github.com/rohankumardubey/syslog-redirector-golang@v0.0.0-20140320174030-4859f03d829a/src/pkg/image/jpeg/scan.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package jpeg 6 7 import ( 8 "image" 9 "io" 10 ) 11 12 // makeImg allocates and initializes the destination image. 13 func (d *decoder) makeImg(h0, v0, mxx, myy int) { 14 if d.nComp == nGrayComponent { 15 m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy)) 16 d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) 17 return 18 } 19 var subsampleRatio image.YCbCrSubsampleRatio 20 switch { 21 case h0 == 1 && v0 == 1: 22 subsampleRatio = image.YCbCrSubsampleRatio444 23 case h0 == 1 && v0 == 2: 24 subsampleRatio = image.YCbCrSubsampleRatio440 25 case h0 == 2 && v0 == 1: 26 subsampleRatio = image.YCbCrSubsampleRatio422 27 case h0 == 2 && v0 == 2: 28 subsampleRatio = image.YCbCrSubsampleRatio420 29 default: 30 panic("unreachable") 31 } 32 m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio) 33 d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr) 34 } 35 36 // Specified in section B.2.3. 37 func (d *decoder) processSOS(n int) error { 38 if d.nComp == 0 { 39 return FormatError("missing SOF marker") 40 } 41 if n < 6 || 4+2*d.nComp < n || n%2 != 0 { 42 return FormatError("SOS has wrong length") 43 } 44 _, err := io.ReadFull(d.r, d.tmp[:n]) 45 if err != nil { 46 return err 47 } 48 nComp := int(d.tmp[0]) 49 if n != 4+2*nComp { 50 return FormatError("SOS length inconsistent with number of components") 51 } 52 var scan [nColorComponent]struct { 53 compIndex uint8 54 td uint8 // DC table selector. 55 ta uint8 // AC table selector. 56 } 57 for i := 0; i < nComp; i++ { 58 cs := d.tmp[1+2*i] // Component selector. 59 compIndex := -1 60 for j, comp := range d.comp { 61 if cs == comp.c { 62 compIndex = j 63 } 64 } 65 if compIndex < 0 { 66 return FormatError("unknown component selector") 67 } 68 scan[i].compIndex = uint8(compIndex) 69 scan[i].td = d.tmp[2+2*i] >> 4 70 scan[i].ta = d.tmp[2+2*i] & 0x0f 71 } 72 73 // zigStart and zigEnd are the spectral selection bounds. 74 // ah and al are the successive approximation high and low values. 75 // The spec calls these values Ss, Se, Ah and Al. 76 // 77 // For progressive JPEGs, these are the two more-or-less independent 78 // aspects of progression. Spectral selection progression is when not 79 // all of a block's 64 DCT coefficients are transmitted in one pass. 80 // For example, three passes could transmit coefficient 0 (the DC 81 // component), coefficients 1-5, and coefficients 6-63, in zig-zag 82 // order. Successive approximation is when not all of the bits of a 83 // band of coefficients are transmitted in one pass. For example, 84 // three passes could transmit the 6 most significant bits, followed 85 // by the second-least significant bit, followed by the least 86 // significant bit. 87 // 88 // For baseline JPEGs, these parameters are hard-coded to 0/63/0/0. 89 zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0) 90 if d.progressive { 91 zigStart = int32(d.tmp[1+2*nComp]) 92 zigEnd = int32(d.tmp[2+2*nComp]) 93 ah = uint32(d.tmp[3+2*nComp] >> 4) 94 al = uint32(d.tmp[3+2*nComp] & 0x0f) 95 if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd { 96 return FormatError("bad spectral selection bounds") 97 } 98 if zigStart != 0 && nComp != 1 { 99 return FormatError("progressive AC coefficients for more than one component") 100 } 101 if ah != 0 && ah != al+1 { 102 return FormatError("bad successive approximation values") 103 } 104 } 105 106 // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. 107 h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. 108 mxx := (d.width + 8*h0 - 1) / (8 * h0) 109 myy := (d.height + 8*v0 - 1) / (8 * v0) 110 if d.img1 == nil && d.img3 == nil { 111 d.makeImg(h0, v0, mxx, myy) 112 } 113 if d.progressive { 114 for i := 0; i < nComp; i++ { 115 compIndex := scan[i].compIndex 116 if d.progCoeffs[compIndex] == nil { 117 d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v) 118 } 119 } 120 } 121 122 d.b = bits{} 123 mcu, expectedRST := 0, uint8(rst0Marker) 124 var ( 125 // b is the decoded coefficients, in natural (not zig-zag) order. 126 b block 127 dc [nColorComponent]int32 128 // mx0 and my0 are the location of the current (in terms of 8x8 blocks). 129 // For example, with 4:2:0 chroma subsampling, the block whose top left 130 // pixel co-ordinates are (16, 8) is the third block in the first row: 131 // mx0 is 2 and my0 is 0, even though the pixel is in the second MCU. 132 // TODO(nigeltao): rename mx0 and my0 to bx and by? 133 mx0, my0 int 134 blockCount int 135 ) 136 for my := 0; my < myy; my++ { 137 for mx := 0; mx < mxx; mx++ { 138 for i := 0; i < nComp; i++ { 139 compIndex := scan[i].compIndex 140 qt := &d.quant[d.comp[compIndex].tq] 141 for j := 0; j < d.comp[compIndex].h*d.comp[compIndex].v; j++ { 142 // The blocks are traversed one MCU at a time. For 4:2:0 chroma 143 // subsampling, there are four Y 8x8 blocks in every 16x16 MCU. 144 // For a baseline 32x16 pixel image, the Y blocks visiting order is: 145 // 0 1 4 5 146 // 2 3 6 7 147 // 148 // For progressive images, the DC data blocks (zigStart == 0) are traversed 149 // as above, but AC data blocks are traversed left to right, top to bottom: 150 // 0 1 2 3 151 // 4 5 6 7 152 // 153 // To further complicate matters, there is no AC data for any blocks that 154 // are inside the image at the MCU level but outside the image at the pixel 155 // level. For example, a 24x16 pixel 4:2:0 progressive image consists of 156 // two 16x16 MCUs. The earlier scans will process 8 Y blocks: 157 // 0 1 4 5 158 // 2 3 6 7 159 // The later scans will process only 6 Y blocks: 160 // 0 1 2 161 // 3 4 5 162 if zigStart == 0 { 163 mx0, my0 = d.comp[compIndex].h*mx, d.comp[compIndex].v*my 164 if h0 == 1 { 165 my0 += j 166 } else { 167 mx0 += j % 2 168 my0 += j / 2 169 } 170 } else { 171 q := mxx * d.comp[compIndex].h 172 mx0 = blockCount % q 173 my0 = blockCount / q 174 blockCount++ 175 if mx0*8 >= d.width || my0*8 >= d.height { 176 continue 177 } 178 } 179 180 // Load the previous partially decoded coefficients, if applicable. 181 if d.progressive { 182 b = d.progCoeffs[compIndex][my0*mxx*d.comp[compIndex].h+mx0] 183 } else { 184 b = block{} 185 } 186 187 if ah != 0 { 188 if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil { 189 return err 190 } 191 } else { 192 zig := zigStart 193 if zig == 0 { 194 zig++ 195 // Decode the DC coefficient, as specified in section F.2.2.1. 196 value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) 197 if err != nil { 198 return err 199 } 200 if value > 16 { 201 return UnsupportedError("excessive DC component") 202 } 203 dcDelta, err := d.receiveExtend(value) 204 if err != nil { 205 return err 206 } 207 dc[compIndex] += dcDelta 208 b[0] = dc[compIndex] << al 209 } 210 211 if zig <= zigEnd && d.eobRun > 0 { 212 d.eobRun-- 213 } else { 214 // Decode the AC coefficients, as specified in section F.2.2.2. 215 for ; zig <= zigEnd; zig++ { 216 value, err := d.decodeHuffman(&d.huff[acTable][scan[i].ta]) 217 if err != nil { 218 return err 219 } 220 val0 := value >> 4 221 val1 := value & 0x0f 222 if val1 != 0 { 223 zig += int32(val0) 224 if zig > zigEnd { 225 break 226 } 227 ac, err := d.receiveExtend(val1) 228 if err != nil { 229 return err 230 } 231 b[unzig[zig]] = ac << al 232 } else { 233 if val0 != 0x0f { 234 d.eobRun = uint16(1 << val0) 235 if val0 != 0 { 236 bits, err := d.decodeBits(int(val0)) 237 if err != nil { 238 return err 239 } 240 d.eobRun |= uint16(bits) 241 } 242 d.eobRun-- 243 break 244 } 245 zig += 0x0f 246 } 247 } 248 } 249 } 250 251 if d.progressive { 252 if zigEnd != blockSize-1 || al != 0 { 253 // We haven't completely decoded this 8x8 block. Save the coefficients. 254 d.progCoeffs[compIndex][my0*mxx*d.comp[compIndex].h+mx0] = b 255 // At this point, we could execute the rest of the loop body to dequantize and 256 // perform the inverse DCT, to save early stages of a progressive image to the 257 // *image.YCbCr buffers (the whole point of progressive encoding), but in Go, 258 // the jpeg.Decode function does not return until the entire image is decoded, 259 // so we "continue" here to avoid wasted computation. 260 continue 261 } 262 } 263 264 // Dequantize, perform the inverse DCT and store the block to the image. 265 for zig := 0; zig < blockSize; zig++ { 266 b[unzig[zig]] *= qt[zig] 267 } 268 idct(&b) 269 dst, stride := []byte(nil), 0 270 if d.nComp == nGrayComponent { 271 dst, stride = d.img1.Pix[8*(my0*d.img1.Stride+mx0):], d.img1.Stride 272 } else { 273 switch compIndex { 274 case 0: 275 dst, stride = d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride 276 case 1: 277 dst, stride = d.img3.Cb[8*(my0*d.img3.CStride+mx0):], d.img3.CStride 278 case 2: 279 dst, stride = d.img3.Cr[8*(my0*d.img3.CStride+mx0):], d.img3.CStride 280 default: 281 return UnsupportedError("too many components") 282 } 283 } 284 // Level shift by +128, clip to [0, 255], and write to dst. 285 for y := 0; y < 8; y++ { 286 y8 := y * 8 287 yStride := y * stride 288 for x := 0; x < 8; x++ { 289 c := b[y8+x] 290 if c < -128 { 291 c = 0 292 } else if c > 127 { 293 c = 255 294 } else { 295 c += 128 296 } 297 dst[yStride+x] = uint8(c) 298 } 299 } 300 } // for j 301 } // for i 302 mcu++ 303 if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { 304 // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, 305 // but this one assumes well-formed input, and hence the restart marker follows immediately. 306 _, err := io.ReadFull(d.r, d.tmp[0:2]) 307 if err != nil { 308 return err 309 } 310 if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { 311 return FormatError("bad RST marker") 312 } 313 expectedRST++ 314 if expectedRST == rst7Marker+1 { 315 expectedRST = rst0Marker 316 } 317 // Reset the Huffman decoder. 318 d.b = bits{} 319 // Reset the DC components, as per section F.2.1.3.1. 320 dc = [nColorComponent]int32{} 321 // Reset the progressive decoder state, as per section G.1.2.2. 322 d.eobRun = 0 323 } 324 } // for mx 325 } // for my 326 327 return nil 328 } 329 330 // refine decodes a successive approximation refinement block, as specified in 331 // section G.1.2. 332 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error { 333 // Refining a DC component is trivial. 334 if zigStart == 0 { 335 if zigEnd != 0 { 336 panic("unreachable") 337 } 338 bit, err := d.decodeBit() 339 if err != nil { 340 return err 341 } 342 if bit { 343 b[0] |= delta 344 } 345 return nil 346 } 347 348 // Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3. 349 zig := zigStart 350 if d.eobRun == 0 { 351 loop: 352 for ; zig <= zigEnd; zig++ { 353 z := int32(0) 354 value, err := d.decodeHuffman(h) 355 if err != nil { 356 return err 357 } 358 val0 := value >> 4 359 val1 := value & 0x0f 360 361 switch val1 { 362 case 0: 363 if val0 != 0x0f { 364 d.eobRun = uint16(1 << val0) 365 if val0 != 0 { 366 bits, err := d.decodeBits(int(val0)) 367 if err != nil { 368 return err 369 } 370 d.eobRun |= uint16(bits) 371 } 372 break loop 373 } 374 case 1: 375 z = delta 376 bit, err := d.decodeBit() 377 if err != nil { 378 return err 379 } 380 if !bit { 381 z = -z 382 } 383 default: 384 return FormatError("unexpected Huffman code") 385 } 386 387 zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta) 388 if err != nil { 389 return err 390 } 391 if zig > zigEnd { 392 return FormatError("too many coefficients") 393 } 394 if z != 0 { 395 b[unzig[zig]] = z 396 } 397 } 398 } 399 if d.eobRun > 0 { 400 d.eobRun-- 401 if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil { 402 return err 403 } 404 } 405 return nil 406 } 407 408 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0, 409 // the first nz zero entries are skipped over. 410 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) { 411 for ; zig <= zigEnd; zig++ { 412 u := unzig[zig] 413 if b[u] == 0 { 414 if nz == 0 { 415 break 416 } 417 nz-- 418 continue 419 } 420 bit, err := d.decodeBit() 421 if err != nil { 422 return 0, err 423 } 424 if !bit { 425 continue 426 } 427 if b[u] >= 0 { 428 b[u] += delta 429 } else { 430 b[u] -= delta 431 } 432 } 433 return zig, nil 434 }