github.com/rohankumardubey/syslog-redirector-golang@v0.0.0-20140320174030-4859f03d829a/src/pkg/go/printer/nodes.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements printing of AST nodes; specifically 6 // expressions, statements, declarations, and files. It uses 7 // the print functionality implemented in printer.go. 8 9 package printer 10 11 import ( 12 "bytes" 13 "go/ast" 14 "go/token" 15 "unicode/utf8" 16 ) 17 18 // Formatting issues: 19 // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) 20 // when the comment spans multiple lines; if such a comment is just two lines, formatting is 21 // not idempotent 22 // - formatting of expression lists 23 // - should use blank instead of tab to separate one-line function bodies from 24 // the function header unless there is a group of consecutive one-liners 25 26 // ---------------------------------------------------------------------------- 27 // Common AST nodes. 28 29 // Print as many newlines as necessary (but at least min newlines) to get to 30 // the current line. ws is printed before the first line break. If newSection 31 // is set, the first line break is printed as formfeed. Returns true if any 32 // line break was printed; returns false otherwise. 33 // 34 // TODO(gri): linebreak may add too many lines if the next statement at "line" 35 // is preceded by comments because the computation of n assumes 36 // the current position before the comment and the target position 37 // after the comment. Thus, after interspersing such comments, the 38 // space taken up by them is not considered to reduce the number of 39 // linebreaks. At the moment there is no easy way to know about 40 // future (not yet interspersed) comments in this function. 41 // 42 func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (printedBreak bool) { 43 n := nlimit(line - p.pos.Line) 44 if n < min { 45 n = min 46 } 47 if n > 0 { 48 p.print(ws) 49 if newSection { 50 p.print(formfeed) 51 n-- 52 } 53 for ; n > 0; n-- { 54 p.print(newline) 55 } 56 printedBreak = true 57 } 58 return 59 } 60 61 // setComment sets g as the next comment if g != nil and if node comments 62 // are enabled - this mode is used when printing source code fragments such 63 // as exports only. It assumes that there is no pending comment in p.comments 64 // and at most one pending comment in the p.comment cache. 65 func (p *printer) setComment(g *ast.CommentGroup) { 66 if g == nil || !p.useNodeComments { 67 return 68 } 69 if p.comments == nil { 70 // initialize p.comments lazily 71 p.comments = make([]*ast.CommentGroup, 1) 72 } else if p.cindex < len(p.comments) { 73 // for some reason there are pending comments; this 74 // should never happen - handle gracefully and flush 75 // all comments up to g, ignore anything after that 76 p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL) 77 p.comments = p.comments[0:1] 78 // in debug mode, report error 79 p.internalError("setComment found pending comments") 80 } 81 p.comments[0] = g 82 p.cindex = 0 83 // don't overwrite any pending comment in the p.comment cache 84 // (there may be a pending comment when a line comment is 85 // immediately followed by a lead comment with no other 86 // tokens between) 87 if p.commentOffset == infinity { 88 p.nextComment() // get comment ready for use 89 } 90 } 91 92 type exprListMode uint 93 94 const ( 95 commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma 96 noIndent // no extra indentation in multi-line lists 97 ) 98 99 // If indent is set, a multi-line identifier list is indented after the 100 // first linebreak encountered. 101 func (p *printer) identList(list []*ast.Ident, indent bool) { 102 // convert into an expression list so we can re-use exprList formatting 103 xlist := make([]ast.Expr, len(list)) 104 for i, x := range list { 105 xlist[i] = x 106 } 107 var mode exprListMode 108 if !indent { 109 mode = noIndent 110 } 111 p.exprList(token.NoPos, xlist, 1, mode, token.NoPos) 112 } 113 114 // Print a list of expressions. If the list spans multiple 115 // source lines, the original line breaks are respected between 116 // expressions. 117 // 118 // TODO(gri) Consider rewriting this to be independent of []ast.Expr 119 // so that we can use the algorithm for any kind of list 120 // (e.g., pass list via a channel over which to range). 121 func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos) { 122 if len(list) == 0 { 123 return 124 } 125 126 prev := p.posFor(prev0) 127 next := p.posFor(next0) 128 line := p.lineFor(list[0].Pos()) 129 endLine := p.lineFor(list[len(list)-1].End()) 130 131 if prev.IsValid() && prev.Line == line && line == endLine { 132 // all list entries on a single line 133 for i, x := range list { 134 if i > 0 { 135 // use position of expression following the comma as 136 // comma position for correct comment placement 137 p.print(x.Pos(), token.COMMA, blank) 138 } 139 p.expr0(x, depth) 140 } 141 return 142 } 143 144 // list entries span multiple lines; 145 // use source code positions to guide line breaks 146 147 // don't add extra indentation if noIndent is set; 148 // i.e., pretend that the first line is already indented 149 ws := ignore 150 if mode&noIndent == 0 { 151 ws = indent 152 } 153 154 // the first linebreak is always a formfeed since this section must not 155 // depend on any previous formatting 156 prevBreak := -1 // index of last expression that was followed by a linebreak 157 if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) { 158 ws = ignore 159 prevBreak = 0 160 } 161 162 // initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line 163 size := 0 164 165 // print all list elements 166 for i, x := range list { 167 prevLine := line 168 line = p.lineFor(x.Pos()) 169 170 // determine if the next linebreak, if any, needs to use formfeed: 171 // in general, use the entire node size to make the decision; for 172 // key:value expressions, use the key size 173 // TODO(gri) for a better result, should probably incorporate both 174 // the key and the node size into the decision process 175 useFF := true 176 177 // determine element size: all bets are off if we don't have 178 // position information for the previous and next token (likely 179 // generated code - simply ignore the size in this case by setting 180 // it to 0) 181 prevSize := size 182 const infinity = 1e6 // larger than any source line 183 size = p.nodeSize(x, infinity) 184 pair, isPair := x.(*ast.KeyValueExpr) 185 if size <= infinity && prev.IsValid() && next.IsValid() { 186 // x fits on a single line 187 if isPair { 188 size = p.nodeSize(pair.Key, infinity) // size <= infinity 189 } 190 } else { 191 // size too large or we don't have good layout information 192 size = 0 193 } 194 195 // if the previous line and the current line had single- 196 // line-expressions and the key sizes are small or the 197 // the ratio between the key sizes does not exceed a 198 // threshold, align columns and do not use formfeed 199 if prevSize > 0 && size > 0 { 200 const smallSize = 20 201 if prevSize <= smallSize && size <= smallSize { 202 useFF = false 203 } else { 204 const r = 4 // threshold 205 ratio := float64(size) / float64(prevSize) 206 useFF = ratio <= 1.0/r || r <= ratio 207 } 208 } 209 210 if i > 0 { 211 needsLinebreak := prevLine < line && prevLine > 0 && line > 0 212 // use position of expression following the comma as 213 // comma position for correct comment placement, but 214 // only if the expression is on the same line 215 if !needsLinebreak { 216 p.print(x.Pos()) 217 } 218 p.print(token.COMMA) 219 needsBlank := true 220 if needsLinebreak { 221 // lines are broken using newlines so comments remain aligned 222 // unless forceFF is set or there are multiple expressions on 223 // the same line in which case formfeed is used 224 if p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) { 225 ws = ignore 226 prevBreak = i 227 needsBlank = false // we got a line break instead 228 } 229 } 230 if needsBlank { 231 p.print(blank) 232 } 233 } 234 235 if isPair && size > 0 && len(list) > 1 { 236 // we have a key:value expression that fits onto one line and 237 // is in a list with more then one entry: use a column for the 238 // key such that consecutive entries can align if possible 239 p.expr(pair.Key) 240 p.print(pair.Colon, token.COLON, vtab) 241 p.expr(pair.Value) 242 } else { 243 p.expr0(x, depth) 244 } 245 } 246 247 if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line { 248 // print a terminating comma if the next token is on a new line 249 p.print(token.COMMA) 250 if ws == ignore && mode&noIndent == 0 { 251 // unindent if we indented 252 p.print(unindent) 253 } 254 p.print(formfeed) // terminating comma needs a line break to look good 255 return 256 } 257 258 if ws == ignore && mode&noIndent == 0 { 259 // unindent if we indented 260 p.print(unindent) 261 } 262 } 263 264 func (p *printer) parameters(fields *ast.FieldList) { 265 p.print(fields.Opening, token.LPAREN) 266 if len(fields.List) > 0 { 267 prevLine := p.lineFor(fields.Opening) 268 ws := indent 269 for i, par := range fields.List { 270 // determine par begin and end line (may be different 271 // if there are multiple parameter names for this par 272 // or the type is on a separate line) 273 var parLineBeg int 274 if len(par.Names) > 0 { 275 parLineBeg = p.lineFor(par.Names[0].Pos()) 276 } else { 277 parLineBeg = p.lineFor(par.Type.Pos()) 278 } 279 var parLineEnd = p.lineFor(par.Type.End()) 280 // separating "," if needed 281 needsLinebreak := 0 < prevLine && prevLine < parLineBeg 282 if i > 0 { 283 // use position of parameter following the comma as 284 // comma position for correct comma placement, but 285 // only if the next parameter is on the same line 286 if !needsLinebreak { 287 p.print(par.Pos()) 288 } 289 p.print(token.COMMA) 290 } 291 // separator if needed (linebreak or blank) 292 if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) { 293 // break line if the opening "(" or previous parameter ended on a different line 294 ws = ignore 295 } else if i > 0 { 296 p.print(blank) 297 } 298 // parameter names 299 if len(par.Names) > 0 { 300 // Very subtle: If we indented before (ws == ignore), identList 301 // won't indent again. If we didn't (ws == indent), identList will 302 // indent if the identList spans multiple lines, and it will outdent 303 // again at the end (and still ws == indent). Thus, a subsequent indent 304 // by a linebreak call after a type, or in the next multi-line identList 305 // will do the right thing. 306 p.identList(par.Names, ws == indent) 307 p.print(blank) 308 } 309 // parameter type 310 p.expr(stripParensAlways(par.Type)) 311 prevLine = parLineEnd 312 } 313 // if the closing ")" is on a separate line from the last parameter, 314 // print an additional "," and line break 315 if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing { 316 p.print(token.COMMA) 317 p.linebreak(closing, 0, ignore, true) 318 } 319 // unindent if we indented 320 if ws == ignore { 321 p.print(unindent) 322 } 323 } 324 p.print(fields.Closing, token.RPAREN) 325 } 326 327 func (p *printer) signature(params, result *ast.FieldList) { 328 if params != nil { 329 p.parameters(params) 330 } else { 331 p.print(token.LPAREN, token.RPAREN) 332 } 333 n := result.NumFields() 334 if n > 0 { 335 // result != nil 336 p.print(blank) 337 if n == 1 && result.List[0].Names == nil { 338 // single anonymous result; no ()'s 339 p.expr(stripParensAlways(result.List[0].Type)) 340 return 341 } 342 p.parameters(result) 343 } 344 } 345 346 func identListSize(list []*ast.Ident, maxSize int) (size int) { 347 for i, x := range list { 348 if i > 0 { 349 size += len(", ") 350 } 351 size += utf8.RuneCountInString(x.Name) 352 if size >= maxSize { 353 break 354 } 355 } 356 return 357 } 358 359 func (p *printer) isOneLineFieldList(list []*ast.Field) bool { 360 if len(list) != 1 { 361 return false // allow only one field 362 } 363 f := list[0] 364 if f.Tag != nil || f.Comment != nil { 365 return false // don't allow tags or comments 366 } 367 // only name(s) and type 368 const maxSize = 30 // adjust as appropriate, this is an approximate value 369 namesSize := identListSize(f.Names, maxSize) 370 if namesSize > 0 { 371 namesSize = 1 // blank between names and types 372 } 373 typeSize := p.nodeSize(f.Type, maxSize) 374 return namesSize+typeSize <= maxSize 375 } 376 377 func (p *printer) setLineComment(text string) { 378 p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}}) 379 } 380 381 func (p *printer) isMultiLine(n ast.Node) bool { 382 return p.lineFor(n.End())-p.lineFor(n.Pos()) > 0 383 } 384 385 func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) { 386 lbrace := fields.Opening 387 list := fields.List 388 rbrace := fields.Closing 389 hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace)) 390 srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace) 391 392 if !hasComments && srcIsOneLine { 393 // possibly a one-line struct/interface 394 if len(list) == 0 { 395 // no blank between keyword and {} in this case 396 p.print(lbrace, token.LBRACE, rbrace, token.RBRACE) 397 return 398 } else if isStruct && p.isOneLineFieldList(list) { // for now ignore interfaces 399 // small enough - print on one line 400 // (don't use identList and ignore source line breaks) 401 p.print(lbrace, token.LBRACE, blank) 402 f := list[0] 403 for i, x := range f.Names { 404 if i > 0 { 405 // no comments so no need for comma position 406 p.print(token.COMMA, blank) 407 } 408 p.expr(x) 409 } 410 if len(f.Names) > 0 { 411 p.print(blank) 412 } 413 p.expr(f.Type) 414 p.print(blank, rbrace, token.RBRACE) 415 return 416 } 417 } 418 // hasComments || !srcIsOneLine 419 420 p.print(blank, lbrace, token.LBRACE, indent) 421 if hasComments || len(list) > 0 { 422 p.print(formfeed) 423 } 424 425 if isStruct { 426 427 sep := vtab 428 if len(list) == 1 { 429 sep = blank 430 } 431 newSection := false 432 for i, f := range list { 433 if i > 0 { 434 p.linebreak(p.lineFor(f.Pos()), 1, ignore, newSection) 435 } 436 extraTabs := 0 437 p.setComment(f.Doc) 438 if len(f.Names) > 0 { 439 // named fields 440 p.identList(f.Names, false) 441 p.print(sep) 442 p.expr(f.Type) 443 extraTabs = 1 444 } else { 445 // anonymous field 446 p.expr(f.Type) 447 extraTabs = 2 448 } 449 if f.Tag != nil { 450 if len(f.Names) > 0 && sep == vtab { 451 p.print(sep) 452 } 453 p.print(sep) 454 p.expr(f.Tag) 455 extraTabs = 0 456 } 457 if f.Comment != nil { 458 for ; extraTabs > 0; extraTabs-- { 459 p.print(sep) 460 } 461 p.setComment(f.Comment) 462 } 463 newSection = p.isMultiLine(f) 464 } 465 if isIncomplete { 466 if len(list) > 0 { 467 p.print(formfeed) 468 } 469 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 470 p.setLineComment("// contains filtered or unexported fields") 471 } 472 473 } else { // interface 474 475 newSection := false 476 for i, f := range list { 477 if i > 0 { 478 p.linebreak(p.lineFor(f.Pos()), 1, ignore, newSection) 479 } 480 p.setComment(f.Doc) 481 if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp { 482 // method 483 p.expr(f.Names[0]) 484 p.signature(ftyp.Params, ftyp.Results) 485 } else { 486 // embedded interface 487 p.expr(f.Type) 488 } 489 p.setComment(f.Comment) 490 newSection = p.isMultiLine(f) 491 } 492 if isIncomplete { 493 if len(list) > 0 { 494 p.print(formfeed) 495 } 496 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 497 p.setLineComment("// contains filtered or unexported methods") 498 } 499 500 } 501 p.print(unindent, formfeed, rbrace, token.RBRACE) 502 } 503 504 // ---------------------------------------------------------------------------- 505 // Expressions 506 507 func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) { 508 switch e.Op.Precedence() { 509 case 4: 510 has4 = true 511 case 5: 512 has5 = true 513 } 514 515 switch l := e.X.(type) { 516 case *ast.BinaryExpr: 517 if l.Op.Precedence() < e.Op.Precedence() { 518 // parens will be inserted. 519 // pretend this is an *ast.ParenExpr and do nothing. 520 break 521 } 522 h4, h5, mp := walkBinary(l) 523 has4 = has4 || h4 524 has5 = has5 || h5 525 if maxProblem < mp { 526 maxProblem = mp 527 } 528 } 529 530 switch r := e.Y.(type) { 531 case *ast.BinaryExpr: 532 if r.Op.Precedence() <= e.Op.Precedence() { 533 // parens will be inserted. 534 // pretend this is an *ast.ParenExpr and do nothing. 535 break 536 } 537 h4, h5, mp := walkBinary(r) 538 has4 = has4 || h4 539 has5 = has5 || h5 540 if maxProblem < mp { 541 maxProblem = mp 542 } 543 544 case *ast.StarExpr: 545 if e.Op == token.QUO { // `*/` 546 maxProblem = 5 547 } 548 549 case *ast.UnaryExpr: 550 switch e.Op.String() + r.Op.String() { 551 case "/*", "&&", "&^": 552 maxProblem = 5 553 case "++", "--": 554 if maxProblem < 4 { 555 maxProblem = 4 556 } 557 } 558 } 559 return 560 } 561 562 func cutoff(e *ast.BinaryExpr, depth int) int { 563 has4, has5, maxProblem := walkBinary(e) 564 if maxProblem > 0 { 565 return maxProblem + 1 566 } 567 if has4 && has5 { 568 if depth == 1 { 569 return 5 570 } 571 return 4 572 } 573 if depth == 1 { 574 return 6 575 } 576 return 4 577 } 578 579 func diffPrec(expr ast.Expr, prec int) int { 580 x, ok := expr.(*ast.BinaryExpr) 581 if !ok || prec != x.Op.Precedence() { 582 return 1 583 } 584 return 0 585 } 586 587 func reduceDepth(depth int) int { 588 depth-- 589 if depth < 1 { 590 depth = 1 591 } 592 return depth 593 } 594 595 // Format the binary expression: decide the cutoff and then format. 596 // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. 597 // (Algorithm suggestion by Russ Cox.) 598 // 599 // The precedences are: 600 // 5 * / % << >> & &^ 601 // 4 + - | ^ 602 // 3 == != < <= > >= 603 // 2 && 604 // 1 || 605 // 606 // The only decision is whether there will be spaces around levels 4 and 5. 607 // There are never spaces at level 6 (unary), and always spaces at levels 3 and below. 608 // 609 // To choose the cutoff, look at the whole expression but excluding primary 610 // expressions (function calls, parenthesized exprs), and apply these rules: 611 // 612 // 1) If there is a binary operator with a right side unary operand 613 // that would clash without a space, the cutoff must be (in order): 614 // 615 // /* 6 616 // && 6 617 // &^ 6 618 // ++ 5 619 // -- 5 620 // 621 // (Comparison operators always have spaces around them.) 622 // 623 // 2) If there is a mix of level 5 and level 4 operators, then the cutoff 624 // is 5 (use spaces to distinguish precedence) in Normal mode 625 // and 4 (never use spaces) in Compact mode. 626 // 627 // 3) If there are no level 4 operators or no level 5 operators, then the 628 // cutoff is 6 (always use spaces) in Normal mode 629 // and 4 (never use spaces) in Compact mode. 630 // 631 func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) { 632 prec := x.Op.Precedence() 633 if prec < prec1 { 634 // parenthesis needed 635 // Note: The parser inserts an ast.ParenExpr node; thus this case 636 // can only occur if the AST is created in a different way. 637 p.print(token.LPAREN) 638 p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth 639 p.print(token.RPAREN) 640 return 641 } 642 643 printBlank := prec < cutoff 644 645 ws := indent 646 p.expr1(x.X, prec, depth+diffPrec(x.X, prec)) 647 if printBlank { 648 p.print(blank) 649 } 650 xline := p.pos.Line // before the operator (it may be on the next line!) 651 yline := p.lineFor(x.Y.Pos()) 652 p.print(x.OpPos, x.Op) 653 if xline != yline && xline > 0 && yline > 0 { 654 // at least one line break, but respect an extra empty line 655 // in the source 656 if p.linebreak(yline, 1, ws, true) { 657 ws = ignore 658 printBlank = false // no blank after line break 659 } 660 } 661 if printBlank { 662 p.print(blank) 663 } 664 p.expr1(x.Y, prec+1, depth+1) 665 if ws == ignore { 666 p.print(unindent) 667 } 668 } 669 670 func isBinary(expr ast.Expr) bool { 671 _, ok := expr.(*ast.BinaryExpr) 672 return ok 673 } 674 675 func (p *printer) expr1(expr ast.Expr, prec1, depth int) { 676 p.print(expr.Pos()) 677 678 switch x := expr.(type) { 679 case *ast.BadExpr: 680 p.print("BadExpr") 681 682 case *ast.Ident: 683 p.print(x) 684 685 case *ast.BinaryExpr: 686 if depth < 1 { 687 p.internalError("depth < 1:", depth) 688 depth = 1 689 } 690 p.binaryExpr(x, prec1, cutoff(x, depth), depth) 691 692 case *ast.KeyValueExpr: 693 p.expr(x.Key) 694 p.print(x.Colon, token.COLON, blank) 695 p.expr(x.Value) 696 697 case *ast.StarExpr: 698 const prec = token.UnaryPrec 699 if prec < prec1 { 700 // parenthesis needed 701 p.print(token.LPAREN) 702 p.print(token.MUL) 703 p.expr(x.X) 704 p.print(token.RPAREN) 705 } else { 706 // no parenthesis needed 707 p.print(token.MUL) 708 p.expr(x.X) 709 } 710 711 case *ast.UnaryExpr: 712 const prec = token.UnaryPrec 713 if prec < prec1 { 714 // parenthesis needed 715 p.print(token.LPAREN) 716 p.expr(x) 717 p.print(token.RPAREN) 718 } else { 719 // no parenthesis needed 720 p.print(x.Op) 721 if x.Op == token.RANGE { 722 // TODO(gri) Remove this code if it cannot be reached. 723 p.print(blank) 724 } 725 p.expr1(x.X, prec, depth) 726 } 727 728 case *ast.BasicLit: 729 p.print(x) 730 731 case *ast.FuncLit: 732 p.expr(x.Type) 733 p.adjBlock(p.distanceFrom(x.Type.Pos()), blank, x.Body) 734 735 case *ast.ParenExpr: 736 if _, hasParens := x.X.(*ast.ParenExpr); hasParens { 737 // don't print parentheses around an already parenthesized expression 738 // TODO(gri) consider making this more general and incorporate precedence levels 739 p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth 740 } else { 741 p.print(token.LPAREN) 742 p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth 743 p.print(x.Rparen, token.RPAREN) 744 } 745 746 case *ast.SelectorExpr: 747 p.expr1(x.X, token.HighestPrec, depth) 748 p.print(token.PERIOD) 749 if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line { 750 p.print(indent, newline, x.Sel.Pos(), x.Sel, unindent) 751 } else { 752 p.print(x.Sel.Pos(), x.Sel) 753 } 754 755 case *ast.TypeAssertExpr: 756 p.expr1(x.X, token.HighestPrec, depth) 757 p.print(token.PERIOD, x.Lparen, token.LPAREN) 758 if x.Type != nil { 759 p.expr(x.Type) 760 } else { 761 p.print(token.TYPE) 762 } 763 p.print(x.Rparen, token.RPAREN) 764 765 case *ast.IndexExpr: 766 // TODO(gri): should treat[] like parentheses and undo one level of depth 767 p.expr1(x.X, token.HighestPrec, 1) 768 p.print(x.Lbrack, token.LBRACK) 769 p.expr0(x.Index, depth+1) 770 p.print(x.Rbrack, token.RBRACK) 771 772 case *ast.SliceExpr: 773 // TODO(gri): should treat[] like parentheses and undo one level of depth 774 p.expr1(x.X, token.HighestPrec, 1) 775 p.print(x.Lbrack, token.LBRACK) 776 indices := []ast.Expr{x.Low, x.High} 777 if x.Max != nil { 778 indices = append(indices, x.Max) 779 } 780 for i, y := range indices { 781 if i > 0 { 782 // blanks around ":" if both sides exist and either side is a binary expression 783 // TODO(gri) once we have committed a variant of a[i:j:k] we may want to fine- 784 // tune the formatting here 785 x := indices[i-1] 786 if depth <= 1 && x != nil && y != nil && (isBinary(x) || isBinary(y)) { 787 p.print(blank, token.COLON, blank) 788 } else { 789 p.print(token.COLON) 790 } 791 } 792 if y != nil { 793 p.expr0(y, depth+1) 794 } 795 } 796 p.print(x.Rbrack, token.RBRACK) 797 798 case *ast.CallExpr: 799 if len(x.Args) > 1 { 800 depth++ 801 } 802 if _, ok := x.Fun.(*ast.FuncType); ok { 803 // conversions to literal function types require parentheses around the type 804 p.print(token.LPAREN) 805 p.expr1(x.Fun, token.HighestPrec, depth) 806 p.print(token.RPAREN) 807 } else { 808 p.expr1(x.Fun, token.HighestPrec, depth) 809 } 810 p.print(x.Lparen, token.LPAREN) 811 if x.Ellipsis.IsValid() { 812 p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis) 813 p.print(x.Ellipsis, token.ELLIPSIS) 814 if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) { 815 p.print(token.COMMA, formfeed) 816 } 817 } else { 818 p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen) 819 } 820 p.print(x.Rparen, token.RPAREN) 821 822 case *ast.CompositeLit: 823 // composite literal elements that are composite literals themselves may have the type omitted 824 if x.Type != nil { 825 p.expr1(x.Type, token.HighestPrec, depth) 826 } 827 p.print(x.Lbrace, token.LBRACE) 828 p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace) 829 // do not insert extra line breaks because of comments before 830 // the closing '}' as it might break the code if there is no 831 // trailing ',' 832 p.print(noExtraLinebreak, x.Rbrace, token.RBRACE, noExtraLinebreak) 833 834 case *ast.Ellipsis: 835 p.print(token.ELLIPSIS) 836 if x.Elt != nil { 837 p.expr(x.Elt) 838 } 839 840 case *ast.ArrayType: 841 p.print(token.LBRACK) 842 if x.Len != nil { 843 p.expr(x.Len) 844 } 845 p.print(token.RBRACK) 846 p.expr(x.Elt) 847 848 case *ast.StructType: 849 p.print(token.STRUCT) 850 p.fieldList(x.Fields, true, x.Incomplete) 851 852 case *ast.FuncType: 853 p.print(token.FUNC) 854 p.signature(x.Params, x.Results) 855 856 case *ast.InterfaceType: 857 p.print(token.INTERFACE) 858 p.fieldList(x.Methods, false, x.Incomplete) 859 860 case *ast.MapType: 861 p.print(token.MAP, token.LBRACK) 862 p.expr(x.Key) 863 p.print(token.RBRACK) 864 p.expr(x.Value) 865 866 case *ast.ChanType: 867 switch x.Dir { 868 case ast.SEND | ast.RECV: 869 p.print(token.CHAN) 870 case ast.RECV: 871 p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same 872 case ast.SEND: 873 p.print(token.CHAN, x.Arrow, token.ARROW) 874 } 875 p.print(blank) 876 p.expr(x.Value) 877 878 default: 879 panic("unreachable") 880 } 881 882 return 883 } 884 885 func (p *printer) expr0(x ast.Expr, depth int) { 886 p.expr1(x, token.LowestPrec, depth) 887 } 888 889 func (p *printer) expr(x ast.Expr) { 890 const depth = 1 891 p.expr1(x, token.LowestPrec, depth) 892 } 893 894 // ---------------------------------------------------------------------------- 895 // Statements 896 897 // Print the statement list indented, but without a newline after the last statement. 898 // Extra line breaks between statements in the source are respected but at most one 899 // empty line is printed between statements. 900 func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) { 901 if nindent > 0 { 902 p.print(indent) 903 } 904 multiLine := false 905 i := 0 906 for _, s := range list { 907 // ignore empty statements (was issue 3466) 908 if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty { 909 // _indent == 0 only for lists of switch/select case clauses; 910 // in those cases each clause is a new section 911 if len(p.output) > 0 { 912 // only print line break if we are not at the beginning of the output 913 // (i.e., we are not printing only a partial program) 914 p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || multiLine) 915 } 916 p.stmt(s, nextIsRBrace && i == len(list)-1) 917 multiLine = p.isMultiLine(s) 918 i++ 919 } 920 } 921 if nindent > 0 { 922 p.print(unindent) 923 } 924 } 925 926 // block prints an *ast.BlockStmt; it always spans at least two lines. 927 func (p *printer) block(b *ast.BlockStmt, nindent int) { 928 p.print(b.Lbrace, token.LBRACE) 929 p.stmtList(b.List, nindent, true) 930 p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true) 931 p.print(b.Rbrace, token.RBRACE) 932 } 933 934 func isTypeName(x ast.Expr) bool { 935 switch t := x.(type) { 936 case *ast.Ident: 937 return true 938 case *ast.SelectorExpr: 939 return isTypeName(t.X) 940 } 941 return false 942 } 943 944 func stripParens(x ast.Expr) ast.Expr { 945 if px, strip := x.(*ast.ParenExpr); strip { 946 // parentheses must not be stripped if there are any 947 // unparenthesized composite literals starting with 948 // a type name 949 ast.Inspect(px.X, func(node ast.Node) bool { 950 switch x := node.(type) { 951 case *ast.ParenExpr: 952 // parentheses protect enclosed composite literals 953 return false 954 case *ast.CompositeLit: 955 if isTypeName(x.Type) { 956 strip = false // do not strip parentheses 957 } 958 return false 959 } 960 // in all other cases, keep inspecting 961 return true 962 }) 963 if strip { 964 return stripParens(px.X) 965 } 966 } 967 return x 968 } 969 970 func stripParensAlways(x ast.Expr) ast.Expr { 971 if x, ok := x.(*ast.ParenExpr); ok { 972 return stripParensAlways(x.X) 973 } 974 return x 975 } 976 977 func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { 978 p.print(blank) 979 needsBlank := false 980 if init == nil && post == nil { 981 // no semicolons required 982 if expr != nil { 983 p.expr(stripParens(expr)) 984 needsBlank = true 985 } 986 } else { 987 // all semicolons required 988 // (they are not separators, print them explicitly) 989 if init != nil { 990 p.stmt(init, false) 991 } 992 p.print(token.SEMICOLON, blank) 993 if expr != nil { 994 p.expr(stripParens(expr)) 995 needsBlank = true 996 } 997 if isForStmt { 998 p.print(token.SEMICOLON, blank) 999 needsBlank = false 1000 if post != nil { 1001 p.stmt(post, false) 1002 needsBlank = true 1003 } 1004 } 1005 } 1006 if needsBlank { 1007 p.print(blank) 1008 } 1009 } 1010 1011 // indentList reports whether an expression list would look better if it 1012 // were indented wholesale (starting with the very first element, rather 1013 // than starting at the first line break). 1014 // 1015 func (p *printer) indentList(list []ast.Expr) bool { 1016 // Heuristic: indentList returns true if there are more than one multi- 1017 // line element in the list, or if there is any element that is not 1018 // starting on the same line as the previous one ends. 1019 if len(list) >= 2 { 1020 var b = p.lineFor(list[0].Pos()) 1021 var e = p.lineFor(list[len(list)-1].End()) 1022 if 0 < b && b < e { 1023 // list spans multiple lines 1024 n := 0 // multi-line element count 1025 line := b 1026 for _, x := range list { 1027 xb := p.lineFor(x.Pos()) 1028 xe := p.lineFor(x.End()) 1029 if line < xb { 1030 // x is not starting on the same 1031 // line as the previous one ended 1032 return true 1033 } 1034 if xb < xe { 1035 // x is a multi-line element 1036 n++ 1037 } 1038 line = xe 1039 } 1040 return n > 1 1041 } 1042 } 1043 return false 1044 } 1045 1046 func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) { 1047 p.print(stmt.Pos()) 1048 1049 switch s := stmt.(type) { 1050 case *ast.BadStmt: 1051 p.print("BadStmt") 1052 1053 case *ast.DeclStmt: 1054 p.decl(s.Decl) 1055 1056 case *ast.EmptyStmt: 1057 // nothing to do 1058 1059 case *ast.LabeledStmt: 1060 // a "correcting" unindent immediately following a line break 1061 // is applied before the line break if there is no comment 1062 // between (see writeWhitespace) 1063 p.print(unindent) 1064 p.expr(s.Label) 1065 p.print(s.Colon, token.COLON, indent) 1066 if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty { 1067 if !nextIsRBrace { 1068 p.print(newline, e.Pos(), token.SEMICOLON) 1069 break 1070 } 1071 } else { 1072 p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true) 1073 } 1074 p.stmt(s.Stmt, nextIsRBrace) 1075 1076 case *ast.ExprStmt: 1077 const depth = 1 1078 p.expr0(s.X, depth) 1079 1080 case *ast.SendStmt: 1081 const depth = 1 1082 p.expr0(s.Chan, depth) 1083 p.print(blank, s.Arrow, token.ARROW, blank) 1084 p.expr0(s.Value, depth) 1085 1086 case *ast.IncDecStmt: 1087 const depth = 1 1088 p.expr0(s.X, depth+1) 1089 p.print(s.TokPos, s.Tok) 1090 1091 case *ast.AssignStmt: 1092 var depth = 1 1093 if len(s.Lhs) > 1 && len(s.Rhs) > 1 { 1094 depth++ 1095 } 1096 p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos) 1097 p.print(blank, s.TokPos, s.Tok, blank) 1098 p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos) 1099 1100 case *ast.GoStmt: 1101 p.print(token.GO, blank) 1102 p.expr(s.Call) 1103 1104 case *ast.DeferStmt: 1105 p.print(token.DEFER, blank) 1106 p.expr(s.Call) 1107 1108 case *ast.ReturnStmt: 1109 p.print(token.RETURN) 1110 if s.Results != nil { 1111 p.print(blank) 1112 // Use indentList heuristic to make corner cases look 1113 // better (issue 1207). A more systematic approach would 1114 // always indent, but this would cause significant 1115 // reformatting of the code base and not necessarily 1116 // lead to more nicely formatted code in general. 1117 if p.indentList(s.Results) { 1118 p.print(indent) 1119 p.exprList(s.Pos(), s.Results, 1, noIndent, token.NoPos) 1120 p.print(unindent) 1121 } else { 1122 p.exprList(s.Pos(), s.Results, 1, 0, token.NoPos) 1123 } 1124 } 1125 1126 case *ast.BranchStmt: 1127 p.print(s.Tok) 1128 if s.Label != nil { 1129 p.print(blank) 1130 p.expr(s.Label) 1131 } 1132 1133 case *ast.BlockStmt: 1134 p.block(s, 1) 1135 1136 case *ast.IfStmt: 1137 p.print(token.IF) 1138 p.controlClause(false, s.Init, s.Cond, nil) 1139 p.block(s.Body, 1) 1140 if s.Else != nil { 1141 p.print(blank, token.ELSE, blank) 1142 switch s.Else.(type) { 1143 case *ast.BlockStmt, *ast.IfStmt: 1144 p.stmt(s.Else, nextIsRBrace) 1145 default: 1146 p.print(token.LBRACE, indent, formfeed) 1147 p.stmt(s.Else, true) 1148 p.print(unindent, formfeed, token.RBRACE) 1149 } 1150 } 1151 1152 case *ast.CaseClause: 1153 if s.List != nil { 1154 p.print(token.CASE, blank) 1155 p.exprList(s.Pos(), s.List, 1, 0, s.Colon) 1156 } else { 1157 p.print(token.DEFAULT) 1158 } 1159 p.print(s.Colon, token.COLON) 1160 p.stmtList(s.Body, 1, nextIsRBrace) 1161 1162 case *ast.SwitchStmt: 1163 p.print(token.SWITCH) 1164 p.controlClause(false, s.Init, s.Tag, nil) 1165 p.block(s.Body, 0) 1166 1167 case *ast.TypeSwitchStmt: 1168 p.print(token.SWITCH) 1169 if s.Init != nil { 1170 p.print(blank) 1171 p.stmt(s.Init, false) 1172 p.print(token.SEMICOLON) 1173 } 1174 p.print(blank) 1175 p.stmt(s.Assign, false) 1176 p.print(blank) 1177 p.block(s.Body, 0) 1178 1179 case *ast.CommClause: 1180 if s.Comm != nil { 1181 p.print(token.CASE, blank) 1182 p.stmt(s.Comm, false) 1183 } else { 1184 p.print(token.DEFAULT) 1185 } 1186 p.print(s.Colon, token.COLON) 1187 p.stmtList(s.Body, 1, nextIsRBrace) 1188 1189 case *ast.SelectStmt: 1190 p.print(token.SELECT, blank) 1191 body := s.Body 1192 if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) { 1193 // print empty select statement w/o comments on one line 1194 p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE) 1195 } else { 1196 p.block(body, 0) 1197 } 1198 1199 case *ast.ForStmt: 1200 p.print(token.FOR) 1201 p.controlClause(true, s.Init, s.Cond, s.Post) 1202 p.block(s.Body, 1) 1203 1204 case *ast.RangeStmt: 1205 p.print(token.FOR, blank) 1206 p.expr(s.Key) 1207 if s.Value != nil { 1208 // use position of value following the comma as 1209 // comma position for correct comment placement 1210 p.print(s.Value.Pos(), token.COMMA, blank) 1211 p.expr(s.Value) 1212 } 1213 p.print(blank, s.TokPos, s.Tok, blank, token.RANGE, blank) 1214 p.expr(stripParens(s.X)) 1215 p.print(blank) 1216 p.block(s.Body, 1) 1217 1218 default: 1219 panic("unreachable") 1220 } 1221 1222 return 1223 } 1224 1225 // ---------------------------------------------------------------------------- 1226 // Declarations 1227 1228 // The keepTypeColumn function determines if the type column of a series of 1229 // consecutive const or var declarations must be kept, or if initialization 1230 // values (V) can be placed in the type column (T) instead. The i'th entry 1231 // in the result slice is true if the type column in spec[i] must be kept. 1232 // 1233 // For example, the declaration: 1234 // 1235 // const ( 1236 // foobar int = 42 // comment 1237 // x = 7 // comment 1238 // foo 1239 // bar = 991 1240 // ) 1241 // 1242 // leads to the type/values matrix below. A run of value columns (V) can 1243 // be moved into the type column if there is no type for any of the values 1244 // in that column (we only move entire columns so that they align properly). 1245 // 1246 // matrix formatted result 1247 // matrix 1248 // T V -> T V -> true there is a T and so the type 1249 // - V - V true column must be kept 1250 // - - - - false 1251 // - V V - false V is moved into T column 1252 // 1253 func keepTypeColumn(specs []ast.Spec) []bool { 1254 m := make([]bool, len(specs)) 1255 1256 populate := func(i, j int, keepType bool) { 1257 if keepType { 1258 for ; i < j; i++ { 1259 m[i] = true 1260 } 1261 } 1262 } 1263 1264 i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run 1265 var keepType bool 1266 for i, s := range specs { 1267 t := s.(*ast.ValueSpec) 1268 if t.Values != nil { 1269 if i0 < 0 { 1270 // start of a run of ValueSpecs with non-nil Values 1271 i0 = i 1272 keepType = false 1273 } 1274 } else { 1275 if i0 >= 0 { 1276 // end of a run 1277 populate(i0, i, keepType) 1278 i0 = -1 1279 } 1280 } 1281 if t.Type != nil { 1282 keepType = true 1283 } 1284 } 1285 if i0 >= 0 { 1286 // end of a run 1287 populate(i0, len(specs), keepType) 1288 } 1289 1290 return m 1291 } 1292 1293 func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) { 1294 p.setComment(s.Doc) 1295 p.identList(s.Names, false) // always present 1296 extraTabs := 3 1297 if s.Type != nil || keepType { 1298 p.print(vtab) 1299 extraTabs-- 1300 } 1301 if s.Type != nil { 1302 p.expr(s.Type) 1303 } 1304 if s.Values != nil { 1305 p.print(vtab, token.ASSIGN, blank) 1306 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos) 1307 extraTabs-- 1308 } 1309 if s.Comment != nil { 1310 for ; extraTabs > 0; extraTabs-- { 1311 p.print(vtab) 1312 } 1313 p.setComment(s.Comment) 1314 } 1315 } 1316 1317 // The parameter n is the number of specs in the group. If doIndent is set, 1318 // multi-line identifier lists in the spec are indented when the first 1319 // linebreak is encountered. 1320 // 1321 func (p *printer) spec(spec ast.Spec, n int, doIndent bool) { 1322 switch s := spec.(type) { 1323 case *ast.ImportSpec: 1324 p.setComment(s.Doc) 1325 if s.Name != nil { 1326 p.expr(s.Name) 1327 p.print(blank) 1328 } 1329 p.expr(s.Path) 1330 p.setComment(s.Comment) 1331 p.print(s.EndPos) 1332 1333 case *ast.ValueSpec: 1334 if n != 1 { 1335 p.internalError("expected n = 1; got", n) 1336 } 1337 p.setComment(s.Doc) 1338 p.identList(s.Names, doIndent) // always present 1339 if s.Type != nil { 1340 p.print(blank) 1341 p.expr(s.Type) 1342 } 1343 if s.Values != nil { 1344 p.print(blank, token.ASSIGN, blank) 1345 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos) 1346 } 1347 p.setComment(s.Comment) 1348 1349 case *ast.TypeSpec: 1350 p.setComment(s.Doc) 1351 p.expr(s.Name) 1352 if n == 1 { 1353 p.print(blank) 1354 } else { 1355 p.print(vtab) 1356 } 1357 p.expr(s.Type) 1358 p.setComment(s.Comment) 1359 1360 default: 1361 panic("unreachable") 1362 } 1363 } 1364 1365 func (p *printer) genDecl(d *ast.GenDecl) { 1366 p.setComment(d.Doc) 1367 p.print(d.Pos(), d.Tok, blank) 1368 1369 if d.Lparen.IsValid() { 1370 // group of parenthesized declarations 1371 p.print(d.Lparen, token.LPAREN) 1372 if n := len(d.Specs); n > 0 { 1373 p.print(indent, formfeed) 1374 if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) { 1375 // two or more grouped const/var declarations: 1376 // determine if the type column must be kept 1377 keepType := keepTypeColumn(d.Specs) 1378 newSection := false 1379 for i, s := range d.Specs { 1380 if i > 0 { 1381 p.linebreak(p.lineFor(s.Pos()), 1, ignore, newSection) 1382 } 1383 p.valueSpec(s.(*ast.ValueSpec), keepType[i]) 1384 newSection = p.isMultiLine(s) 1385 } 1386 } else { 1387 newSection := false 1388 for i, s := range d.Specs { 1389 if i > 0 { 1390 p.linebreak(p.lineFor(s.Pos()), 1, ignore, newSection) 1391 } 1392 p.spec(s, n, false) 1393 newSection = p.isMultiLine(s) 1394 } 1395 } 1396 p.print(unindent, formfeed) 1397 } 1398 p.print(d.Rparen, token.RPAREN) 1399 1400 } else { 1401 // single declaration 1402 p.spec(d.Specs[0], 1, true) 1403 } 1404 } 1405 1406 // nodeSize determines the size of n in chars after formatting. 1407 // The result is <= maxSize if the node fits on one line with at 1408 // most maxSize chars and the formatted output doesn't contain 1409 // any control chars. Otherwise, the result is > maxSize. 1410 // 1411 func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { 1412 // nodeSize invokes the printer, which may invoke nodeSize 1413 // recursively. For deep composite literal nests, this can 1414 // lead to an exponential algorithm. Remember previous 1415 // results to prune the recursion (was issue 1628). 1416 if size, found := p.nodeSizes[n]; found { 1417 return size 1418 } 1419 1420 size = maxSize + 1 // assume n doesn't fit 1421 p.nodeSizes[n] = size 1422 1423 // nodeSize computation must be independent of particular 1424 // style so that we always get the same decision; print 1425 // in RawFormat 1426 cfg := Config{Mode: RawFormat} 1427 var buf bytes.Buffer 1428 if err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil { 1429 return 1430 } 1431 if buf.Len() <= maxSize { 1432 for _, ch := range buf.Bytes() { 1433 if ch < ' ' { 1434 return 1435 } 1436 } 1437 size = buf.Len() // n fits 1438 p.nodeSizes[n] = size 1439 } 1440 return 1441 } 1442 1443 // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's. 1444 func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int { 1445 pos1 := b.Pos() 1446 pos2 := b.Rbrace 1447 if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) { 1448 // opening and closing brace are on different lines - don't make it a one-liner 1449 return maxSize + 1 1450 } 1451 if len(b.List) > 5 || p.commentBefore(p.posFor(pos2)) { 1452 // too many statements or there is a comment inside - don't make it a one-liner 1453 return maxSize + 1 1454 } 1455 // otherwise, estimate body size 1456 bodySize := 0 1457 for i, s := range b.List { 1458 if i > 0 { 1459 bodySize += 2 // space for a semicolon and blank 1460 } 1461 bodySize += p.nodeSize(s, maxSize) 1462 } 1463 return bodySize 1464 } 1465 1466 // adjBlock prints an "adjacent" block (e.g., a for-loop or function body) following 1467 // a header (e.g., a for-loop control clause or function signature) of given headerSize. 1468 // If the header's and block's size are "small enough" and the block is "simple enough", 1469 // the block is printed on the current line, without line breaks, spaced from the header 1470 // by sep. Otherwise the block's opening "{" is printed on the current line, followed by 1471 // lines for the block's statements and its closing "}". 1472 // 1473 func (p *printer) adjBlock(headerSize int, sep whiteSpace, b *ast.BlockStmt) { 1474 if b == nil { 1475 return 1476 } 1477 1478 const maxSize = 100 1479 if headerSize+p.bodySize(b, maxSize) <= maxSize { 1480 p.print(sep, b.Lbrace, token.LBRACE) 1481 if len(b.List) > 0 { 1482 p.print(blank) 1483 for i, s := range b.List { 1484 if i > 0 { 1485 p.print(token.SEMICOLON, blank) 1486 } 1487 p.stmt(s, i == len(b.List)-1) 1488 } 1489 p.print(blank) 1490 } 1491 p.print(b.Rbrace, token.RBRACE) 1492 return 1493 } 1494 1495 if sep != ignore { 1496 p.print(blank) // always use blank 1497 } 1498 p.block(b, 1) 1499 } 1500 1501 // distanceFrom returns the column difference between from and p.pos (the current 1502 // estimated position) if both are on the same line; if they are on different lines 1503 // (or unknown) the result is infinity. 1504 func (p *printer) distanceFrom(from token.Pos) int { 1505 if from.IsValid() && p.pos.IsValid() { 1506 if f := p.posFor(from); f.Line == p.pos.Line { 1507 return p.pos.Column - f.Column 1508 } 1509 } 1510 return infinity 1511 } 1512 1513 func (p *printer) funcDecl(d *ast.FuncDecl) { 1514 p.setComment(d.Doc) 1515 p.print(d.Pos(), token.FUNC, blank) 1516 if d.Recv != nil { 1517 p.parameters(d.Recv) // method: print receiver 1518 p.print(blank) 1519 } 1520 p.expr(d.Name) 1521 p.signature(d.Type.Params, d.Type.Results) 1522 p.adjBlock(p.distanceFrom(d.Pos()), vtab, d.Body) 1523 } 1524 1525 func (p *printer) decl(decl ast.Decl) { 1526 switch d := decl.(type) { 1527 case *ast.BadDecl: 1528 p.print(d.Pos(), "BadDecl") 1529 case *ast.GenDecl: 1530 p.genDecl(d) 1531 case *ast.FuncDecl: 1532 p.funcDecl(d) 1533 default: 1534 panic("unreachable") 1535 } 1536 } 1537 1538 // ---------------------------------------------------------------------------- 1539 // Files 1540 1541 func declToken(decl ast.Decl) (tok token.Token) { 1542 tok = token.ILLEGAL 1543 switch d := decl.(type) { 1544 case *ast.GenDecl: 1545 tok = d.Tok 1546 case *ast.FuncDecl: 1547 tok = token.FUNC 1548 } 1549 return 1550 } 1551 1552 func (p *printer) declList(list []ast.Decl) { 1553 tok := token.ILLEGAL 1554 for _, d := range list { 1555 prev := tok 1556 tok = declToken(d) 1557 // If the declaration token changed (e.g., from CONST to TYPE) 1558 // or the next declaration has documentation associated with it, 1559 // print an empty line between top-level declarations. 1560 // (because p.linebreak is called with the position of d, which 1561 // is past any documentation, the minimum requirement is satisfied 1562 // even w/o the extra getDoc(d) nil-check - leave it in case the 1563 // linebreak logic improves - there's already a TODO). 1564 if len(p.output) > 0 { 1565 // only print line break if we are not at the beginning of the output 1566 // (i.e., we are not printing only a partial program) 1567 min := 1 1568 if prev != tok || getDoc(d) != nil { 1569 min = 2 1570 } 1571 p.linebreak(p.lineFor(d.Pos()), min, ignore, false) 1572 } 1573 p.decl(d) 1574 } 1575 } 1576 1577 func (p *printer) file(src *ast.File) { 1578 p.setComment(src.Doc) 1579 p.print(src.Pos(), token.PACKAGE, blank) 1580 p.expr(src.Name) 1581 p.declList(src.Decls) 1582 p.print(newline) 1583 }