool)
   248  	return *(*bool)(v.ptr)
   249  }
   250  
   251  // Bytes returns v's underlying value.
   252  // It panics if v's underlying value is not a slice of bytes.
   253  func (v Value) Bytes() []byte {
   254  	v.mustBe(Slice)
   255  	if v.typ.Elem().Kind() != Uint8 {
   256  		panic("reflect.Value.Bytes of non-byte slice")
   257  	}
   258  	// Slice is always bigger than a word; assume flagIndir.
   259  	return *(*[]byte)(v.ptr)
   260  }
   261  
   262  // runes returns v's underlying value.
   263  // It panics if v's underlying value is not a slice of runes (int32s).
   264  func (v Value) runes() []rune {
   265  	v.mustBe(Slice)
   266  	if v.typ.Elem().Kind() != Int32 {
   267  		panic("reflect.Value.Bytes of non-rune slice")
   268  	}
   269  	// Slice is always bigger than a word; assume flagIndir.
   270  	return *(*[]rune)(v.ptr)
   271  }
   272  
   273  // CanAddr reports whether the value's address can be obtained with Addr.
   274  // Such values are called addressable. A value is addressable if it is
   275  // an element of a slice, an element of an addressable array,
   276  // a field of an addressable struct, or the result of dereferencing a pointer.
   277  // If CanAddr returns false, calling Addr will panic.
   278  func (v Value) CanAddr() bool {
   279  	return v.flag&flagAddr != 0
   280  }
   281  
   282  // CanSet reports whether the value of v can be changed.
   283  // A Value can be changed only if it is addressable and was not
   284  // obtained by the use of unexported struct fields.
   285  // If CanSet returns false, calling Set or any type-specific
   286  // setter (e.g., SetBool, SetInt) will panic.
   287  func (v Value) CanSet() bool {
   288  	return v.flag&(flagAddr|flagRO) == flagAddr
   289  }
   290  
   291  // Call calls the function v with the input arguments in.
   292  // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
   293  // Call panics if v's Kind is not Func.
   294  // It returns the output results as Values.
   295  // As in Go, each input argument must be assignable to the
   296  // type of the function's corresponding input parameter.
   297  // If v is a variadic function, Call creates the variadic slice parameter
   298  // itself, copying in the corresponding values.
   299  func (v Value) Call(in []Value) []Value {
   300  	v.mustBe(Func)
   301  	v.mustBeExported()
   302  	return v.call("Call", in)
   303  }
   304  
   305  // CallSlice calls the variadic function v with the input arguments in,
   306  // assigning the slice in[len(in)-1] to v's final variadic argument.
   307  // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
   308  // CallSlice panics if v's Kind is not Func or if v is not variadic.
   309  // It returns the output results as Values.
   310  // As in Go, each input argument must be assignable to the
   311  // type of the function's corresponding input parameter.
   312  func (v Value) CallSlice(in []Value) []Value {
   313  	v.mustBe(Func)
   314  	v.mustBeExported()
   315  	return v.call("CallSlice", in)
   316  }
   317  
   318  var callGC bool // for testing; see TestCallMethodJump
   319  
   320  func (v Value) call(op string, in []Value) []Value {
   321  	// Get function pointer, type.
   322  	t := v.typ
   323  	var (
   324  		fn       unsafe.Pointer
   325  		rcvr     Value
   326  		rcvrtype *rtype
   327  	)
   328  	if v.flag&flagMethod != 0 {
   329  		rcvr = v
   330  		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
   331  	} else if v.flag&flagIndir != 0 {
   332  		fn = *(*unsafe.Pointer)(v.ptr)
   333  	} else {
   334  		fn = v.ptr
   335  	}
   336  
   337  	if fn == nil {
   338  		panic("reflect.Value.Call: call of nil function")
   339  	}
   340  
   341  	isSlice := op == "CallSlice"
   342  	n := t.NumIn()
   343  	if isSlice {
   344  		if !t.IsVariadic() {
   345  			panic("reflect: CallSlice of non-variadic function")
   346  		}
   347  		if len(in) < n {
   348  			panic("reflect: CallSlice with too few input arguments")
   349  		}
   350  		if len(in) > n {
   351  			panic("reflect: CallSlice with too many input arguments")
   352  		}
   353  	} else {
   354  		if t.IsVariadic() {
   355  			n--
   356  		}
   357  		if len(in) < n {
   358  			panic("reflect: Call with too few input arguments")
   359  		}
   360  		if !t.IsVariadic() && len(in) > n {
   361  			panic("reflect: Call with too many input arguments")
   362  		}
   363  	}
   364  	for _, x := range in {
   365  		if x.Kind() == Invalid {
   366  			panic("reflect: " + op + " using zero Value argument")
   367  		}
   368  	}
   369  	for i := 0; i < n; i++ {
   370  		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
   371  			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
   372  		}
   373  	}
   374  	if !isSlice && t.IsVariadic() {
   375  		// prepare slice for remaining values
   376  		m := len(in) - n
   377  		slice := MakeSlice(t.In(n), m, m)
   378  		elem := t.In(n).Elem()
   379  		for i := 0; i < m; i++ {
   380  			x := in[n+i]
   381  			if xt := x.Type(); !xt.AssignableTo(elem) {
   382  				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
   383  			}
   384  			slice.Index(i).Set(x)
   385  		}
   386  		origIn := in
   387  		in = make([]Value, n+1)
   388  		copy(in[:n], origIn)
   389  		in[n] = slice
   390  	}
   391  
   392  	nin := len(in)
   393  	if nin != t.NumIn() {
   394  		panic("reflect.Value.Call: wrong argument count")
   395  	}
   396  	nout := t.NumOut()
   397  
   398  	// Compute frame type.
   399  	frametype, _, retOffset, _, framePool := funcLayout(t, rcvrtype)
   400  
   401  	// Allocate a chunk of memory for frame.
   402  	var args unsafe.Pointer
   403  	if nout == 0 {
   404  		args = framePool.Get().(unsafe.Pointer)
   405  	} else {
   406  		// Can't use pool if the function has return values.
   407  		// We will leak pointer to args in ret, so its lifetime is not scoped.
   408  		args = unsafe_New(frametype)
   409  	}
   410  	off := uintptr(0)
   411  
   412  	// Copy inputs into args.
   413  	if rcvrtype != nil {
   414  		storeRcvr(rcvr, args)
   415  		off = ptrSize
   416  	}
   417  	for i, v := range in {
   418  		v.mustBeExported()
   419  		targ := t.In(i).(*rtype)
   420  		a := uintptr(targ.align)
   421  		off = (off + a - 1) &^ (a - 1)
   422  		n := targ.size
   423  		addr := unsafe.Pointer(uintptr(args) + off)
   424  		v = v.assignTo("reflect.Value.Call", targ, addr)
   425  		if v.flag&flagIndir != 0 {
   426  			typedmemmove(targ, addr, v.ptr)
   427  		} else {
   428  			*(*unsafe.Pointer)(addr) = v.ptr
   429  		}
   430  		off += n
   431  	}
   432  
   433  	// Call.
   434  	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
   435  
   436  	// For testing; see TestCallMethodJump.
   437  	if callGC {
   438  		runtime.GC()
   439  	}
   440  
   441  	var ret []Value
   442  	if nout == 0 {
   443  		memclr(args, frametype.size)
   444  		framePool.Put(args)
   445  	} else {
   446  		// Zero the now unused input area of args,
   447  		// because the Values returned by this function contain pointers to the args object,
   448  		// and will thus keep the args object alive indefinitely.
   449  		memclr(args, retOffset)
   450  		// Copy return values out of args.
   451  		ret = make([]Value, nout)
   452  		off = retOffset
   453  		for i := 0; i < nout; i++ {
   454  			tv := t.Out(i)
   455  			a := uintptr(tv.Align())
   456  			off = (off + a - 1) &^ (a - 1)
   457  			fl := flagIndir | flag(tv.Kind())
   458  			ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), fl}
   459  			off += tv.Size()
   460  		}
   461  	}
   462  
   463  	return ret
   464  }
   465  
   466  // callReflect is the call implementation used by a function
   467  // returned by MakeFunc. In many ways it is the opposite of the
   468  // method Value.call above. The method above converts a call using Values
   469  // into a call of a function with a concrete argument frame, while
   470  // callReflect converts a call of a function with a concrete argument
   471  // frame into a call using Values.
   472  // It is in this file so that it can be next to the call method above.
   473  // The remainder of the MakeFunc implementation is in makefunc.go.
   474  //
   475  // NOTE: This function must be marked as a "wrapper" in the generated code,
   476  // so that the linker can make it work correctly for panic and recover.
   477  // The gc compilers know to do that for the name "reflect.callReflect".
   478  func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) {
   479  	ftyp := ctxt.typ
   480  	f := ctxt.fn
   481  
   482  	// Copy argument frame into Values.
   483  	ptr := frame
   484  	off := uintptr(0)
   485  	in := make([]Value, 0, int(ftyp.inCount))
   486  	for _, typ := range ftyp.in() {
   487  		off += -off & uintptr(typ.align-1)
   488  		addr := unsafe.Pointer(uintptr(ptr) + off)
   489  		v := Value{typ, nil, flag(typ.Kind())}
   490  		if ifaceIndir(typ) {
   491  			// value cannot be inlined in interface data.
   492  			// Must make a copy, because f might keep a reference to it,
   493  			// and we cannot let f keep a reference to the stack frame
   494  			// after this function returns, not even a read-only reference.
   495  			v.ptr = unsafe_New(typ)
   496  			typedmemmove(typ, v.ptr, addr)
   497  			v.flag |= flagIndir
   498  		} else {
   499  			v.ptr = *(*unsafe.Pointer)(addr)
   500  		}
   501  		in = append(in, v)
   502  		off += typ.size
   503  	}
   504  
   505  	// Call underlying function.
   506  	out := f(in)
   507  	numOut := ftyp.NumOut()
   508  	if len(out) != numOut {
   509  		panic("reflect: wrong return count from function created by MakeFunc")
   510  	}
   511  
   512  	// Copy results back into argument frame.
   513  	if numOut > 0 {
   514  		off += -off & (ptrSize - 1)
   515  		if runtime.GOARCH == "amd64p32" {
   516  			off = align(off, 8)
   517  		}
   518  		for i, typ := range ftyp.out() {
   519  			v := out[i]
   520  			if v.typ != typ {
   521  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   522  					" returned wrong type: have " +
   523  					out[i].typ.String() + " for " + typ.String())
   524  			}
   525  			if v.flag&flagRO != 0 {
   526  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   527  					" returned value obtained from unexported field")
   528  			}
   529  			off += -off & uintptr(typ.align-1)
   530  			addr := unsafe.Pointer(uintptr(ptr) + off)
   531  			if v.flag&flagIndir != 0 {
   532  				typedmemmove(typ, addr, v.ptr)
   533  			} else {
   534  				*(*unsafe.Pointer)(addr) = v.ptr
   535  			}
   536  			off += typ.size
   537  		}
   538  	}
   539  }
   540  
   541  // methodReceiver returns information about the receiver
   542  // described by v. The Value v may or may not have the
   543  // flagMethod bit set, so the kind cached in v.flag should
   544  // not be used.
   545  // The return value rcvrtype gives the method's actual receiver type.
   546  // The return value t gives the method type signature (without the receiver).
   547  // The return value fn is a pointer to the method code.
   548  func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
   549  	i := methodIndex
   550  	if v.typ.Kind() == Interface {
   551  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
   552  		if uint(i) >= uint(len(tt.methods)) {
   553  			panic("reflect: internal error: invalid method index")
   554  		}
   555  		m := &tt.methods[i]
   556  		if !tt.nameOff(m.name).isExported() {
   557  			panic("reflect: " + op + " of unexported method")
   558  		}
   559  		iface := (*nonEmptyInterface)(v.ptr)
   560  		if iface.itab == nil {
   561  			panic("reflect: " + op + " of method on nil interface value")
   562  		}
   563  		rcvrtype = iface.itab.typ
   564  		fn = unsafe.Pointer(&iface.itab.fun[i])
   565  		t = tt.typeOff(m.typ)
   566  	} else {
   567  		rcvrtype = v.typ
   568  		ut := v.typ.uncommon()
   569  		if ut == nil || uint(i) >= uint(ut.mcount) {
   570  			panic("reflect: internal error: invalid method index")
   571  		}
   572  		m := ut.methods()[i]
   573  		if !v.typ.nameOff(m.name).isExported() {
   574  			panic("reflect: " + op + " of unexported method")
   575  		}
   576  		ifn := v.typ.textOff(m.ifn)
   577  		fn = unsafe.Pointer(&ifn)
   578  		t = v.typ.typeOff(m.mtyp)
   579  	}
   580  	return
   581  }
   582  
   583  // v is a method receiver. Store at p the word which is used to
   584  // encode that receiver at the start of the argument list.
   585  // Reflect uses the "interface" calling convention for
   586  // methods, which always uses one word to record the receiver.
   587  func storeRcvr(v Value, p unsafe.Pointer) {
   588  	t := v.typ
   589  	if t.Kind() == Interface {
   590  		// the interface data word becomes the receiver word
   591  		iface := (*nonEmptyInterface)(v.ptr)
   592  		*(*unsafe.Pointer)(p) = iface.word
   593  	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
   594  		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
   595  	} else {
   596  		*(*unsafe.Pointer)(p) = v.ptr
   597  	}
   598  }
   599  
   600  // align returns the result of rounding x up to a multiple of n.
   601  // n must be a power of two.
   602  func align(x, n uintptr) uintptr {
   603  	return (x + n - 1) &^ (n - 1)
   604  }
   605  
   606  // callMethod is the call implementation used by a function returned
   607  // by makeMethodValue (used by v.Method(i).Interface()).
   608  // It is a streamlined version of the usual reflect call: the caller has
   609  // already laid out the argument frame for us, so we don't have
   610  // to deal with individual Values for each argument.
   611  // It is in this file so that it can be next to the two similar functions above.
   612  // The remainder of the makeMethodValue implementation is in makefunc.go.
   613  //
   614  // NOTE: This function must be marked as a "wrapper" in the generated code,
   615  // so that the linker can make it work correctly for panic and recover.
   616  // The gc compilers know to do that for the name "reflect.callMethod".
   617  func callMethod(ctxt *methodValue, frame unsafe.Pointer) {
   618  	rcvr := ctxt.rcvr
   619  	rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
   620  	frametype, argSize, retOffset, _, framePool := funcLayout(t, rcvrtype)
   621  
   622  	// Make a new frame that is one word bigger so we can store the receiver.
   623  	args := framePool.Get().(unsafe.Pointer)
   624  
   625  	// Copy in receiver and rest of args.
   626  	storeRcvr(rcvr, args)
   627  	typedmemmovepartial(frametype, unsafe.Pointer(uintptr(args)+ptrSize), frame, ptrSize, argSize-ptrSize)
   628  
   629  	// Call.
   630  	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
   631  
   632  	// Copy return values. On amd64p32, the beginning of return values
   633  	// is 64-bit aligned, so the caller's frame layout (which doesn't have
   634  	// a receiver) is different from the layout of the fn call, which has
   635  	// a receiver.
   636  	// Ignore any changes to args and just copy return values.
   637  	callerRetOffset := retOffset - ptrSize
   638  	if runtime.GOARCH == "amd64p32" {
   639  		callerRetOffset = align(argSize-ptrSize, 8)
   640  	}
   641  	typedmemmovepartial(frametype,
   642  		unsafe.Pointer(uintptr(frame)+callerRetOffset),
   643  		unsafe.Pointer(uintptr(args)+retOffset),
   644  		retOffset,
   645  		frametype.size-retOffset)
   646  
   647  	memclr(args, frametype.size)
   648  	framePool.Put(args)
   649  }
   650  
   651  // funcName returns the name of f, for use in error messages.
   652  func funcName(f func([]Value) []Value) string {
   653  	pc := *(*uintptr)(unsafe.Pointer(&f))
   654  	rf := runtime.FuncForPC(pc)
   655  	if rf != nil {
   656  		return rf.Name()
   657  	}
   658  	return "closure"
   659  }
   660  
   661  // Cap returns v's capacity.
   662  // It panics if v's Kind is not Array, Chan, or Slice.
   663  func (v Value) Cap() int {
   664  	k := v.kind()
   665  	switch k {
   666  	case Array:
   667  		return v.typ.Len()
   668  	case Chan:
   669  		return chancap(v.pointer())
   670  	case Slice:
   671  		// Slice is always bigger than a word; assume flagIndir.
   672  		return (*sliceHeader)(v.ptr).Cap
   673  	}
   674  	panic(&ValueError{"reflect.Value.Cap", v.kind()})
   675  }
   676  
   677  // Close closes the channel v.
   678  // It panics if v's Kind is not Chan.
   679  func (v Value) Close() {
   680  	v.mustBe(Chan)
   681  	v.mustBeExported()
   682  	chanclose(v.pointer())
   683  }
   684  
   685  // Complex returns v's underlying value, as a complex128.
   686  // It panics if v's Kind is not Complex64 or Complex128
   687  func (v Value) Complex() complex128 {
   688  	k := v.kind()
   689  	switch k {
   690  	case Complex64:
   691  		return complex128(*(*complex64)(v.ptr))
   692  	case Complex128:
   693  		return *(*complex128)(v.ptr)
   694  	}
   695  	panic(&ValueError{"reflect.Value.Complex", v.kind()})
   696  }
   697  
   698  // Elem returns the value that the interface v contains
   699  // or that the pointer v points to.
   700  // It panics if v's Kind is not Interface or Ptr.
   701  // It returns the zero Value if v is nil.
   702  func (v Value) Elem() Value {
   703  	k := v.kind()
   704  	switch k {
   705  	case Interface:
   706  		var eface interface{}
   707  		if v.typ.NumMethod() == 0 {
   708  			eface = *(*interface{})(v.ptr)
   709  		} else {
   710  			eface = (interface{})(*(*interface {
   711  				M()
   712  			})(v.ptr))
   713  		}
   714  		x := unpackEface(eface)
   715  		if x.flag != 0 {
   716  			x.flag |= v.flag & flagRO
   717  		}
   718  		return x
   719  	case Ptr:
   720  		ptr := v.ptr
   721  		if v.flag&flagIndir != 0 {
   722  			ptr = *(*unsafe.Pointer)(ptr)
   723  		}
   724  		// The returned value's address is v's value.
   725  		if ptr == nil {
   726  			return Value{}
   727  		}
   728  		tt := (*ptrType)(unsafe.Pointer(v.typ))
   729  		typ := tt.elem
   730  		fl := v.flag&flagRO | flagIndir | flagAddr
   731  		fl |= flag(typ.Kind())
   732  		return Value{typ, ptr, fl}
   733  	}
   734  	panic(&ValueError{"reflect.Value.Elem", v.kind()})
   735  }
   736  
   737  // Field returns the i'th field of the struct v.
   738  // It panics if v's Kind is not Struct or i is out of range.
   739  func (v Value) Field(i int) Value {
   740  	if v.kind() != Struct {
   741  		panic(&ValueError{"reflect.Value.Field", v.kind()})
   742  	}
   743  	tt := (*structType)(unsafe.Pointer(v.typ))
   744  	if uint(i) >= uint(len(tt.fields)) {
   745  		panic("reflect: Field index out of range")
   746  	}
   747  	field := &tt.fields[i]
   748  	typ := field.typ
   749  
   750  	// Inherit permission bits from v, but clear flagEmbedRO.
   751  	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
   752  	// Using an unexported field forces flagRO.
   753  	if !field.name.isExported() {
   754  		if field.name.name() == "" {
   755  			fl |= flagEmbedRO
   756  		} else {
   757  			fl |= flagStickyRO
   758  		}
   759  	}
   760  	// Either flagIndir is set and v.ptr points at struct,
   761  	// or flagIndir is not set and v.ptr is the actual struct data.
   762  	// In the former case, we want v.ptr + offset.
   763  	// In the latter case, we must have field.offset = 0,
   764  	// so v.ptr + field.offset is still okay.
   765  	ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset)
   766  	return Value{typ, ptr, fl}
   767  }
   768  
   769  // FieldByIndex returns the nested field corresponding to index.
   770  // It panics if v's Kind is not struct.
   771  func (v Value) FieldByIndex(index []int) Value {
   772  	if len(index) == 1 {
   773  		return v.Field(index[0])
   774  	}
   775  	v.mustBe(Struct)
   776  	for i, x := range index {
   777  		if i > 0 {
   778  			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
   779  				if v.IsNil() {
   780  					panic("reflect: indirection through nil pointer to embedded struct")
   781  				}
   782  				v = v.Elem()
   783  			}
   784  		}
   785  		v = v.Field(x)
   786  	}
   787  	return v
   788  }
   789  
   790  // FieldByName returns the struct field with the given name.
   791  // It returns the zero Value if no field was found.
   792  // It panics if v's Kind is not struct.
   793  func (v Value) FieldByName(name string) Value {
   794  	v.mustBe(Struct)
   795  	if f, ok := v.typ.FieldByName(name); ok {
   796  		return v.FieldByIndex(f.Index)
   797  	}
   798  	return Value{}
   799  }
   800  
   801  // FieldByNameFunc returns the struct field with a name
   802  // that satisfies the match function.
   803  // It panics if v's Kind is not struct.
   804  // It returns the zero Value if no field was found.
   805  func (v Value) FieldByNameFunc(match func(string) bool) Value {
   806  	if f, ok := v.typ.FieldByNameFunc(match); ok {
   807  		return v.FieldByIndex(f.Index)
   808  	}
   809  	return Value{}
   810  }
   811  
   812  // Float returns v's underlying value, as a float64.
   813  // It panics if v's Kind is not Float32 or Float64
   814  func (v Value) Float() float64 {
   815  	k := v.kind()
   816  	switch k {
   817  	case Float32:
   818  		return float64(*(*float32)(v.ptr))
   819  	case Float64:
   820  		return *(*float64)(v.ptr)
   821  	}
   822  	panic(&ValueError{"reflect.Value.Float", v.kind()})
   823  }
   824  
   825  var uint8Type = TypeOf(uint8(0)).(*rtype)
   826  
   827  // Index returns v's i'th element.
   828  // It panics if v's Kind is not Array, Slice, or String or i is out of range.
   829  func (v Value) Index(i int) Value {
   830  	switch v.kind() {
   831  	case Array:
   832  		tt := (*arrayType)(unsafe.Pointer(v.typ))
   833  		if uint(i) >= uint(tt.len) {
   834  			panic("reflect: array index out of range")
   835  		}
   836  		typ := tt.elem
   837  		offset := uintptr(i) * typ.size
   838  
   839  		// Either flagIndir is set and v.ptr points at array,
   840  		// or flagIndir is not set and v.ptr is the actual array data.
   841  		// In the former case, we want v.ptr + offset.
   842  		// In the latter case, we must be doing Index(0), so offset = 0,
   843  		// so v.ptr + offset is still okay.
   844  		val := unsafe.Pointer(uintptr(v.ptr) + offset)
   845  		fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array
   846  		return Value{typ, val, fl}
   847  
   848  	case Slice:
   849  		// Element flag same as Elem of Ptr.
   850  		// Addressable, indirect, possibly read-only.
   851  		s := (*sliceHeader)(v.ptr)
   852  		if uint(i) >= uint(s.Len) {
   853  			panic("reflect: slice index out of range")
   854  		}
   855  		tt := (*sliceType)(unsafe.Pointer(v.typ))
   856  		typ := tt.elem
   857  		val := arrayAt(s.Data, i, typ.size)
   858  		fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind())
   859  		return Value{typ, val, fl}
   860  
   861  	case String:
   862  		s := (*stringHeader)(v.ptr)
   863  		if uint(i) >= uint(s.Len) {
   864  			panic("reflect: string index out of range")
   865  		}
   866  		p := arrayAt(s.Data, i, 1)
   867  		fl := v.flag&flagRO | flag(Uint8) | flagIndir
   868  		return Value{uint8Type, p, fl}
   869  	}
   870  	panic(&ValueError{"reflect.Value.Index", v.kind()})
   871  }
   872  
   873  // Int returns v's underlying value, as an int64.
   874  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
   875  func (v Value) Int() int64 {
   876  	k := v.kind()
   877  	p := v.ptr
   878  	switch k {
   879  	case Int:
   880  		return int64(*(*int)(p))
   881  	case Int8:
   882  		return int64(*(*int8)(p))
   883  	case Int16:
   884  		return int64(*(*int16)(p))
   885  	case Int32:
   886  		return int64(*(*int32)(p))
   887  	case Int64:
   888  		return *(*int64)(p)
   889  	}
   890  	panic(&ValueError{"reflect.Value.Int", v.kind()})
   891  }
   892  
   893  // CanInterface reports whether Interface can be used without panicking.
   894  func (v Value) CanInterface() bool {
   895  	if v.flag == 0 {
   896  		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
   897  	}
   898  	return v.flag&flagRO == 0
   899  }
   900  
   901  // Interface returns v's current value as an interface{}.
   902  // It is equivalent to:
   903  //	var i interface{} = (v's underlying value)
   904  // It panics if the Value was obtained by accessing
   905  // unexported struct fields.
   906  func (v Value) Interface() (i interface{}) {
   907  	return valueInterface(v, true)
   908  }
   909  
   910  func valueInterface(v Value, safe bool) interface{} {
   911  	if v.flag == 0 {
   912  		panic(&ValueError{"reflect.Value.Interface", 0})
   913  	}
   914  	if safe && v.flag&flagRO != 0 {
   915  		// Do not allow access to unexported values via Interface,
   916  		// because they might be pointers that should not be
   917  		// writable or methods or function that should not be callable.
   918  		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
   919  	}
   920  	if v.flag&flagMethod != 0 {
   921  		v = makeMethodValue("Interface", v)
   922  	}
   923  
   924  	if v.kind() == Interface {
   925  		// Special case: return the element inside the interface.
   926  		// Empty interface has one layout, all interfaces with
   927  		// methods have a second layout.
   928  		if v.NumMethod() == 0 {
   929  			return *(*interface{})(v.ptr)
   930  		}
   931  		return *(*interface {
   932  			M()
   933  		})(v.ptr)
   934  	}
   935  
   936  	// TODO: pass safe to packEface so we don't need to copy if safe==true?
   937  	return packEface(v)
   938  }
   939  
   940  // InterfaceData returns the interface v's value as a uintptr pair.
   941  // It panics if v's Kind is not Interface.
   942  func (v Value) InterfaceData() [2]uintptr {
   943  	// TODO: deprecate this
   944  	v.mustBe(Interface)
   945  	// We treat this as a read operation, so we allow
   946  	// it even for unexported data, because the caller
   947  	// has to import "unsafe" to turn it into something
   948  	// that can be abused.
   949  	// Interface value is always bigger than a word; assume flagIndir.
   950  	return *(*[2]uintptr)(v.ptr)
   951  }
   952  
   953  // IsNil reports whether its argument v is nil. The argument must be
   954  // a chan, func, interface, map, pointer, or slice value; if it is
   955  // not, IsNil panics. Note that IsNil is not always equivalent to a
   956  // regular comparison with nil in Go. For example, if v was created
   957  // by calling ValueOf with an uninitialized interface variable i,
   958  // i==nil will be true but v.IsNil will panic as v will be the zero
   959  // Value.
   960  func (v Value) IsNil() bool {
   961  	k := v.kind()
   962  	switch k {
   963  	case Chan, Func, Map, Ptr:
   964  		if v.flag&flagMethod != 0 {
   965  			return false
   966  		}
   967  		ptr := v.ptr
   968  		if v.flag&flagIndir != 0 {
   969  			ptr = *(*unsafe.Pointer)(ptr)
   970  		}
   971  		return ptr == nil
   972  	case Interface, Slice:
   973  		// Both interface and slice are nil if first word is 0.
   974  		// Both are always bigger than a word; assume flagIndir.
   975  		return *(*unsafe.Pointer)(v.ptr) == nil
   976  	}
   977  	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
   978  }
   979  
   980  // IsValid reports whether v represents a value.
   981  // It returns false if v is the zero Value.
   982  // If IsValid returns false, all other methods except String panic.
   983  // Most functions and methods never return an invalid value.
   984  // If one does, its documentation states the conditions explicitly.
   985  func (v Value) IsValid() bool {
   986  	return v.flag != 0
   987  }
   988  
   989  // Kind returns v's Kind.
   990  // If v is the zero Value (IsValid returns false), Kind returns Invalid.
   991  func (v Value) Kind() Kind {
   992  	return v.kind()
   993  }
   994  
   995  // Len returns v's length.
   996  // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
   997  func (v Value) Len() int {
   998  	k := v.kind()
   999  	switch k {
  1000  	case Array:
  1001  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1002  		return int(tt.len)
  1003  	case Chan:
  1004  		return chanlen(v.pointer())
  1005  	case Map:
  1006  		return maplen(v.pointer())
  1007  	case Slice:
  1008  		// Slice is bigger than a word; assume flagIndir.
  1009  		return (*sliceHeader)(v.ptr).Len
  1010  	case String:
  1011  		// String is bigger than a word; assume flagIndir.
  1012  		return (*stringHeader)(v.ptr).Len
  1013  	}
  1014  	panic(&ValueError{"reflect.Value.Len", v.kind()})
  1015  }
  1016  
  1017  // MapIndex returns the value associated with key in the map v.
  1018  // It panics if v's Kind is not Map.
  1019  // It returns the zero Value if key is not found in the map or if v represents a nil map.
  1020  // As in Go, the key's value must be assignable to the map's key type.
  1021  func (v Value) MapIndex(key Value) Value {
  1022  	v.mustBe(Map)
  1023  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1024  
  1025  	// Do not require key to be exported, so that DeepEqual
  1026  	// and other programs can use all the keys returned by
  1027  	// MapKeys as arguments to MapIndex. If either the map
  1028  	// or the key is unexported, though, the result will be
  1029  	// considered unexported. This is consistent with the
  1030  	// behavior for structs, which allow read but not write
  1031  	// of unexported fields.
  1032  	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
  1033  
  1034  	var k unsafe.Pointer
  1035  	if key.flag&flagIndir != 0 {
  1036  		k = key.ptr
  1037  	} else {
  1038  		k = unsafe.Pointer(&key.ptr)
  1039  	}
  1040  	e := mapaccess(v.typ, v.pointer(), k)
  1041  	if e == nil {
  1042  		return Value{}
  1043  	}
  1044  	typ := tt.elem
  1045  	fl := (v.flag | key.flag) & flagRO
  1046  	fl |= flag(typ.Kind())
  1047  	if ifaceIndir(typ) {
  1048  		// Copy result so future changes to the map
  1049  		// won't change the underlying value.
  1050  		c := unsafe_New(typ)
  1051  		typedmemmove(typ, c, e)
  1052  		return Value{typ, c, fl | flagIndir}
  1053  	} else {
  1054  		return Value{typ, *(*unsafe.Pointer)(e), fl}
  1055  	}
  1056  }
  1057  
  1058  // MapKeys returns a slice containing all the keys present in the map,
  1059  // in unspecified order.
  1060  // It panics if v's Kind is not Map.
  1061  // It returns an empty slice if v represents a nil map.
  1062  func (v Value) MapKeys() []Value {
  1063  	v.mustBe(Map)
  1064  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1065  	keyType := tt.key
  1066  
  1067  	fl := v.flag&flagRO | flag(keyType.Kind())
  1068  
  1069  	m := v.pointer()
  1070  	mlen := int(0)
  1071  	if m != nil {
  1072  		mlen = maplen(m)
  1073  	}
  1074  	it := mapiterinit(v.typ, m)
  1075  	a := make([]Value, mlen)
  1076  	var i int
  1077  	for i = 0; i < len(a); i++ {
  1078  		key := mapiterkey(it)
  1079  		if key == nil {
  1080  			// Someone deleted an entry from the map since we
  1081  			// called maplen above. It's a data race, but nothing
  1082  			// we can do about it.
  1083  			break
  1084  		}
  1085  		if ifaceIndir(keyType) {
  1086  			// Copy result so future changes to the map
  1087  			// won't change the underlying value.
  1088  			c := unsafe_New(keyType)
  1089  			typedmemmove(keyType, c, key)
  1090  			a[i] = Value{keyType, c, fl | flagIndir}
  1091  		} else {
  1092  			a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl}
  1093  		}
  1094  		mapiternext(it)
  1095  	}
  1096  	return a[:i]
  1097  }
  1098  
  1099  // Method returns a function value corresponding to v's i'th method.
  1100  // The arguments to a Call on the returned function should not include
  1101  // a receiver; the returned function will always use v as the receiver.
  1102  // Method panics if i is out of range or if v is a nil interface value.
  1103  func (v Value) Method(i int) Value {
  1104  	if v.typ == nil {
  1105  		panic(&ValueError{"reflect.Value.Method", Invalid})
  1106  	}
  1107  	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
  1108  		panic("reflect: Method index out of range")
  1109  	}
  1110  	if v.typ.Kind() == Interface && v.IsNil() {
  1111  		panic("reflect: Method on nil interface value")
  1112  	}
  1113  	fl := v.flag & (flagStickyRO | flagIndir) // Clear flagEmbedRO
  1114  	fl |= flag(Func)
  1115  	fl |= flag(i)<<flagMethodShift | flagMethod
  1116  	return Value{v.typ, v.ptr, fl}
  1117  }
  1118  
  1119  // NumMethod returns the number of methods in the value's method set.
  1120  func (v Value) NumMethod() int {
  1121  	if v.typ == nil {
  1122  		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
  1123  	}
  1124  	if v.flag&flagMethod != 0 {
  1125  		return 0
  1126  	}
  1127  	return v.typ.NumMethod()
  1128  }
  1129  
  1130  // MethodByName returns a function value corresponding to the method
  1131  // of v with the given name.
  1132  // The arguments to a Call on the returned function should not include
  1133  // a receiver; the returned function will always use v as the receiver.
  1134  // It returns the zero Value if no method was found.
  1135  func (v Value) MethodByName(name string) Value {
  1136  	if v.typ == nil {
  1137  		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
  1138  	}
  1139  	if v.flag&flagMethod != 0 {
  1140  		return Value{}
  1141  	}
  1142  	m, ok := v.typ.MethodByName(name)
  1143  	if !ok {
  1144  		return Value{}
  1145  	}
  1146  	return v.Method(m.Index)
  1147  }
  1148  
  1149  // NumField returns the number of fields in the struct v.
  1150  // It panics if v's Kind is not Struct.
  1151  func (v Value) NumField() int {
  1152  	v.mustBe(Struct)
  1153  	tt := (*structType)(unsafe.Pointer(v.typ))
  1154  	return len(tt.fields)
  1155  }
  1156  
  1157  // OverflowComplex reports whether the complex128 x cannot be represented by v's type.
  1158  // It panics if v's Kind is not Complex64 or Complex128.
  1159  func (v Value) OverflowComplex(x complex128) bool {
  1160  	k := v.kind()
  1161  	switch k {
  1162  	case Complex64:
  1163  		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
  1164  	case Complex128:
  1165  		return false
  1166  	}
  1167  	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
  1168  }
  1169  
  1170  // OverflowFloat reports whether the float64 x cannot be represented by v's type.
  1171  // It panics if v's Kind is not Float32 or Float64.
  1172  func (v Value) OverflowFloat(x float64) bool {
  1173  	k := v.kind()
  1174  	switch k {
  1175  	case Float32:
  1176  		return overflowFloat32(x)
  1177  	case Float64:
  1178  		return false
  1179  	}
  1180  	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
  1181  }
  1182  
  1183  func overflowFloat32(x float64) bool {
  1184  	if x < 0 {
  1185  		x = -x
  1186  	}
  1187  	return math.MaxFloat32 < x && x <= math.MaxFloat64
  1188  }
  1189  
  1190  // OverflowInt reports whether the int64 x cannot be represented by v's type.
  1191  // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
  1192  func (v Value) OverflowInt(x int64) bool {
  1193  	k := v.kind()
  1194  	switch k {
  1195  	case Int, Int8, Int16, Int32, Int64:
  1196  		bitSize := v.typ.size * 8
  1197  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1198  		return x != trunc
  1199  	}
  1200  	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
  1201  }
  1202  
  1203  // OverflowUint reports whether the uint64 x cannot be represented by v's type.
  1204  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1205  func (v Value) OverflowUint(x uint64) bool {
  1206  	k := v.kind()
  1207  	switch k {
  1208  	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
  1209  		bitSize := v.typ.size * 8
  1210  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1211  		return x != trunc
  1212  	}
  1213  	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
  1214  }
  1215  
  1216  // Pointer returns v's value as a uintptr.
  1217  // It returns uintptr instead of unsafe.Pointer so that
  1218  // code using reflect cannot obtain unsafe.Pointers
  1219  // without importing the unsafe package explicitly.
  1220  // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
  1221  //
  1222  // If v's Kind is Func, the returned pointer is an underlying
  1223  // code pointer, but not necessarily enough to identify a
  1224  // single function uniquely. The only guarantee is that the
  1225  // result is zero if and only if v is a nil func Value.
  1226  //
  1227  // If v's Kind is Slice, the returned pointer is to the first
  1228  // element of the slice. If the slice is nil the returned value
  1229  // is 0.  If the slice is empty but non-nil the return value is non-zero.
  1230  func (v Value) Pointer() uintptr {
  1231  	// TODO: deprecate
  1232  	k := v.kind()
  1233  	switch k {
  1234  	case Chan, Map, Ptr, UnsafePointer:
  1235  		return uintptr(v.pointer())
  1236  	case Func:
  1237  		if v.flag&flagMethod != 0 {
  1238  			// As the doc comment says, the returned pointer is an
  1239  			// underlying code pointer but not necessarily enough to
  1240  			// identify a single function uniquely. All method expressions
  1241  			// created via reflect have the same underlying code pointer,
  1242  			// so their Pointers are equal. The function used here must
  1243  			// match the one used in makeMethodValue.
  1244  			f := methodValueCall
  1245  			return **(**uintptr)(unsafe.Pointer(&f))
  1246  		}
  1247  		p := v.pointer()
  1248  		// Non-nil func value points at data block.
  1249  		// First word of data block is actual code.
  1250  		if p != nil {
  1251  			p = *(*unsafe.Pointer)(p)
  1252  		}
  1253  		return uintptr(p)
  1254  
  1255  	case Slice:
  1256  		return (*SliceHeader)(v.ptr).Data
  1257  	}
  1258  	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
  1259  }
  1260  
  1261  // Recv receives and returns a value from the channel v.
  1262  // It panics if v's Kind is not Chan.
  1263  // The receive blocks until a value is ready.
  1264  // The boolean value ok is true if the value x corresponds to a send
  1265  // on the channel, false if it is a zero value received because the channel is closed.
  1266  func (v Value) Recv() (x Value, ok bool) {
  1267  	v.mustBe(Chan)
  1268  	v.mustBeExported()
  1269  	return v.recv(false)
  1270  }
  1271  
  1272  // internal recv, possibly non-blocking (nb).
  1273  // v is known to be a channel.
  1274  func (v Value) recv(nb bool) (val Value, ok bool) {
  1275  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1276  	if ChanDir(tt.dir)&RecvDir == 0 {
  1277  		panic("reflect: recv on send-only channel")
  1278  	}
  1279  	t := tt.elem
  1280  	val = Value{t, nil, flag(t.Kind())}
  1281  	var p unsafe.Pointer
  1282  	if ifaceIndir(t) {
  1283  		p = unsafe_New(t)
  1284  		val.ptr = p
  1285  		val.flag |= flagIndir
  1286  	} else {
  1287  		p = unsafe.Pointer(&val.ptr)
  1288  	}
  1289  	selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
  1290  	if !selected {
  1291  		val = Value{}
  1292  	}
  1293  	return
  1294  }
  1295  
  1296  // Send sends x on the channel v.
  1297  // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
  1298  // As in Go, x's value must be assignable to the channel's element type.
  1299  func (v Value) Send(x Value) {
  1300  	v.mustBe(Chan)
  1301  	v.mustBeExported()
  1302  	v.send(x, false)
  1303  }
  1304  
  1305  // internal send, possibly non-blocking.
  1306  // v is known to be a channel.
  1307  func (v Value) send(x Value, nb bool) (selected bool) {
  1308  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1309  	if ChanDir(tt.dir)&SendDir == 0 {
  1310  		panic("reflect: send on recv-only channel")
  1311  	}
  1312  	x.mustBeExported()
  1313  	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
  1314  	var p unsafe.Pointer
  1315  	if x.flag&flagIndir != 0 {
  1316  		p = x.ptr
  1317  	} else {
  1318  		p = unsafe.Pointer(&x.ptr)
  1319  	}
  1320  	return chansend(v.typ, v.pointer(), p, nb)
  1321  }
  1322  
  1323  // Set assigns x to the value v.
  1324  // It panics if CanSet returns false.
  1325  // As in Go, x's value must be assignable to v's type.
  1326  func (v Value) Set(x Value) {
  1327  	v.mustBeAssignable()
  1328  	x.mustBeExported() // do not let unexported x leak
  1329  	var target unsafe.Pointer
  1330  	if v.kind() == Interface {
  1331  		target = v.ptr
  1332  	}
  1333  	x = x.assignTo("reflect.Set", v.typ, target)
  1334  	if x.flag&flagIndir != 0 {
  1335  		typedmemmove(v.typ, v.ptr, x.ptr)
  1336  	} else {
  1337  		*(*unsafe.Pointer)(v.ptr) = x.ptr
  1338  	}
  1339  }
  1340  
  1341  // SetBool sets v's underlying value.
  1342  // It panics if v's Kind is not Bool or if CanSet() is false.
  1343  func (v Value) SetBool(x bool) {
  1344  	v.mustBeAssignable()
  1345  	v.mustBe(Bool)
  1346  	*(*bool)(v.ptr) = x
  1347  }
  1348  
  1349  // SetBytes sets v's underlying value.
  1350  // It panics if v's underlying value is not a slice of bytes.
  1351  func (v Value) SetBytes(x []byte) {
  1352  	v.mustBeAssignable()
  1353  	v.mustBe(Slice)
  1354  	if v.typ.Elem().Kind() != Uint8 {
  1355  		panic("reflect.Value.SetBytes of non-byte slice")
  1356  	}
  1357  	*(*[]byte)(v.ptr) = x
  1358  }
  1359  
  1360  // setRunes sets v's underlying value.
  1361  // It panics if v's underlying value is not a slice of runes (int32s).
  1362  func (v Value) setRunes(x []rune) {
  1363  	v.mustBeAssignable()
  1364  	v.mustBe(Slice)
  1365  	if v.typ.Elem().Kind() != Int32 {
  1366  		panic("reflect.Value.setRunes of non-rune slice")
  1367  	}
  1368  	*(*[]rune)(v.ptr) = x
  1369  }
  1370  
  1371  // SetComplex sets v's underlying value to x.
  1372  // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
  1373  func (v Value) SetComplex(x complex128) {
  1374  	v.mustBeAssignable()
  1375  	switch k := v.kind(); k {
  1376  	default:
  1377  		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
  1378  	case Complex64:
  1379  		*(*complex64)(v.ptr) = complex64(x)
  1380  	case Complex128:
  1381  		*(*complex128)(v.ptr) = x
  1382  	}
  1383  }
  1384  
  1385  // SetFloat sets v's underlying value to x.
  1386  // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
  1387  func (v Value) SetFloat(x float64) {
  1388  	v.mustBeAssignable()
  1389  	switch k := v.kind(); k {
  1390  	default:
  1391  		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
  1392  	case Float32:
  1393  		*(*float32)(v.ptr) = float32(x)
  1394  	case Float64:
  1395  		*(*float64)(v.ptr) = x
  1396  	}
  1397  }
  1398  
  1399  // SetInt sets v's underlying value to x.
  1400  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
  1401  func (v Value) SetInt(x int64) {
  1402  	v.mustBeAssignable()
  1403  	switch k := v.kind(); k {
  1404  	default:
  1405  		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
  1406  	case Int:
  1407  		*(*int)(v.ptr) = int(x)
  1408  	case Int8:
  1409  		*(*int8)(v.ptr) = int8(x)
  1410  	case Int16:
  1411  		*(*int16)(v.ptr) = int16(x)
  1412  	case Int32:
  1413  		*(*int32)(v.ptr) = int32(x)
  1414  	case Int64:
  1415  		*(*int64)(v.ptr) = x
  1416  	}
  1417  }
  1418  
  1419  // SetLen sets v's length to n.
  1420  // It panics if v's Kind is not Slice or if n is negative or
  1421  // greater than the capacity of the slice.
  1422  func (v Value) SetLen(n int) {
  1423  	v.mustBeAssignable()
  1424  	v.mustBe(Slice)
  1425  	s := (*sliceHeader)(v.ptr)
  1426  	if uint(n) > uint(s.Cap) {
  1427  		panic("reflect: slice length out of range in SetLen")
  1428  	}
  1429  	s.Len = n
  1430  }
  1431  
  1432  // SetCap sets v's capacity to n.
  1433  // It panics if v's Kind is not Slice or if n is smaller than the length or
  1434  // greater than the capacity of the slice.
  1435  func (v Value) SetCap(n int) {
  1436  	v.mustBeAssignable()
  1437  	v.mustBe(Slice)
  1438  	s := (*sliceHeader)(v.ptr)
  1439  	if n < s.Len || n > s.Cap {
  1440  		panic("reflect: slice capacity out of range in SetCap")
  1441  	}
  1442  	s.Cap = n
  1443  }
  1444  
  1445  // SetMapIndex sets the value associated with key in the map v to val.
  1446  // It panics if v's Kind is not Map.
  1447  // If val is the zero Value, SetMapIndex deletes the key from the map.
  1448  // Otherwise if v holds a nil map, SetMapIndex will panic.
  1449  // As in Go, key's value must be assignable to the map's key type,
  1450  // and val's value must be assignable to the map's value type.
  1451  func (v Value) SetMapIndex(key, val Value) {
  1452  	v.mustBe(Map)
  1453  	v.mustBeExported()
  1454  	key.mustBeExported()
  1455  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1456  	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
  1457  	var k unsafe.Pointer
  1458  	if key.flag&flagIndir != 0 {
  1459  		k = key.ptr
  1460  	} else {
  1461  		k = unsafe.Pointer(&key.ptr)
  1462  	}
  1463  	if val.typ == nil {
  1464  		mapdelete(v.typ, v.pointer(), k)
  1465  		return
  1466  	}
  1467  	val.mustBeExported()
  1468  	val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  1469  	var e unsafe.Pointer
  1470  	if val.flag&flagIndir != 0 {
  1471  		e = val.ptr
  1472  	} else {
  1473  		e = unsafe.Pointer(&val.ptr)
  1474  	}
  1475  	mapassign(v.typ, v.pointer(), k, e)
  1476  }
  1477  
  1478  // SetUint sets v's underlying value to x.
  1479  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
  1480  func (v Value) SetUint(x uint64) {
  1481  	v.mustBeAssignable()
  1482  	switch k := v.kind(); k {
  1483  	default:
  1484  		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
  1485  	case Uint:
  1486  		*(*uint)(v.ptr) = uint(x)
  1487  	case Uint8:
  1488  		*(*uint8)(v.ptr) = uint8(x)
  1489  	case Uint16:
  1490  		*(*uint16)(v.ptr) = uint16(x)
  1491  	case Uint32:
  1492  		*(*uint32)(v.ptr) = uint32(x)
  1493  	case Uint64:
  1494  		*(*uint64)(v.ptr) = x
  1495  	case Uintptr:
  1496  		*(*uintptr)(v.ptr) = uintptr(x)
  1497  	}
  1498  }
  1499  
  1500  // SetPointer sets the unsafe.Pointer value v to x.
  1501  // It panics if v's Kind is not UnsafePointer.
  1502  func (v Value) SetPointer(x unsafe.Pointer) {
  1503  	v.mustBeAssignable()
  1504  	v.mustBe(UnsafePointer)
  1505  	*(*unsafe.Pointer)(v.ptr) = x
  1506  }
  1507  
  1508  // SetString sets v's underlying value to x.
  1509  // It panics if v's Kind is not String or if CanSet() is false.
  1510  func (v Value) SetString(x string) {
  1511  	v.mustBeAssignable()
  1512  	v.mustBe(String)
  1513  	*(*string)(v.ptr) = x
  1514  }
  1515  
  1516  // Slice returns v[i:j].
  1517  // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
  1518  // or if the indexes are out of bounds.
  1519  func (v Value) Slice(i, j int) Value {
  1520  	var (
  1521  		cap  int
  1522  		typ  *sliceType
  1523  		base unsafe.Pointer
  1524  	)
  1525  	switch kind := v.kind(); kind {
  1526  	default:
  1527  		panic(&ValueError{"reflect.Value.Slice", v.kind()})
  1528  
  1529  	case Array:
  1530  		if v.flag&flagAddr == 0 {
  1531  			panic("reflect.Value.Slice: slice of unaddressable array")
  1532  		}
  1533  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1534  		cap = int(tt.len)
  1535  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1536  		base = v.ptr
  1537  
  1538  	case Slice:
  1539  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1540  		s := (*sliceHeader)(v.ptr)
  1541  		base = s.Data
  1542  		cap = s.Cap
  1543  
  1544  	case String:
  1545  		s := (*stringHeader)(v.ptr)
  1546  		if i < 0 || j < i || j > s.Len {
  1547  			panic("reflect.Value.Slice: string slice index out of bounds")
  1548  		}
  1549  		t := stringHeader{arrayAt(s.Data, i, 1), j - i}
  1550  		return Value{v.typ, unsafe.Pointer(&t), v.flag}
  1551  	}
  1552  
  1553  	if i < 0 || j < i || j > cap {
  1554  		panic("reflect.Value.Slice: slice index out of bounds")
  1555  	}
  1556  
  1557  	// Declare slice so that gc can see the base pointer in it.
  1558  	var x []unsafe.Pointer
  1559  
  1560  	// Reinterpret as *sliceHeader to edit.
  1561  	s := (*sliceHeader)(unsafe.Pointer(&x))
  1562  	s.Len = j - i
  1563  	s.Cap = cap - i
  1564  	if cap-i > 0 {
  1565  		s.Data = arrayAt(base, i, typ.elem.Size())
  1566  	} else {
  1567  		// do not advance pointer, to avoid pointing beyond end of slice
  1568  		s.Data = base
  1569  	}
  1570  
  1571  	fl := v.flag&flagRO | flagIndir | flag(Slice)
  1572  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1573  }
  1574  
  1575  // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
  1576  // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
  1577  // or if the indexes are out of bounds.
  1578  func (v Value) Slice3(i, j, k int) Value {
  1579  	var (
  1580  		cap  int
  1581  		typ  *sliceType
  1582  		base unsafe.Pointer
  1583  	)
  1584  	switch kind := v.kind(); kind {
  1585  	default:
  1586  		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
  1587  
  1588  	case Array:
  1589  		if v.flag&flagAddr == 0 {
  1590  			panic("reflect.Value.Slice3: slice of unaddressable array")
  1591  		}
  1592  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1593  		cap = int(tt.len)
  1594  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1595  		base = v.ptr
  1596  
  1597  	case Slice:
  1598  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1599  		s := (*sliceHeader)(v.ptr)
  1600  		base = s.Data
  1601  		cap = s.Cap
  1602  	}
  1603  
  1604  	if i < 0 || j < i || k < j || k > cap {
  1605  		panic("reflect.Value.Slice3: slice index out of bounds")
  1606  	}
  1607  
  1608  	// Declare slice so that the garbage collector
  1609  	// can see the base pointer in it.
  1610  	var x []unsafe.Pointer
  1611  
  1612  	// Reinterpret as *sliceHeader to edit.
  1613  	s := (*sliceHeader)(unsafe.Pointer(&x))
  1614  	s.Len = j - i
  1615  	s.Cap = k - i
  1616  	if k-i > 0 {
  1617  		s.Data = arrayAt(base, i, typ.elem.Size())
  1618  	} else {
  1619  		// do not advance pointer, to avoid pointing beyond end of slice
  1620  		s.Data = base
  1621  	}
  1622  
  1623  	fl := v.flag&flagRO | flagIndir | flag(Slice)
  1624  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1625  }
  1626  
  1627  // String returns the string v's underlying value, as a string.
  1628  // String is a special case because of Go's String method convention.
  1629  // Unlike the other getters, it does not panic if v's Kind is not String.
  1630  // Instead, it returns a string of the form "<T value>" where T is v's type.
  1631  // The fmt package treats Values specially. It does not call their String
  1632  // method implicitly but instead prints the concrete values they hold.
  1633  func (v Value) String() string {
  1634  	switch k := v.kind(); k {
  1635  	case Invalid:
  1636  		return "<invalid Value>"
  1637  	case String:
  1638  		return *(*string)(v.ptr)
  1639  	}
  1640  	// If you call String on a reflect.Value of other type, it's better to
  1641  	// print something than to panic. Useful in debugging.
  1642  	return "<" + v.Type().String() + " Value>"
  1643  }
  1644  
  1645  // TryRecv attempts to receive a value from the channel v but will not block.
  1646  // It panics if v's Kind is not Chan.
  1647  // If the receive delivers a value, x is the transferred value and ok is true.
  1648  // If the receive cannot finish without blocking, x is the zero Value and ok is false.
  1649  // If the channel is closed, x is the zero value for the channel's element type and ok is false.
  1650  func (v Value) TryRecv() (x Value, ok bool) {
  1651  	v.mustBe(Chan)
  1652  	v.mustBeExported()
  1653  	return v.recv(true)
  1654  }
  1655  
  1656  // TrySend attempts to send x on the channel v but will not block.
  1657  // It panics if v's Kind is not Chan.
  1658  // It reports whether the value was sent.
  1659  // As in Go, x's value must be assignable to the channel's element type.
  1660  func (v Value) TrySend(x Value) bool {
  1661  	v.mustBe(Chan)
  1662  	v.mustBeExported()
  1663  	return v.send(x, true)
  1664  }
  1665  
  1666  // Type returns v's type.
  1667  func (v Value) Type() Type {
  1668  	f := v.flag
  1669  	if f == 0 {
  1670  		panic(&ValueError{"reflect.Value.Type", Invalid})
  1671  	}
  1672  	if f&flagMethod == 0 {
  1673  		// Easy case
  1674  		return v.typ
  1675  	}
  1676  
  1677  	// Method value.
  1678  	// v.typ describes the receiver, not the method type.
  1679  	i := int(v.flag) >> flagMethodShift
  1680  	if v.typ.Kind() == Interface {
  1681  		// Method on interface.
  1682  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
  1683  		if uint(i) >= uint(len(tt.methods)) {
  1684  			panic("reflect: internal error: invalid method index")
  1685  		}
  1686  		m := &tt.methods[i]
  1687  		return v.typ.typeOff(m.typ)
  1688  	}
  1689  	// Method on concrete type.
  1690  	ut := v.typ.uncommon()
  1691  	if ut == nil || uint(i) >= uint(ut.mcount) {
  1692  		panic("reflect: internal error: invalid method index")
  1693  	}
  1694  	m := ut.methods()[i]
  1695  	return v.typ.typeOff(m.mtyp)
  1696  }
  1697  
  1698  // Uint returns v's underlying value, as a uint64.
  1699  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1700  func (v Value) Uint() uint64 {
  1701  	k := v.kind()
  1702  	p := v.ptr
  1703  	switch k {
  1704  	case Uint:
  1705  		return uint64(*(*uint)(p))
  1706  	case Uint8:
  1707  		return uint64(*(*uint8)(p))
  1708  	case Uint16:
  1709  		return uint64(*(*uint16)(p))
  1710  	case Uint32:
  1711  		return uint64(*(*uint32)(p))
  1712  	case Uint64:
  1713  		return *(*uint64)(p)
  1714  	case Uintptr:
  1715  		return uint64(*(*uintptr)(p))
  1716  	}
  1717  	panic(&ValueError{"reflect.Value.Uint", v.kind()})
  1718  }
  1719  
  1720  // UnsafeAddr returns a pointer to v's data.
  1721  // It is for advanced clients that also import the "unsafe" package.
  1722  // It panics if v is not addressable.
  1723  func (v Value) UnsafeAddr() uintptr {
  1724  	// TODO: deprecate
  1725  	if v.typ == nil {
  1726  		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
  1727  	}
  1728  	if v.flag&flagAddr == 0 {
  1729  		panic("reflect.Value.UnsafeAddr of unaddressable value")
  1730  	}
  1731  	return uintptr(v.ptr)
  1732  }
  1733  
  1734  // StringHeader is the runtime representation of a string.
  1735  // It cannot be used safely or portably and its representation may
  1736  // change in a later release.
  1737  // Moreover, the Data field is not sufficient to guarantee the data
  1738  // it references will not be garbage collected, so programs must keep
  1739  // a separate, correctly typed pointer to the underlying data.
  1740  type StringHeader struct {
  1741  	Data uintptr
  1742  	Len  int
  1743  }
  1744  
  1745  // stringHeader is a safe version of StringHeader used within this package.
  1746  type stringHeader struct {
  1747  	Data unsafe.Pointer
  1748  	Len  int
  1749  }
  1750  
  1751  // SliceHeader is the runtime representation of a slice.
  1752  // It cannot be used safely or portably and its representation may
  1753  // change in a later release.
  1754  // Moreover, the Data field is not sufficient to guarantee the data
  1755  // it references will not be garbage collected, so programs must keep
  1756  // a separate, correctly typed pointer to the underlying data.
  1757  type SliceHeader struct {
  1758  	Data uintptr
  1759  	Len  int
  1760  	Cap  int
  1761  }
  1762  
  1763  // sliceHeader is a safe version of SliceHeader used within this package.
  1764  type sliceHeader struct {
  1765  	Data unsafe.Pointer
  1766  	Len  int
  1767  	Cap  int
  1768  }
  1769  
  1770  func typesMustMatch(what string, t1, t2 Type) {
  1771  	if t1 != t2 {
  1772  		panic(what + ": " + t1.String() + " != " + t2.String())
  1773  	}
  1774  }
  1775  
  1776  // arrayAt returns the i-th element of p, a C-array whose elements are
  1777  // eltSize wide (in bytes).
  1778  func arrayAt(p unsafe.Pointer, i int, eltSize uintptr) unsafe.Pointer {
  1779  	return unsafe.Pointer(uintptr(p) + uintptr(i)*eltSize)
  1780  }
  1781  
  1782  // grow grows the slice s so that it can hold extra more values, allocating
  1783  // more capacity if needed. It also returns the old and new slice lengths.
  1784  func grow(s Value, extra int) (Value, int, int) {
  1785  	i0 := s.Len()
  1786  	i1 := i0 + extra
  1787  	if i1 < i0 {
  1788  		panic("reflect.Append: slice overflow")
  1789  	}
  1790  	m := s.Cap()
  1791  	if i1 <= m {
  1792  		return s.Slice(0, i1), i0, i1
  1793  	}
  1794  	if m == 0 {
  1795  		m = extra
  1796  	} else {
  1797  		for m < i1 {
  1798  			if i0 < 1024 {
  1799  				m += m
  1800  			} else {
  1801  				m += m / 4
  1802  			}
  1803  		}
  1804  	}
  1805  	t := MakeSlice(s.Type(), i1, m)
  1806  	Copy(t, s)
  1807  	return t, i0, i1
  1808  }
  1809  
  1810  // Append appends the values x to a slice s and returns the resulting slice.
  1811  // As in Go, each x's value must be assignable to the slice's element type.
  1812  func Append(s Value, x ...Value) Value {
  1813  	s.mustBe(Slice)
  1814  	s, i0, i1 := grow(s, len(x))
  1815  	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
  1816  		s.Index(i).Set(x[j])
  1817  	}
  1818  	return s
  1819  }
  1820  
  1821  // AppendSlice appends a slice t to a slice s and returns the resulting slice.
  1822  // The slices s and t must have the same element type.
  1823  func AppendSlice(s, t Value) Value {
  1824  	s.mustBe(Slice)
  1825  	t.mustBe(Slice)
  1826  	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
  1827  	s, i0, i1 := grow(s, t.Len())
  1828  	Copy(s.Slice(i0, i1), t)
  1829  	return s
  1830  }
  1831  
  1832  // Copy copies the contents of src into dst until either
  1833  // dst has been filled or src has been exhausted.
  1834  // It returns the number of elements copied.
  1835  // Dst and src each must have kind Slice or Array, and
  1836  // dst and src must have the same element type.
  1837  func Copy(dst, src Value) int {
  1838  	dk := dst.kind()
  1839  	if dk != Array && dk != Slice {
  1840  		panic(&ValueError{"reflect.Copy", dk})
  1841  	}
  1842  	if dk == Array {
  1843  		dst.mustBeAssignable()
  1844  	}
  1845  	dst.mustBeExported()
  1846  
  1847  	sk := src.kind()
  1848  	if sk != Array && sk != Slice {
  1849  		panic(&ValueError{"reflect.Copy", sk})
  1850  	}
  1851  	src.mustBeExported()
  1852  
  1853  	de := dst.typ.Elem()
  1854  	se := src.typ.Elem()
  1855  	typesMustMatch("reflect.Copy", de, se)
  1856  
  1857  	var ds, ss sliceHeader
  1858  	if dk == Array {
  1859  		ds.Data = dst.ptr
  1860  		ds.Len = dst.Len()
  1861  		ds.Cap = ds.Len
  1862  	} else {
  1863  		ds = *(*sliceHeader)(dst.ptr)
  1864  	}
  1865  	if sk == Array {
  1866  		ss.Data = src.ptr
  1867  		ss.Len = src.Len()
  1868  		ss.Cap = ss.Len
  1869  	} else {
  1870  		ss = *(*sliceHeader)(src.ptr)
  1871  	}
  1872  
  1873  	return typedslicecopy(de.common(), ds, ss)
  1874  }
  1875  
  1876  // A runtimeSelect is a single case passed to rselect.
  1877  // This must match ../runtime/select.go:/runtimeSelect
  1878  type runtimeSelect struct {
  1879  	dir SelectDir      // SelectSend, SelectRecv or SelectDefault
  1880  	typ *rtype         // channel type
  1881  	ch  unsafe.Pointer // channel
  1882  	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
  1883  }
  1884  
  1885  // rselect runs a select. It returns the index of the chosen case.
  1886  // If the case was a receive, val is filled in with the received value.
  1887  // The conventional OK bool indicates whether the receive corresponds
  1888  // to a sent value.
  1889  //go:noescape
  1890  func rselect([]runtimeSelect) (chosen int, recvOK bool)
  1891  
  1892  // A SelectDir describes the communication direction of a select case.
  1893  type SelectDir int
  1894  
  1895  // NOTE: These values must match ../runtime/select.go:/selectDir.
  1896  
  1897  const (
  1898  	_             SelectDir = iota
  1899  	SelectSend              // case Chan <- Send
  1900  	SelectRecv              // case <-Chan:
  1901  	SelectDefault           // default
  1902  )
  1903  
  1904  // A SelectCase describes a single case in a select operation.
  1905  // The kind of case depends on Dir, the communication direction.
  1906  //
  1907  // If Dir is SelectDefault, the case represents a default case.
  1908  // Chan and Send must be zero Values.
  1909  //
  1910  // If Dir is SelectSend, the case represents a send operation.
  1911  // Normally Chan's underlying value must be a channel, and Send's underlying value must be
  1912  // assignable to the channel's element type. As a special case, if Chan is a zero Value,
  1913  // then the case is ignored, and the field Send will also be ignored and may be either zero
  1914  // or non-zero.
  1915  //
  1916  // If Dir is SelectRecv, the case represents a receive operation.
  1917  // Normally Chan's underlying value must be a channel and Send must be a zero Value.
  1918  // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
  1919  // When a receive operation is selected, the received Value is returned by Select.
  1920  //
  1921  type SelectCase struct {
  1922  	Dir  SelectDir // direction of case
  1923  	Chan Value     // channel to use (for send or receive)
  1924  	Send Value     // value to send (for send)
  1925  }
  1926  
  1927  // Select executes a select operation described by the list of cases.
  1928  // Like the Go select statement, it blocks until at least one of the cases
  1929  // can proceed, makes a uniform pseudo-random choice,
  1930  // and then executes that case. It returns the index of the chosen case
  1931  // and, if that case was a receive operation, the value received and a
  1932  // boolean indicating whether the value corresponds to a send on the channel
  1933  // (as opposed to a zero value received because the channel is closed).
  1934  func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
  1935  	// NOTE: Do not trust that caller is not modifying cases data underfoot.
  1936  	// The range is safe because the caller cannot modify our copy of the len
  1937  	// and each iteration makes its own copy of the value c.
  1938  	runcases := make([]runtimeSelect, len(cases))
  1939  	haveDefault := false
  1940  	for i, c := range cases {
  1941  		rc := &runcases[i]
  1942  		rc.dir = c.Dir
  1943  		switch c.Dir {
  1944  		default:
  1945  			panic("reflect.Select: invalid Dir")
  1946  
  1947  		case SelectDefault: // default
  1948  			if haveDefault {
  1949  				panic("reflect.Select: multiple default cases")
  1950  			}
  1951  			haveDefault = true
  1952  			if c.Chan.IsValid() {
  1953  				panic("reflect.Select: default case has Chan value")
  1954  			}
  1955  			if c.Send.IsValid() {
  1956  				panic("reflect.Select: default case has Send value")
  1957  			}
  1958  
  1959  		case SelectSend:
  1960  			ch := c.Chan
  1961  			if !ch.IsValid() {
  1962  				break
  1963  			}
  1964  			ch.mustBe(Chan)
  1965  			ch.mustBeExported()
  1966  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  1967  			if ChanDir(tt.dir)&SendDir == 0 {
  1968  				panic("reflect.Select: SendDir case using recv-only channel")
  1969  			}
  1970  			rc.ch = ch.pointer()
  1971  			rc.typ = &tt.rtype
  1972  			v := c.Send
  1973  			if !v.IsValid() {
  1974  				panic("reflect.Select: SendDir case missing Send value")
  1975  			}
  1976  			v.mustBeExported()
  1977  			v = v.assignTo("reflect.Select", tt.elem, nil)
  1978  			if v.flag&flagIndir != 0 {
  1979  				rc.val = v.ptr
  1980  			} else {
  1981  				rc.val = unsafe.Pointer(&v.ptr)
  1982  			}
  1983  
  1984  		case SelectRecv:
  1985  			if c.Send.IsValid() {
  1986  				panic("reflect.Select: RecvDir case has Send value")
  1987  			}
  1988  			ch := c.Chan
  1989  			if !ch.IsValid() {
  1990  				break
  1991  			}
  1992  			ch.mustBe(Chan)
  1993  			ch.mustBeExported()
  1994  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  1995  			if ChanDir(tt.dir)&RecvDir == 0 {
  1996  				panic("reflect.Select: RecvDir case using send-only channel")
  1997  			}
  1998  			rc.ch = ch.pointer()
  1999  			rc.typ = &tt.rtype
  2000  			rc.val = unsafe_New(tt.elem)
  2001  		}
  2002  	}
  2003  
  2004  	chosen, recvOK = rselect(runcases)
  2005  	if runcases[chosen].dir == SelectRecv {
  2006  		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
  2007  		t := tt.elem
  2008  		p := runcases[chosen].val
  2009  		fl := flag(t.Kind())
  2010  		if ifaceIndir(t) {
  2011  			recv = Value{t, p, fl | flagIndir}
  2012  		} else {
  2013  			recv = Value{t, *(*unsafe.Pointer)(p), fl}
  2014  		}
  2015  	}
  2016  	return chosen, recv, recvOK
  2017  }
  2018  
  2019  /*
  2020   * constructors
  2021   */
  2022  
  2023  // implemented in package runtime
  2024  func unsafe_New(*rtype) unsafe.Pointer
  2025  func unsafe_NewArray(*rtype, int) unsafe.Pointer
  2026  
  2027  // MakeSlice creates a new zero-initialized slice value
  2028  // for the specified slice type, length, and capacity.
  2029  func MakeSlice(typ Type, len, cap int) Value {
  2030  	if typ.Kind() != Slice {
  2031  		panic("reflect.MakeSlice of non-slice type")
  2032  	}
  2033  	if len < 0 {
  2034  		panic("reflect.MakeSlice: negative len")
  2035  	}
  2036  	if cap < 0 {
  2037  		panic("reflect.MakeSlice: negative cap")
  2038  	}
  2039  	if len > cap {
  2040  		panic("reflect.MakeSlice: len > cap")
  2041  	}
  2042  
  2043  	s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
  2044  	return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)}
  2045  }
  2046  
  2047  // MakeChan creates a new channel with the specified type and buffer size.
  2048  func MakeChan(typ Type, buffer int) Value {
  2049  	if typ.Kind() != Chan {
  2050  		panic("reflect.MakeChan of non-chan type")
  2051  	}
  2052  	if buffer < 0 {
  2053  		panic("reflect.MakeChan: negative buffer size")
  2054  	}
  2055  	if typ.ChanDir() != BothDir {
  2056  		panic("reflect.MakeChan: unidirectional channel type")
  2057  	}
  2058  	ch := makechan(typ.(*rtype), uint64(buffer))
  2059  	return Value{typ.common(), ch, flag(Chan)}
  2060  }
  2061  
  2062  // MakeMap creates a new map of the specified type.
  2063  func MakeMap(typ Type) Value {
  2064  	if typ.Kind() != Map {
  2065  		panic("reflect.MakeMap of non-map type")
  2066  	}
  2067  	m := makemap(typ.(*rtype))
  2068  	return Value{typ.common(), m, flag(Map)}
  2069  }
  2070  
  2071  // Indirect returns the value that v points to.
  2072  // If v is a nil pointer, Indirect returns a zero Value.
  2073  // If v is not a pointer, Indirect returns v.
  2074  func Indirect(v Value) Value {
  2075  	if v.Kind() != Ptr {
  2076  		return v
  2077  	}
  2078  	return v.Elem()
  2079  }
  2080  
  2081  // ValueOf returns a new Value initialized to the concrete value
  2082  // stored in the interface i. ValueOf(nil) returns the zero Value.
  2083  func ValueOf(i interface{}) Value {
  2084  	if i == nil {
  2085  		return Value{}
  2086  	}
  2087  
  2088  	// TODO: Maybe allow contents of a Value to live on the stack.
  2089  	// For now we make the contents always escape to the heap. It
  2090  	// makes life easier in a few places (see chanrecv/mapassign
  2091  	// comment below).
  2092  	escapes(i)
  2093  
  2094  	return unpackEface(i)
  2095  }
  2096  
  2097  // Zero returns a Value representing the zero value for the specified type.
  2098  // The result is different from the zero value of the Value struct,
  2099  // which represents no value at all.
  2100  // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
  2101  // The returned value is neither addressable nor settable.
  2102  func Zero(typ Type) Value {
  2103  	if typ == nil {
  2104  		panic("reflect: Zero(nil)")
  2105  	}
  2106  	t := typ.common()
  2107  	fl := flag(t.Kind())
  2108  	if ifaceIndir(t) {
  2109  		return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
  2110  	}
  2111  	return Value{t, nil, fl}
  2112  }
  2113  
  2114  // New returns a Value representing a pointer to a new zero value
  2115  // for the specified type. That is, the returned Value's Type is PtrTo(typ).
  2116  func New(typ Type) Value {
  2117  	if typ == nil {
  2118  		panic("reflect: New(nil)")
  2119  	}
  2120  	ptr := unsafe_New(typ.(*rtype))
  2121  	fl := flag(Ptr)
  2122  	return Value{typ.common().ptrTo(), ptr, fl}
  2123  }
  2124  
  2125  // NewAt returns a Value representing a pointer to a value of the
  2126  // specified type, using p as that pointer.
  2127  func NewAt(typ Type, p unsafe.Pointer) Value {
  2128  	fl := flag(Ptr)
  2129  	return Value{typ.common().ptrTo(), p, fl}
  2130  }
  2131  
  2132  // assignTo returns a value v that can be assigned directly to typ.
  2133  // It panics if v is not assignable to typ.
  2134  // For a conversion to an interface type, target is a suggested scratch space to use.
  2135  func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
  2136  	if v.flag&flagMethod != 0 {
  2137  		v = makeMethodValue(context, v)
  2138  	}
  2139  
  2140  	switch {
  2141  	case directlyAssignable(dst, v.typ):
  2142  		// Overwrite type so that they match.
  2143  		// Same memory layout, so no harm done.
  2144  		v.typ = dst
  2145  		fl := v.flag & (flagRO | flagAddr | flagIndir)
  2146  		fl |= flag(dst.Kind())
  2147  		return Value{dst, v.ptr, fl}
  2148  
  2149  	case implements(dst, v.typ):
  2150  		if target == nil {
  2151  			target = unsafe_New(dst)
  2152  		}
  2153  		x := valueInterface(v, false)
  2154  		if dst.NumMethod() == 0 {
  2155  			*(*interface{})(target) = x
  2156  		} else {
  2157  			ifaceE2I(dst, x, target)
  2158  		}
  2159  		return Value{dst, target, flagIndir | flag(Interface)}
  2160  	}
  2161  
  2162  	// Failed.
  2163  	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
  2164  }
  2165  
  2166  // Convert returns the value v converted to type t.
  2167  // If the usual Go conversion rules do not allow conversion
  2168  // of the value v to type t, Convert panics.
  2169  func (v Value) Convert(t Type) Value {
  2170  	if v.flag&flagMethod != 0 {
  2171  		v = makeMethodValue("Convert", v)
  2172  	}
  2173  	op := convertOp(t.common(), v.typ)
  2174  	if op == nil {
  2175  		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  2176  	}
  2177  	return op(v, t)
  2178  }
  2179  
  2180  // convertOp returns the function to convert a value of type src
  2181  // to a value of type dst. If the conversion is illegal, convertOp returns nil.
  2182  func convertOp(dst, src *rtype) func(Value, Type) Value {
  2183  	switch src.Kind() {
  2184  	case Int, Int8, Int16, Int32, Int64:
  2185  		switch dst.Kind() {
  2186  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2187  			return cvtInt
  2188  		case Float32, Float64:
  2189  			return cvtIntFloat
  2190  		case String:
  2191  			return cvtIntString
  2192  		}
  2193  
  2194  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2195  		switch dst.Kind() {
  2196  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2197  			return cvtUint
  2198  		case Float32, Float64:
  2199  			return cvtUintFloat
  2200  		case String:
  2201  			return cvtUintString
  2202  		}
  2203  
  2204  	case Float32, Float64:
  2205  		switch dst.Kind() {
  2206  		case Int, Int8, Int16, Int32, Int64:
  2207  			return cvtFloatInt
  2208  		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2209  			return cvtFloatUint
  2210  		case Float32, Float64:
  2211  			return cvtFloat
  2212  		}
  2213  
  2214  	case Complex64, Complex128:
  2215  		switch dst.Kind() {
  2216  		case Complex64, Complex128:
  2217  			return cvtComplex
  2218  		}
  2219  
  2220  	case String:
  2221  		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
  2222  			switch dst.Elem().Kind() {
  2223  			case Uint8:
  2224  				return cvtStringBytes
  2225  			case Int32:
  2226  				return cvtStringRunes
  2227  			}
  2228  		}
  2229  
  2230  	case Slice:
  2231  		if dst.Kind() == String && src.Elem().PkgPath() == "" {
  2232  			switch src.Elem().Kind() {
  2233  			case Uint8:
  2234  				return cvtBytesString
  2235  			case Int32:
  2236  				return cvtRunesString
  2237  			}
  2238  		}
  2239  	}
  2240  
  2241  	// dst and src have same underlying type.
  2242  	if haveIdenticalUnderlyingType(dst, src) {
  2243  		return cvtDirect
  2244  	}
  2245  
  2246  	// dst and src are unnamed pointer types with same underlying base type.
  2247  	if dst.Kind() == Ptr && dst.Name() == "" &&
  2248  		src.Kind() == Ptr && src.Name() == "" &&
  2249  		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
  2250  		return cvtDirect
  2251  	}
  2252  
  2253  	if implements(dst, src) {
  2254  		if src.Kind() == Interface {
  2255  			return cvtI2I
  2256  		}
  2257  		return cvtT2I
  2258  	}
  2259  
  2260  	return nil
  2261  }
  2262  
  2263  // makeInt returns a Value of type t equal to bits (possibly truncated),
  2264  // where t is a signed or unsigned int type.
  2265  func makeInt(f flag, bits uint64, t Type) Value {
  2266  	typ := t.common()
  2267  	ptr := unsafe_New(typ)
  2268  	switch typ.size {
  2269  	case 1:
  2270  		*(*uint8)(ptr) = uint8(bits)
  2271  	case 2:
  2272  		*(*uint16)(ptr) = uint16(bits)
  2273  	case 4:
  2274  		*(*uint32)(ptr) = uint32(bits)
  2275  	case 8:
  2276  		*(*uint64)(ptr) = bits
  2277  	}
  2278  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2279  }
  2280  
  2281  // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
  2282  // where t is a float32 or float64 type.
  2283  func makeFloat(f flag, v float64, t Type) Value {
  2284  	typ := t.common()
  2285  	ptr := unsafe_New(typ)
  2286  	switch typ.size {
  2287  	case 4:
  2288  		*(*float32)(ptr) = float32(v)
  2289  	case 8:
  2290  		*(*float64)(ptr) = v
  2291  	}
  2292  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2293  }
  2294  
  2295  // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
  2296  // where t is a complex64 or complex128 type.
  2297  func makeComplex(f flag, v complex128, t Type) Value {
  2298  	typ := t.common()
  2299  	ptr := unsafe_New(typ)
  2300  	switch typ.size {
  2301  	case 8:
  2302  		*(*complex64)(ptr) = complex64(v)
  2303  	case 16:
  2304  		*(*complex128)(ptr) = v
  2305  	}
  2306  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2307  }
  2308  
  2309  func makeString(f flag, v string, t Type) Value {
  2310  	ret := New(t).Elem()
  2311  	ret.SetString(v)
  2312  	ret.flag = ret.flag&^flagAddr | f
  2313  	return ret
  2314  }
  2315  
  2316  func makeBytes(f flag, v []byte, t Type) Value {
  2317  	ret := New(t).Elem()
  2318  	ret.SetBytes(v)
  2319  	ret.flag = ret.flag&^flagAddr | f
  2320  	return ret
  2321  }
  2322  
  2323  func makeRunes(f flag, v []rune, t Type) Value {
  2324  	ret := New(t).Elem()
  2325  	ret.setRunes(v)
  2326  	ret.flag = ret.flag&^flagAddr | f
  2327  	return ret
  2328  }
  2329  
  2330  // These conversion functions are returned by convertOp
  2331  // for classes of conversions. For example, the first function, cvtInt,
  2332  // takes any value v of signed int type and returns the value converted
  2333  // to type t, where t is any signed or unsigned int type.
  2334  
  2335  // convertOp: intXX -> [u]intXX
  2336  func cvtInt(v Value, t Type) Value {
  2337  	return makeInt(v.flag&flagRO, uint64(v.Int()), t)
  2338  }
  2339  
  2340  // convertOp: uintXX -> [u]intXX
  2341  func cvtUint(v Value, t Type) Value {
  2342  	return makeInt(v.flag&flagRO, v.Uint(), t)
  2343  }
  2344  
  2345  // convertOp: floatXX -> intXX
  2346  func cvtFloatInt(v Value, t Type) Value {
  2347  	return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
  2348  }
  2349  
  2350  // convertOp: floatXX -> uintXX
  2351  func cvtFloatUint(v Value, t Type) Value {
  2352  	return makeInt(v.flag&flagRO, uint64(v.Float()), t)
  2353  }
  2354  
  2355  // convertOp: intXX -> floatXX
  2356  func cvtIntFloat(v Value, t Type) Value {
  2357  	return makeFloat(v.flag&flagRO, float64(v.Int()), t)
  2358  }
  2359  
  2360  // convertOp: uintXX -> floatXX
  2361  func cvtUintFloat(v Value, t Type) Value {
  2362  	return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
  2363  }
  2364  
  2365  // convertOp: floatXX -> floatXX
  2366  func cvtFloat(v Value, t Type) Value {
  2367  	return makeFloat(v.flag&flagRO, v.Float(), t)
  2368  }
  2369  
  2370  // convertOp: complexXX -> complexXX
  2371  func cvtComplex(v Value, t Type) Value {
  2372  	return makeComplex(v.flag&flagRO, v.Complex(), t)
  2373  }
  2374  
  2375  // convertOp: intXX -> string
  2376  func cvtIntString(v Value, t Type) Value {
  2377  	return makeString(v.flag&flagRO, string(v.Int()), t)
  2378  }
  2379  
  2380  // convertOp: uintXX -> string
  2381  func cvtUintString(v Value, t Type) Value {
  2382  	return makeString(v.flag&flagRO, string(v.Uint()), t)
  2383  }
  2384  
  2385  // convertOp: []byte -> string
  2386  func cvtBytesString(v Value, t Type) Value {
  2387  	return makeString(v.flag&flagRO, string(v.Bytes()), t)
  2388  }
  2389  
  2390  // convertOp: string -> []byte
  2391  func cvtStringBytes(v Value, t Type) Value {
  2392  	return makeBytes(v.flag&flagRO, []byte(v.String()), t)
  2393  }
  2394  
  2395  // convertOp: []rune -> string
  2396  func cvtRunesString(v Value, t Type) Value {
  2397  	return makeString(v.flag&flagRO, string(v.runes()), t)
  2398  }
  2399  
  2400  // convertOp: string -> []rune
  2401  func cvtStringRunes(v Value, t Type) Value {
  2402  	return makeRunes(v.flag&flagRO, []rune(v.String()), t)
  2403  }
  2404  
  2405  // convertOp: direct copy
  2406  func cvtDirect(v Value, typ Type) Value {
  2407  	f := v.flag
  2408  	t := typ.common()
  2409  	ptr := v.ptr
  2410  	if f&flagAddr != 0 {
  2411  		// indirect, mutable word - make a copy
  2412  		c := unsafe_New(t)
  2413  		typedmemmove(t, c, ptr)
  2414  		ptr = c
  2415  		f &^= flagAddr
  2416  	}
  2417  	return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f?
  2418  }
  2419  
  2420  // convertOp: concrete -> interface
  2421  func cvtT2I(v Value, typ Type) Value {
  2422  	target := unsafe_New(typ.common())
  2423  	x := valueInterface(v, false)
  2424  	if typ.NumMethod() == 0 {
  2425  		*(*interface{})(target) = x
  2426  	} else {
  2427  		ifaceE2I(typ.(*rtype), x, target)
  2428  	}
  2429  	return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)}
  2430  }
  2431  
  2432  // convertOp: interface -> interface
  2433  func cvtI2I(v Value, typ Type) Value {
  2434  	if v.IsNil() {
  2435  		ret := Zero(typ)
  2436  		ret.flag |= v.flag & flagRO
  2437  		return ret
  2438  	}
  2439  	return cvtT2I(v.Elem(), typ)
  2440  }
  2441  
  2442  // implemented in ../runtime
  2443  func chancap(ch unsafe.Pointer) int
  2444  func chanclose(ch unsafe.Pointer)
  2445  func chanlen(ch unsafe.Pointer) int
  2446  
  2447  // Note: some of the noescape annotations below are technically a lie,
  2448  // but safe in the context of this package. Functions like chansend
  2449  // and mapassign don't escape the referent, but may escape anything
  2450  // the referent points to (they do shallow copies of the referent).
  2451  // It is safe in this package because the referent may only point
  2452  // to something a Value may point to, and that is always in the heap
  2453  // (due to the escapes() call in ValueOf).
  2454  
  2455  //go:noescape
  2456  func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
  2457  
  2458  //go:noescape
  2459  func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
  2460  
  2461  func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
  2462  func makemap(t *rtype) (m unsafe.Pointer)
  2463  
  2464  //go:noescape
  2465  func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
  2466  
  2467  //go:noescape
  2468  func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
  2469  
  2470  //go:noescape
  2471  func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
  2472  
  2473  // m escapes into the return value, but the caller of mapiterinit
  2474  // doesn't let the return value escape.
  2475  //go:noescape
  2476  func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
  2477  
  2478  //go:noescape
  2479  func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
  2480  
  2481  //go:noescape
  2482  func mapiternext(it unsafe.Pointer)
  2483  
  2484  //go:noescape
  2485  func maplen(m unsafe.Pointer) int
  2486  
  2487  // call calls fn with a copy of the n argument bytes pointed at by arg.
  2488  // After fn returns, reflectcall copies n-retoffset result bytes
  2489  // back into arg+retoffset before returning. If copying result bytes back,
  2490  // the caller must pass the argument frame type as argtype, so that
  2491  // call can execute appropriate write barriers during the copy.
  2492  func call(argtype *rtype, fn, arg unsafe.Pointer, n uint32, retoffset uint32)
  2493  
  2494  func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
  2495  
  2496  // typedmemmove copies a value of type t to dst from src.
  2497  //go:noescape
  2498  func typedmemmove(t *rtype, dst, src unsafe.Pointer)
  2499  
  2500  // typedmemmovepartial is like typedmemmove but assumes that
  2501  // dst and src point off bytes into the value and only copies size bytes.
  2502  //go:noescape
  2503  func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
  2504  
  2505  // typedslicecopy copies a slice of elemType values from src to dst,
  2506  // returning the number of elements copied.
  2507  //go:noescape
  2508  func typedslicecopy(elemType *rtype, dst, src sliceHeader) int
  2509  
  2510  //go:noescape
  2511  func memclr(ptr unsafe.Pointer, n uintptr)
  2512  
  2513  // Dummy annotation marking that the value x escapes,
  2514  // for use in cases where the reflect code is so clever that
  2515  // the compiler cannot follow.
  2516  func escapes(x interface{}) {
  2517  	if dummy.b {
  2518  		dummy.x = x
  2519  	}
  2520  }
  2521  
  2522  var dummy struct {
  2523  	b bool
  2524  	x interface{}
  2525  }