github.com/roboticscm/goman@v0.0.0-20210203095141-87c07b4a0a55/src/crypto/rsa/pkcs1v15.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package rsa 6 7 import ( 8 "crypto" 9 "crypto/subtle" 10 "errors" 11 "io" 12 "math/big" 13 ) 14 15 // This file implements encryption and decryption using PKCS#1 v1.5 padding. 16 17 // EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. 18 // The message must be no longer than the length of the public modulus minus 11 bytes. 19 // WARNING: use of this function to encrypt plaintexts other than session keys 20 // is dangerous. Use RSA OAEP in new protocols. 21 func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) { 22 if err := checkPub(pub); err != nil { 23 return nil, err 24 } 25 k := (pub.N.BitLen() + 7) / 8 26 if len(msg) > k-11 { 27 err = ErrMessageTooLong 28 return 29 } 30 31 // EM = 0x00 || 0x02 || PS || 0x00 || M 32 em := make([]byte, k) 33 em[1] = 2 34 ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] 35 err = nonZeroRandomBytes(ps, rand) 36 if err != nil { 37 return 38 } 39 em[len(em)-len(msg)-1] = 0 40 copy(mm, msg) 41 42 m := new(big.Int).SetBytes(em) 43 c := encrypt(new(big.Int), pub, m) 44 45 copyWithLeftPad(em, c.Bytes()) 46 out = em 47 return 48 } 49 50 // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. 51 // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. 52 func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) { 53 if err := checkPub(&priv.PublicKey); err != nil { 54 return nil, err 55 } 56 valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext) 57 if err != nil { 58 return 59 } 60 if valid == 0 { 61 return nil, ErrDecryption 62 } 63 out = out[index:] 64 return 65 } 66 67 // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. 68 // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. 69 // It returns an error if the ciphertext is the wrong length or if the 70 // ciphertext is greater than the public modulus. Otherwise, no error is 71 // returned. If the padding is valid, the resulting plaintext message is copied 72 // into key. Otherwise, key is unchanged. These alternatives occur in constant 73 // time. It is intended that the user of this function generate a random 74 // session key beforehand and continue the protocol with the resulting value. 75 // This will remove any possibility that an attacker can learn any information 76 // about the plaintext. 77 // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA 78 // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology 79 // (Crypto '98). 80 func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) { 81 if err := checkPub(&priv.PublicKey); err != nil { 82 return err 83 } 84 k := (priv.N.BitLen() + 7) / 8 85 if k-(len(key)+3+8) < 0 { 86 return ErrDecryption 87 } 88 89 valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext) 90 if err != nil { 91 return 92 } 93 94 if len(em) != k { 95 // This should be impossible because decryptPKCS1v15 always 96 // returns the full slice. 97 return ErrDecryption 98 } 99 100 valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) 101 subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) 102 return 103 } 104 105 // decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if 106 // rand is not nil. It returns one or zero in valid that indicates whether the 107 // plaintext was correctly structured. In either case, the plaintext is 108 // returned in em so that it may be read independently of whether it was valid 109 // in order to maintain constant memory access patterns. If the plaintext was 110 // valid then index contains the index of the original message in em. 111 func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { 112 k := (priv.N.BitLen() + 7) / 8 113 if k < 11 { 114 err = ErrDecryption 115 return 116 } 117 118 c := new(big.Int).SetBytes(ciphertext) 119 m, err := decrypt(rand, priv, c) 120 if err != nil { 121 return 122 } 123 124 em = leftPad(m.Bytes(), k) 125 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 126 secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) 127 128 // The remainder of the plaintext must be a string of non-zero random 129 // octets, followed by a 0, followed by the message. 130 // lookingForIndex: 1 iff we are still looking for the zero. 131 // index: the offset of the first zero byte. 132 lookingForIndex := 1 133 134 for i := 2; i < len(em); i++ { 135 equals0 := subtle.ConstantTimeByteEq(em[i], 0) 136 index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) 137 lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) 138 } 139 140 // The PS padding must be at least 8 bytes long, and it starts two 141 // bytes into em. 142 validPS := subtle.ConstantTimeLessOrEq(2+8, index) 143 144 valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS 145 index = subtle.ConstantTimeSelect(valid, index+1, 0) 146 return valid, em, index, nil 147 } 148 149 // nonZeroRandomBytes fills the given slice with non-zero random octets. 150 func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) { 151 _, err = io.ReadFull(rand, s) 152 if err != nil { 153 return 154 } 155 156 for i := 0; i < len(s); i++ { 157 for s[i] == 0 { 158 _, err = io.ReadFull(rand, s[i:i+1]) 159 if err != nil { 160 return 161 } 162 // In tests, the PRNG may return all zeros so we do 163 // this to break the loop. 164 s[i] ^= 0x42 165 } 166 } 167 168 return 169 } 170 171 // These are ASN1 DER structures: 172 // DigestInfo ::= SEQUENCE { 173 // digestAlgorithm AlgorithmIdentifier, 174 // digest OCTET STRING 175 // } 176 // For performance, we don't use the generic ASN1 encoder. Rather, we 177 // precompute a prefix of the digest value that makes a valid ASN1 DER string 178 // with the correct contents. 179 var hashPrefixes = map[crypto.Hash][]byte{ 180 crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, 181 crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, 182 crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, 183 crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, 184 crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, 185 crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, 186 crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix. 187 crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, 188 } 189 190 // SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. 191 // Note that hashed must be the result of hashing the input message using the 192 // given hash function. If hash is zero, hashed is signed directly. This isn't 193 // advisable except for interoperability. 194 func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) { 195 hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) 196 if err != nil { 197 return 198 } 199 200 tLen := len(prefix) + hashLen 201 k := (priv.N.BitLen() + 7) / 8 202 if k < tLen+11 { 203 return nil, ErrMessageTooLong 204 } 205 206 // EM = 0x00 || 0x01 || PS || 0x00 || T 207 em := make([]byte, k) 208 em[1] = 1 209 for i := 2; i < k-tLen-1; i++ { 210 em[i] = 0xff 211 } 212 copy(em[k-tLen:k-hashLen], prefix) 213 copy(em[k-hashLen:k], hashed) 214 215 m := new(big.Int).SetBytes(em) 216 c, err := decrypt(rand, priv, m) 217 if err != nil { 218 return 219 } 220 221 copyWithLeftPad(em, c.Bytes()) 222 s = em 223 return 224 } 225 226 // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. 227 // hashed is the result of hashing the input message using the given hash 228 // function and sig is the signature. A valid signature is indicated by 229 // returning a nil error. If hash is zero then hashed is used directly. This 230 // isn't advisable except for interoperability. 231 func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) { 232 hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) 233 if err != nil { 234 return 235 } 236 237 tLen := len(prefix) + hashLen 238 k := (pub.N.BitLen() + 7) / 8 239 if k < tLen+11 { 240 err = ErrVerification 241 return 242 } 243 244 c := new(big.Int).SetBytes(sig) 245 m := encrypt(new(big.Int), pub, c) 246 em := leftPad(m.Bytes(), k) 247 // EM = 0x00 || 0x01 || PS || 0x00 || T 248 249 ok := subtle.ConstantTimeByteEq(em[0], 0) 250 ok &= subtle.ConstantTimeByteEq(em[1], 1) 251 ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) 252 ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) 253 ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) 254 255 for i := 2; i < k-tLen-1; i++ { 256 ok &= subtle.ConstantTimeByteEq(em[i], 0xff) 257 } 258 259 if ok != 1 { 260 return ErrVerification 261 } 262 263 return nil 264 } 265 266 func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) { 267 // Special case: crypto.Hash(0) is used to indicate that the data is 268 // signed directly. 269 if hash == 0 { 270 return inLen, nil, nil 271 } 272 273 hashLen = hash.Size() 274 if inLen != hashLen { 275 return 0, nil, errors.New("crypto/rsa: input must be hashed message") 276 } 277 prefix, ok := hashPrefixes[hash] 278 if !ok { 279 return 0, nil, errors.New("crypto/rsa: unsupported hash function") 280 } 281 return 282 } 283 284 // copyWithLeftPad copies src to the end of dest, padding with zero bytes as 285 // needed. 286 func copyWithLeftPad(dest, src []byte) { 287 numPaddingBytes := len(dest) - len(src) 288 for i := 0; i < numPaddingBytes; i++ { 289 dest[i] = 0 290 } 291 copy(dest[numPaddingBytes:], src) 292 }