github.com/rohankumardubey/syslog-redirector-golang@v0.0.0-20140320174030-4859f03d829a/src/pkg/runtime/malloc.goc (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // See malloc.h for overview.
     6  //
     7  // TODO(rsc): double-check stats.
     8  
     9  package runtime
    10  #include "runtime.h"
    11  #include "arch_GOARCH.h"
    12  #include "malloc.h"
    13  #include "type.h"
    14  #include "typekind.h"
    15  #include "race.h"
    16  #include "stack.h"
    17  #include "../../cmd/ld/textflag.h"
    18  
    19  // Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
    20  #pragma dataflag NOPTR
    21  MHeap runtime·mheap;
    22  
    23  int32	runtime·checking;
    24  
    25  extern MStats mstats;	// defined in zruntime_def_$GOOS_$GOARCH.go
    26  
    27  extern volatile intgo runtime·MemProfileRate;
    28  
    29  // Allocate an object of at least size bytes.
    30  // Small objects are allocated from the per-thread cache's free lists.
    31  // Large objects (> 32 kB) are allocated straight from the heap.
    32  // If the block will be freed with runtime·free(), typ must be 0.
    33  void*
    34  runtime·mallocgc(uintptr size, uintptr typ, uint32 flag)
    35  {
    36  	int32 sizeclass;
    37  	intgo rate;
    38  	MCache *c;
    39  	MCacheList *l;
    40  	uintptr npages;
    41  	MSpan *s;
    42  	MLink *v;
    43  
    44  	if(size == 0) {
    45  		// All 0-length allocations use this pointer.
    46  		// The language does not require the allocations to
    47  		// have distinct values.
    48  		return &runtime·zerobase;
    49  	}
    50  	if(m->mallocing)
    51  		runtime·throw("malloc/free - deadlock");
    52  	// Disable preemption during settype_flush.
    53  	// We can not use m->mallocing for this, because settype_flush calls mallocgc.
    54  	m->locks++;
    55  	m->mallocing = 1;
    56  
    57  	if(DebugTypeAtBlockEnd)
    58  		size += sizeof(uintptr);
    59  
    60  	c = m->mcache;
    61  	if(size <= MaxSmallSize) {
    62  		// Allocate from mcache free lists.
    63  		// Inlined version of SizeToClass().
    64  		if(size <= 1024-8)
    65  			sizeclass = runtime·size_to_class8[(size+7)>>3];
    66  		else
    67  			sizeclass = runtime·size_to_class128[(size-1024+127) >> 7];
    68  		size = runtime·class_to_size[sizeclass];
    69  		l = &c->list[sizeclass];
    70  		if(l->list == nil)
    71  			runtime·MCache_Refill(c, sizeclass);
    72  		v = l->list;
    73  		l->list = v->next;
    74  		l->nlist--;
    75  		if(!(flag & FlagNoZero)) {
    76  			v->next = nil;
    77  			// block is zeroed iff second word is zero ...
    78  			if(size > sizeof(uintptr) && ((uintptr*)v)[1] != 0)
    79  				runtime·memclr((byte*)v, size);
    80  		}
    81  		c->local_cachealloc += size;
    82  	} else {
    83  		// TODO(rsc): Report tracebacks for very large allocations.
    84  
    85  		// Allocate directly from heap.
    86  		npages = size >> PageShift;
    87  		if((size & PageMask) != 0)
    88  			npages++;
    89  		s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero));
    90  		if(s == nil)
    91  			runtime·throw("out of memory");
    92  		s->limit = (byte*)(s->start<<PageShift) + size;
    93  		size = npages<<PageShift;
    94  		v = (void*)(s->start << PageShift);
    95  
    96  		// setup for mark sweep
    97  		runtime·markspan(v, 0, 0, true);
    98  	}
    99  
   100  	if(!(flag & FlagNoGC))
   101  		runtime·markallocated(v, size, (flag&FlagNoScan) != 0);
   102  
   103  	if(DebugTypeAtBlockEnd)
   104  		*(uintptr*)((uintptr)v+size-sizeof(uintptr)) = typ;
   105  
   106  	// TODO: save type even if FlagNoScan?  Potentially expensive but might help
   107  	// heap profiling/tracing.
   108  	if(UseSpanType && !(flag & FlagNoScan) && typ != 0) {
   109  		uintptr *buf, i;
   110  
   111  		buf = m->settype_buf;
   112  		i = m->settype_bufsize;
   113  		buf[i++] = (uintptr)v;
   114  		buf[i++] = typ;
   115  		m->settype_bufsize = i;
   116  	}
   117  
   118  	m->mallocing = 0;
   119  	if(UseSpanType && !(flag & FlagNoScan) && typ != 0 && m->settype_bufsize == nelem(m->settype_buf))
   120  		runtime·settype_flush(m);
   121  	m->locks--;
   122  	if(m->locks == 0 && g->preempt)  // restore the preemption request in case we've cleared it in newstack
   123  		g->stackguard0 = StackPreempt;
   124  
   125  	if(!(flag & FlagNoProfiling) && (rate = runtime·MemProfileRate) > 0) {
   126  		if(size >= rate)
   127  			goto profile;
   128  		if(m->mcache->next_sample > size)
   129  			m->mcache->next_sample -= size;
   130  		else {
   131  			// pick next profile time
   132  			// If you change this, also change allocmcache.
   133  			if(rate > 0x3fffffff)	// make 2*rate not overflow
   134  				rate = 0x3fffffff;
   135  			m->mcache->next_sample = runtime·fastrand1() % (2*rate);
   136  		profile:
   137  			runtime·setblockspecial(v, true);
   138  			runtime·MProf_Malloc(v, size);
   139  		}
   140  	}
   141  
   142  	if(!(flag & FlagNoInvokeGC) && mstats.heap_alloc >= mstats.next_gc)
   143  		runtime·gc(0);
   144  
   145  	if(raceenabled)
   146  		runtime·racemalloc(v, size);
   147  	return v;
   148  }
   149  
   150  void*
   151  runtime·malloc(uintptr size)
   152  {
   153  	return runtime·mallocgc(size, 0, FlagNoInvokeGC);
   154  }
   155  
   156  // Free the object whose base pointer is v.
   157  void
   158  runtime·free(void *v)
   159  {
   160  	int32 sizeclass;
   161  	MSpan *s;
   162  	MCache *c;
   163  	uint32 prof;
   164  	uintptr size;
   165  
   166  	if(v == nil)
   167  		return;
   168  	
   169  	// If you change this also change mgc0.c:/^sweep,
   170  	// which has a copy of the guts of free.
   171  
   172  	if(m->mallocing)
   173  		runtime·throw("malloc/free - deadlock");
   174  	m->mallocing = 1;
   175  
   176  	if(!runtime·mlookup(v, nil, nil, &s)) {
   177  		runtime·printf("free %p: not an allocated block\n", v);
   178  		runtime·throw("free runtime·mlookup");
   179  	}
   180  	prof = runtime·blockspecial(v);
   181  
   182  	if(raceenabled)
   183  		runtime·racefree(v);
   184  
   185  	// Find size class for v.
   186  	sizeclass = s->sizeclass;
   187  	c = m->mcache;
   188  	if(sizeclass == 0) {
   189  		// Large object.
   190  		size = s->npages<<PageShift;
   191  		*(uintptr*)(s->start<<PageShift) = (uintptr)0xfeedfeedfeedfeedll;	// mark as "needs to be zeroed"
   192  		// Must mark v freed before calling unmarkspan and MHeap_Free:
   193  		// they might coalesce v into other spans and change the bitmap further.
   194  		runtime·markfreed(v, size);
   195  		runtime·unmarkspan(v, 1<<PageShift);
   196  		runtime·MHeap_Free(&runtime·mheap, s, 1);
   197  		c->local_nlargefree++;
   198  		c->local_largefree += size;
   199  	} else {
   200  		// Small object.
   201  		size = runtime·class_to_size[sizeclass];
   202  		if(size > sizeof(uintptr))
   203  			((uintptr*)v)[1] = (uintptr)0xfeedfeedfeedfeedll;	// mark as "needs to be zeroed"
   204  		// Must mark v freed before calling MCache_Free:
   205  		// it might coalesce v and other blocks into a bigger span
   206  		// and change the bitmap further.
   207  		runtime·markfreed(v, size);
   208  		c->local_nsmallfree[sizeclass]++;
   209  		runtime·MCache_Free(c, v, sizeclass, size);
   210  	}
   211  	if(prof)
   212  		runtime·MProf_Free(v, size);
   213  	m->mallocing = 0;
   214  }
   215  
   216  int32
   217  runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
   218  {
   219  	uintptr n, i;
   220  	byte *p;
   221  	MSpan *s;
   222  
   223  	m->mcache->local_nlookup++;
   224  	if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) {
   225  		// purge cache stats to prevent overflow
   226  		runtime·lock(&runtime·mheap);
   227  		runtime·purgecachedstats(m->mcache);
   228  		runtime·unlock(&runtime·mheap);
   229  	}
   230  
   231  	s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
   232  	if(sp)
   233  		*sp = s;
   234  	if(s == nil) {
   235  		runtime·checkfreed(v, 1);
   236  		if(base)
   237  			*base = nil;
   238  		if(size)
   239  			*size = 0;
   240  		return 0;
   241  	}
   242  
   243  	p = (byte*)((uintptr)s->start<<PageShift);
   244  	if(s->sizeclass == 0) {
   245  		// Large object.
   246  		if(base)
   247  			*base = p;
   248  		if(size)
   249  			*size = s->npages<<PageShift;
   250  		return 1;
   251  	}
   252  
   253  	n = s->elemsize;
   254  	if(base) {
   255  		i = ((byte*)v - p)/n;
   256  		*base = p + i*n;
   257  	}
   258  	if(size)
   259  		*size = n;
   260  
   261  	return 1;
   262  }
   263  
   264  MCache*
   265  runtime·allocmcache(void)
   266  {
   267  	intgo rate;
   268  	MCache *c;
   269  
   270  	runtime·lock(&runtime·mheap);
   271  	c = runtime·FixAlloc_Alloc(&runtime·mheap.cachealloc);
   272  	runtime·unlock(&runtime·mheap);
   273  	runtime·memclr((byte*)c, sizeof(*c));
   274  
   275  	// Set first allocation sample size.
   276  	rate = runtime·MemProfileRate;
   277  	if(rate > 0x3fffffff)	// make 2*rate not overflow
   278  		rate = 0x3fffffff;
   279  	if(rate != 0)
   280  		c->next_sample = runtime·fastrand1() % (2*rate);
   281  
   282  	return c;
   283  }
   284  
   285  void
   286  runtime·freemcache(MCache *c)
   287  {
   288  	runtime·MCache_ReleaseAll(c);
   289  	runtime·lock(&runtime·mheap);
   290  	runtime·purgecachedstats(c);
   291  	runtime·FixAlloc_Free(&runtime·mheap.cachealloc, c);
   292  	runtime·unlock(&runtime·mheap);
   293  }
   294  
   295  void
   296  runtime·purgecachedstats(MCache *c)
   297  {
   298  	MHeap *h;
   299  	int32 i;
   300  
   301  	// Protected by either heap or GC lock.
   302  	h = &runtime·mheap;
   303  	mstats.heap_alloc += c->local_cachealloc;
   304  	c->local_cachealloc = 0;
   305  	mstats.nlookup += c->local_nlookup;
   306  	c->local_nlookup = 0;
   307  	h->largefree += c->local_largefree;
   308  	c->local_largefree = 0;
   309  	h->nlargefree += c->local_nlargefree;
   310  	c->local_nlargefree = 0;
   311  	for(i=0; i<nelem(c->local_nsmallfree); i++) {
   312  		h->nsmallfree[i] += c->local_nsmallfree[i];
   313  		c->local_nsmallfree[i] = 0;
   314  	}
   315  }
   316  
   317  uintptr runtime·sizeof_C_MStats = sizeof(MStats);
   318  
   319  #define MaxArena32 (2U<<30)
   320  
   321  void
   322  runtime·mallocinit(void)
   323  {
   324  	byte *p;
   325  	uintptr arena_size, bitmap_size, spans_size;
   326  	extern byte end[];
   327  	byte *want;
   328  	uintptr limit;
   329  	uint64 i;
   330  
   331  	p = nil;
   332  	arena_size = 0;
   333  	bitmap_size = 0;
   334  	spans_size = 0;
   335  
   336  	// for 64-bit build
   337  	USED(p);
   338  	USED(arena_size);
   339  	USED(bitmap_size);
   340  	USED(spans_size);
   341  
   342  	runtime·InitSizes();
   343  
   344  	// limit = runtime·memlimit();
   345  	// See https://code.google.com/p/go/issues/detail?id=5049
   346  	// TODO(rsc): Fix after 1.1.
   347  	limit = 0;
   348  
   349  	// Set up the allocation arena, a contiguous area of memory where
   350  	// allocated data will be found.  The arena begins with a bitmap large
   351  	// enough to hold 4 bits per allocated word.
   352  	if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
   353  		// On a 64-bit machine, allocate from a single contiguous reservation.
   354  		// 128 GB (MaxMem) should be big enough for now.
   355  		//
   356  		// The code will work with the reservation at any address, but ask
   357  		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
   358  		// Allocating a 128 GB region takes away 37 bits, and the amd64
   359  		// doesn't let us choose the top 17 bits, so that leaves the 11 bits
   360  		// in the middle of 0x00c0 for us to choose.  Choosing 0x00c0 means
   361  		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
   362  		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
   363  		// UTF-8 sequences, and they are otherwise as far away from 
   364  		// ff (likely a common byte) as possible.  If that fails, we try other 0xXXc0
   365  		// addresses.  An earlier attempt to use 0x11f8 caused out of memory errors
   366  		// on OS X during thread allocations.  0x00c0 causes conflicts with
   367  		// AddressSanitizer which reserves all memory up to 0x0100.
   368  		// These choices are both for debuggability and to reduce the
   369  		// odds of the conservative garbage collector not collecting memory
   370  		// because some non-pointer block of memory had a bit pattern
   371  		// that matched a memory address.
   372  		//
   373  		// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
   374  		// but it hardly matters: e0 00 is not valid UTF-8 either.
   375  		//
   376  		// If this fails we fall back to the 32 bit memory mechanism
   377  		arena_size = MaxMem;
   378  		bitmap_size = arena_size / (sizeof(void*)*8/4);
   379  		spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
   380  		spans_size = ROUND(spans_size, PageSize);
   381  		for(i = 0; i <= 0x7f; i++) {
   382  			p = (void*)(i<<40 | 0x00c0ULL<<32);
   383  			p = runtime·SysReserve(p, bitmap_size + spans_size + arena_size);
   384  			if(p != nil)
   385  				break;
   386  		}
   387  	}
   388  	if (p == nil) {
   389  		// On a 32-bit machine, we can't typically get away
   390  		// with a giant virtual address space reservation.
   391  		// Instead we map the memory information bitmap
   392  		// immediately after the data segment, large enough
   393  		// to handle another 2GB of mappings (256 MB),
   394  		// along with a reservation for another 512 MB of memory.
   395  		// When that gets used up, we'll start asking the kernel
   396  		// for any memory anywhere and hope it's in the 2GB
   397  		// following the bitmap (presumably the executable begins
   398  		// near the bottom of memory, so we'll have to use up
   399  		// most of memory before the kernel resorts to giving out
   400  		// memory before the beginning of the text segment).
   401  		//
   402  		// Alternatively we could reserve 512 MB bitmap, enough
   403  		// for 4GB of mappings, and then accept any memory the
   404  		// kernel threw at us, but normally that's a waste of 512 MB
   405  		// of address space, which is probably too much in a 32-bit world.
   406  		bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
   407  		arena_size = 512<<20;
   408  		spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]);
   409  		if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
   410  			bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
   411  			arena_size = bitmap_size * 8;
   412  			spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
   413  		}
   414  		spans_size = ROUND(spans_size, PageSize);
   415  
   416  		// SysReserve treats the address we ask for, end, as a hint,
   417  		// not as an absolute requirement.  If we ask for the end
   418  		// of the data segment but the operating system requires
   419  		// a little more space before we can start allocating, it will
   420  		// give out a slightly higher pointer.  Except QEMU, which
   421  		// is buggy, as usual: it won't adjust the pointer upward.
   422  		// So adjust it upward a little bit ourselves: 1/4 MB to get
   423  		// away from the running binary image and then round up
   424  		// to a MB boundary.
   425  		want = (byte*)ROUND((uintptr)end + (1<<18), 1<<20);
   426  		p = runtime·SysReserve(want, bitmap_size + spans_size + arena_size);
   427  		if(p == nil)
   428  			runtime·throw("runtime: cannot reserve arena virtual address space");
   429  		if((uintptr)p & (((uintptr)1<<PageShift)-1))
   430  			runtime·printf("runtime: SysReserve returned unaligned address %p; asked for %p", p,
   431  				bitmap_size+spans_size+arena_size);
   432  	}
   433  	if((uintptr)p & (((uintptr)1<<PageShift)-1))
   434  		runtime·throw("runtime: SysReserve returned unaligned address");
   435  
   436  	runtime·mheap.spans = (MSpan**)p;
   437  	runtime·mheap.bitmap = p + spans_size;
   438  	runtime·mheap.arena_start = p + spans_size + bitmap_size;
   439  	runtime·mheap.arena_used = runtime·mheap.arena_start;
   440  	runtime·mheap.arena_end = runtime·mheap.arena_start + arena_size;
   441  
   442  	// Initialize the rest of the allocator.	
   443  	runtime·MHeap_Init(&runtime·mheap);
   444  	m->mcache = runtime·allocmcache();
   445  
   446  	// See if it works.
   447  	runtime·free(runtime·malloc(1));
   448  }
   449  
   450  void*
   451  runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
   452  {
   453  	byte *p;
   454  
   455  	if(n > h->arena_end - h->arena_used) {
   456  		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
   457  		// Reserve some more space.
   458  		byte *new_end;
   459  		uintptr needed;
   460  
   461  		needed = (uintptr)h->arena_used + n - (uintptr)h->arena_end;
   462  		needed = ROUND(needed, 256<<20);
   463  		new_end = h->arena_end + needed;
   464  		if(new_end <= h->arena_start + MaxArena32) {
   465  			p = runtime·SysReserve(h->arena_end, new_end - h->arena_end);
   466  			if(p == h->arena_end)
   467  				h->arena_end = new_end;
   468  		}
   469  	}
   470  	if(n <= h->arena_end - h->arena_used) {
   471  		// Keep taking from our reservation.
   472  		p = h->arena_used;
   473  		runtime·SysMap(p, n, &mstats.heap_sys);
   474  		h->arena_used += n;
   475  		runtime·MHeap_MapBits(h);
   476  		runtime·MHeap_MapSpans(h);
   477  		if(raceenabled)
   478  			runtime·racemapshadow(p, n);
   479  		return p;
   480  	}
   481  	
   482  	// If using 64-bit, our reservation is all we have.
   483  	if(sizeof(void*) == 8 && (uintptr)h->bitmap >= 0xffffffffU)
   484  		return nil;
   485  
   486  	// On 32-bit, once the reservation is gone we can
   487  	// try to get memory at a location chosen by the OS
   488  	// and hope that it is in the range we allocated bitmap for.
   489  	p = runtime·SysAlloc(n, &mstats.heap_sys);
   490  	if(p == nil)
   491  		return nil;
   492  
   493  	if(p < h->arena_start || p+n - h->arena_start >= MaxArena32) {
   494  		runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
   495  			p, h->arena_start, h->arena_start+MaxArena32);
   496  		runtime·SysFree(p, n, &mstats.heap_sys);
   497  		return nil;
   498  	}
   499  
   500  	if(p+n > h->arena_used) {
   501  		h->arena_used = p+n;
   502  		if(h->arena_used > h->arena_end)
   503  			h->arena_end = h->arena_used;
   504  		runtime·MHeap_MapBits(h);
   505  		runtime·MHeap_MapSpans(h);
   506  		if(raceenabled)
   507  			runtime·racemapshadow(p, n);
   508  	}
   509  	
   510  	return p;
   511  }
   512  
   513  static struct
   514  {
   515  	Lock;
   516  	byte*	pos;
   517  	byte*	end;
   518  } persistent;
   519  
   520  enum
   521  {
   522  	PersistentAllocChunk	= 256<<10,
   523  	PersistentAllocMaxBlock	= 64<<10,  // VM reservation granularity is 64K on windows
   524  };
   525  
   526  // Wrapper around SysAlloc that can allocate small chunks.
   527  // There is no associated free operation.
   528  // Intended for things like function/type/debug-related persistent data.
   529  // If align is 0, uses default align (currently 8).
   530  void*
   531  runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat)
   532  {
   533  	byte *p;
   534  
   535  	if(align != 0) {
   536  		if(align&(align-1))
   537  			runtime·throw("persistentalloc: align is now a power of 2");
   538  		if(align > PageSize)
   539  			runtime·throw("persistentalloc: align is too large");
   540  	} else
   541  		align = 8;
   542  	if(size >= PersistentAllocMaxBlock)
   543  		return runtime·SysAlloc(size, stat);
   544  	runtime·lock(&persistent);
   545  	persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align);
   546  	if(persistent.pos + size > persistent.end) {
   547  		persistent.pos = runtime·SysAlloc(PersistentAllocChunk, &mstats.other_sys);
   548  		if(persistent.pos == nil) {
   549  			runtime·unlock(&persistent);
   550  			runtime·throw("runtime: cannot allocate memory");
   551  		}
   552  		persistent.end = persistent.pos + PersistentAllocChunk;
   553  	}
   554  	p = persistent.pos;
   555  	persistent.pos += size;
   556  	runtime·unlock(&persistent);
   557  	if(stat != &mstats.other_sys) {
   558  		// reaccount the allocation against provided stat
   559  		runtime·xadd64(stat, size);
   560  		runtime·xadd64(&mstats.other_sys, -(uint64)size);
   561  	}
   562  	return p;
   563  }
   564  
   565  static Lock settype_lock;
   566  
   567  void
   568  runtime·settype_flush(M *mp)
   569  {
   570  	uintptr *buf, *endbuf;
   571  	uintptr size, ofs, j, t;
   572  	uintptr ntypes, nbytes2, nbytes3;
   573  	uintptr *data2;
   574  	byte *data3;
   575  	void *v;
   576  	uintptr typ, p;
   577  	MSpan *s;
   578  
   579  	buf = mp->settype_buf;
   580  	endbuf = buf + mp->settype_bufsize;
   581  
   582  	runtime·lock(&settype_lock);
   583  	while(buf < endbuf) {
   584  		v = (void*)*buf;
   585  		*buf = 0;
   586  		buf++;
   587  		typ = *buf;
   588  		buf++;
   589  
   590  		// (Manually inlined copy of runtime·MHeap_Lookup)
   591  		p = (uintptr)v>>PageShift;
   592  		if(sizeof(void*) == 8)
   593  			p -= (uintptr)runtime·mheap.arena_start >> PageShift;
   594  		s = runtime·mheap.spans[p];
   595  
   596  		if(s->sizeclass == 0) {
   597  			s->types.compression = MTypes_Single;
   598  			s->types.data = typ;
   599  			continue;
   600  		}
   601  
   602  		size = s->elemsize;
   603  		ofs = ((uintptr)v - (s->start<<PageShift)) / size;
   604  
   605  		switch(s->types.compression) {
   606  		case MTypes_Empty:
   607  			ntypes = (s->npages << PageShift) / size;
   608  			nbytes3 = 8*sizeof(uintptr) + 1*ntypes;
   609  			data3 = runtime·mallocgc(nbytes3, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
   610  			s->types.compression = MTypes_Bytes;
   611  			s->types.data = (uintptr)data3;
   612  			((uintptr*)data3)[1] = typ;
   613  			data3[8*sizeof(uintptr) + ofs] = 1;
   614  			break;
   615  
   616  		case MTypes_Words:
   617  			((uintptr*)s->types.data)[ofs] = typ;
   618  			break;
   619  
   620  		case MTypes_Bytes:
   621  			data3 = (byte*)s->types.data;
   622  			for(j=1; j<8; j++) {
   623  				if(((uintptr*)data3)[j] == typ) {
   624  					break;
   625  				}
   626  				if(((uintptr*)data3)[j] == 0) {
   627  					((uintptr*)data3)[j] = typ;
   628  					break;
   629  				}
   630  			}
   631  			if(j < 8) {
   632  				data3[8*sizeof(uintptr) + ofs] = j;
   633  			} else {
   634  				ntypes = (s->npages << PageShift) / size;
   635  				nbytes2 = ntypes * sizeof(uintptr);
   636  				data2 = runtime·mallocgc(nbytes2, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
   637  				s->types.compression = MTypes_Words;
   638  				s->types.data = (uintptr)data2;
   639  
   640  				// Move the contents of data3 to data2. Then deallocate data3.
   641  				for(j=0; j<ntypes; j++) {
   642  					t = data3[8*sizeof(uintptr) + j];
   643  					t = ((uintptr*)data3)[t];
   644  					data2[j] = t;
   645  				}
   646  				data2[ofs] = typ;
   647  			}
   648  			break;
   649  		}
   650  	}
   651  	runtime·unlock(&settype_lock);
   652  
   653  	mp->settype_bufsize = 0;
   654  }
   655  
   656  uintptr
   657  runtime·gettype(void *v)
   658  {
   659  	MSpan *s;
   660  	uintptr t, ofs;
   661  	byte *data;
   662  
   663  	s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
   664  	if(s != nil) {
   665  		t = 0;
   666  		switch(s->types.compression) {
   667  		case MTypes_Empty:
   668  			break;
   669  		case MTypes_Single:
   670  			t = s->types.data;
   671  			break;
   672  		case MTypes_Words:
   673  			ofs = (uintptr)v - (s->start<<PageShift);
   674  			t = ((uintptr*)s->types.data)[ofs/s->elemsize];
   675  			break;
   676  		case MTypes_Bytes:
   677  			ofs = (uintptr)v - (s->start<<PageShift);
   678  			data = (byte*)s->types.data;
   679  			t = data[8*sizeof(uintptr) + ofs/s->elemsize];
   680  			t = ((uintptr*)data)[t];
   681  			break;
   682  		default:
   683  			runtime·throw("runtime·gettype: invalid compression kind");
   684  		}
   685  		if(0) {
   686  			runtime·lock(&settype_lock);
   687  			runtime·printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t);
   688  			runtime·unlock(&settype_lock);
   689  		}
   690  		return t;
   691  	}
   692  	return 0;
   693  }
   694  
   695  // Runtime stubs.
   696  
   697  void*
   698  runtime·mal(uintptr n)
   699  {
   700  	return runtime·mallocgc(n, 0, 0);
   701  }
   702  
   703  #pragma textflag NOSPLIT
   704  void
   705  runtime·new(Type *typ, uint8 *ret)
   706  {
   707  	ret = runtime·mallocgc(typ->size, (uintptr)typ | TypeInfo_SingleObject, typ->kind&KindNoPointers ? FlagNoScan : 0);
   708  	FLUSH(&ret);
   709  }
   710  
   711  static void*
   712  cnew(Type *typ, intgo n, int32 objtyp)
   713  {
   714  	if((objtyp&(PtrSize-1)) != objtyp)
   715  		runtime·throw("runtime: invalid objtyp");
   716  	if(n < 0 || (typ->size > 0 && n > MaxMem/typ->size))
   717  		runtime·panicstring("runtime: allocation size out of range");
   718  	return runtime·mallocgc(typ->size*n, (uintptr)typ | objtyp, typ->kind&KindNoPointers ? FlagNoScan : 0);
   719  }
   720  
   721  // same as runtime·new, but callable from C
   722  void*
   723  runtime·cnew(Type *typ)
   724  {
   725  	return cnew(typ, 1, TypeInfo_SingleObject);
   726  }
   727  
   728  void*
   729  runtime·cnewarray(Type *typ, intgo n)
   730  {
   731  	return cnew(typ, n, TypeInfo_Array);
   732  }
   733  
   734  func GC() {
   735  	runtime·gc(1);
   736  }
   737  
   738  func SetFinalizer(obj Eface, finalizer Eface) {
   739  	byte *base;
   740  	uintptr size;
   741  	FuncType *ft;
   742  	int32 i;
   743  	uintptr nret;
   744  	Type *t;
   745  	Type *fint;
   746  	PtrType *ot;
   747  	Iface iface;
   748  
   749  	if(obj.type == nil) {
   750  		runtime·printf("runtime.SetFinalizer: first argument is nil interface\n");
   751  		goto throw;
   752  	}
   753  	if(obj.type->kind != KindPtr) {
   754  		runtime·printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string);
   755  		goto throw;
   756  	}
   757  	if(!runtime·mlookup(obj.data, &base, &size, nil) || obj.data != base) {
   758  		runtime·printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n");
   759  		goto throw;
   760  	}
   761  	nret = 0;
   762  	ot = (PtrType*)obj.type;
   763  	fint = nil;
   764  	if(finalizer.type != nil) {
   765  		if(finalizer.type->kind != KindFunc)
   766  			goto badfunc;
   767  		ft = (FuncType*)finalizer.type;
   768  		if(ft->dotdotdot || ft->in.len != 1)
   769  			goto badfunc;
   770  		fint = *(Type**)ft->in.array;
   771  		if(fint == obj.type) {
   772  			// ok - same type
   773  		} else if(fint->kind == KindPtr && (fint->x == nil || fint->x->name == nil || obj.type->x == nil || obj.type->x->name == nil) && ((PtrType*)fint)->elem == ((PtrType*)obj.type)->elem) {
   774  			// ok - not same type, but both pointers,
   775  			// one or the other is unnamed, and same element type, so assignable.
   776  		} else if(fint->kind == KindInterface && ((InterfaceType*)fint)->mhdr.len == 0) {
   777  			// ok - satisfies empty interface
   778  		} else if(fint->kind == KindInterface && runtime·ifaceE2I2((InterfaceType*)fint, obj, &iface)) {
   779  			// ok - satisfies non-empty interface
   780  		} else
   781  			goto badfunc;
   782  
   783  		// compute size needed for return parameters
   784  		for(i=0; i<ft->out.len; i++) {
   785  			t = ((Type**)ft->out.array)[i];
   786  			nret = ROUND(nret, t->align) + t->size;
   787  		}
   788  		nret = ROUND(nret, sizeof(void*));
   789  	}
   790  	
   791  	if(!runtime·addfinalizer(obj.data, finalizer.data, nret, fint, ot)) {
   792  		runtime·printf("runtime.SetFinalizer: finalizer already set\n");
   793  		goto throw;
   794  	}
   795  	return;
   796  
   797  badfunc:
   798  	runtime·printf("runtime.SetFinalizer: cannot pass %S to finalizer %S\n", *obj.type->string, *finalizer.type->string);
   799  throw:
   800  	runtime·throw("runtime.SetFinalizer");
   801  }