github.com/ronhuafeng/gofrontend@v0.0.0-20220715151246-ff23266b8bc5/libgo/runtime/go-signal.c (about) 1 /* go-signal.c -- signal handling for Go. 2 3 Copyright 2009 The Go Authors. All rights reserved. 4 Use of this source code is governed by a BSD-style 5 license that can be found in the LICENSE file. */ 6 7 #include <signal.h> 8 #include <stdlib.h> 9 #include <unistd.h> 10 #include <sys/time.h> 11 #include <ucontext.h> 12 13 #include "runtime.h" 14 15 #ifndef SA_RESTART 16 #define SA_RESTART 0 17 #endif 18 19 #ifdef USING_SPLIT_STACK 20 21 extern void __splitstack_getcontext(void *context[10]); 22 23 extern void __splitstack_setcontext(void *context[10]); 24 25 extern void *__splitstack_find_context(void *context[10], size_t *, 26 void **, void **, void **); 27 28 #endif 29 30 // The rest of the signal handler, written in Go. 31 32 extern void sigtrampgo(uint32, siginfo_t *, void *) 33 __asm__(GOSYM_PREFIX "runtime.sigtrampgo"); 34 35 // The Go signal handler, written in C. This should be running on the 36 // alternate signal stack. This is responsible for setting up the 37 // split stack context so that stack guard checks will work as 38 // expected. 39 40 void sigtramp(int, siginfo_t *, void *) 41 __attribute__ ((no_split_stack)); 42 43 void sigtramp(int, siginfo_t *, void *) 44 __asm__ (GOSYM_PREFIX "runtime.sigtramp"); 45 46 #ifndef USING_SPLIT_STACK 47 48 // When not using split stacks, there are no stack checks, and there 49 // is nothing special for this function to do. 50 51 void 52 sigtramp(int sig, siginfo_t *info, void *context) 53 { 54 sigtrampgo(sig, info, context); 55 } 56 57 #else // USING_SPLIT_STACK 58 59 void 60 sigtramp(int sig, siginfo_t *info, void *context) 61 { 62 G *gp; 63 void *stack_context[10]; 64 void *stack; 65 void *find_stack; 66 size_t stack_size; 67 void *next_segment; 68 void *next_sp; 69 void *initial_sp; 70 uintptr sp; 71 stack_t st; 72 uintptr stsp; 73 74 gp = runtime_g(); 75 76 if (gp == nil) { 77 // Let the Go code handle this case. 78 // It should only call nosplit functions in this case. 79 sigtrampgo(sig, info, context); 80 return; 81 } 82 83 // If this signal is one for which we will panic, we are not 84 // on the alternate signal stack. It's OK to call split-stack 85 // functions here. 86 if (sig == SIGBUS || sig == SIGFPE || sig == SIGSEGV) { 87 sigtrampgo(sig, info, context); 88 return; 89 } 90 91 // We are running on the alternate signal stack. 92 93 __splitstack_getcontext(&stack_context[0]); 94 95 find_stack = 96 __splitstack_find_context((void*)(&gp->m->gsignal->stackcontext[0]), 97 &stack_size, &next_segment, 98 &next_sp, &initial_sp); 99 stack = find_stack; 100 if (stack == NULL) { 101 stack = gp->m->gsignalstack; 102 stack_size = gp->m->gsignalstacksize; 103 } 104 105 // If some non-Go code called sigaltstack, adjust. 106 sp = (uintptr)(&stack_size); 107 if (sp < (uintptr)(stack) || sp >= (uintptr)(stack) + stack_size) { 108 sigaltstack(nil, &st); 109 if ((st.ss_flags & SS_DISABLE) != 0) { 110 runtime_printf("signal %d received on thread with no signal stack\n", (int32)(sig)); 111 runtime_throw("non-Go code disabled sigaltstack"); 112 } 113 114 stsp = (uintptr)(st.ss_sp); 115 if (sp < stsp || sp >= stsp + st.ss_size) { 116 runtime_printf("signal %d received but handler not on signal stack\n", (int32)(sig)); 117 runtime_throw("non-Go code set up signal handler without SA_ONSTACK flag"); 118 } 119 120 // Unfortunately __splitstack_find_context will return NULL 121 // when it is called on a context that has never been used. 122 // There isn't much we can do but assume all is well. 123 if (find_stack != NULL) { 124 // Here the gc runtime adjusts the gsignal 125 // stack guard to match the values returned by 126 // sigaltstack. Unfortunately we have no way 127 // to do that. 128 runtime_printf("signal %d received on unknown signal stack\n", (int32)(sig)); 129 runtime_throw("non-Go code changed signal stack"); 130 } 131 } 132 133 // Set the split stack context so that the stack guards are 134 // checked correctly. 135 136 __splitstack_setcontext((void*)(&gp->m->gsignal->stackcontext[0])); 137 138 sigtrampgo(sig, info, context); 139 140 // We are going to return back to the signal trampoline and 141 // then to whatever we were doing before we got the signal. 142 // Restore the split stack context so that stack guards are 143 // checked correctly. 144 145 __splitstack_setcontext(&stack_context[0]); 146 } 147 148 #endif // USING_SPLIT_STACK 149 150 // C function to return the address of the sigtramp function. 151 uintptr getSigtramp(void) __asm__ (GOSYM_PREFIX "runtime.getSigtramp"); 152 153 uintptr 154 getSigtramp() 155 { 156 return (uintptr)(void*)sigtramp; 157 } 158 159 // C code to manage the sigaction sa_sigaction field, which is 160 // typically a union and so hard for mksysinfo.sh to handle. 161 162 uintptr getSigactionHandler(struct sigaction*) 163 __attribute__ ((no_split_stack)); 164 165 uintptr getSigactionHandler(struct sigaction*) 166 __asm__ (GOSYM_PREFIX "runtime.getSigactionHandler"); 167 168 uintptr 169 getSigactionHandler(struct sigaction* sa) 170 { 171 return (uintptr)(sa->sa_sigaction); 172 } 173 174 void setSigactionHandler(struct sigaction*, uintptr) 175 __attribute__ ((no_split_stack)); 176 177 void setSigactionHandler(struct sigaction*, uintptr) 178 __asm__ (GOSYM_PREFIX "runtime.setSigactionHandler"); 179 180 void 181 setSigactionHandler(struct sigaction* sa, uintptr handler) 182 { 183 sa->sa_sigaction = (void*)(handler); 184 } 185 186 // C code to fetch values from the siginfo_t and ucontext_t pointers 187 // passed to a signal handler. 188 189 uintptr getSiginfoCode(siginfo_t *) 190 __attribute__ ((no_split_stack)); 191 192 uintptr getSiginfoCode(siginfo_t *) 193 __asm__ (GOSYM_PREFIX "runtime.getSiginfoCode"); 194 195 uintptr 196 getSiginfoCode(siginfo_t *info) 197 { 198 return (uintptr)(info->si_code); 199 } 200 201 struct getSiginfoRet { 202 uintptr sigaddr; 203 uintptr sigpc; 204 }; 205 206 struct getSiginfoRet getSiginfo(siginfo_t *, void *) 207 __asm__(GOSYM_PREFIX "runtime.getSiginfo"); 208 209 struct getSiginfoRet 210 getSiginfo(siginfo_t *info, void *context __attribute__((unused))) 211 { 212 struct getSiginfoRet ret; 213 Location loc[1]; 214 int32 n; 215 216 if (info == nil) { 217 ret.sigaddr = 0; 218 } else { 219 ret.sigaddr = (uintptr)(info->si_addr); 220 } 221 ret.sigpc = 0; 222 223 // There doesn't seem to be a portable way to get the PC. 224 // Use unportable code to pull it from context, and if that fails 225 // try a stack backtrace across the signal handler. 226 227 #if defined(__x86_64__) && defined(__linux__) 228 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_RIP]; 229 #elif defined(__i386__) && defined(__linux__) 230 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_EIP]; 231 #elif defined(__alpha__) && defined(__linux__) 232 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.sc_pc; 233 #elif defined(__PPC64__) && defined(__linux__) 234 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gp_regs[32]; 235 #elif defined(__PPC__) && defined(__linux__) 236 # if defined(__GLIBC__) 237 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.uc_regs->gregs[32]; 238 # else 239 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[32]; 240 # endif 241 #elif defined(__PPC__) && defined(_AIX) 242 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.jmp_context.iar; 243 #elif defined(__aarch64__) && defined(__linux__) 244 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.pc; 245 #elif defined(__NetBSD__) 246 ret.sigpc = _UC_MACHINE_PC(((ucontext_t*)(context))); 247 #endif 248 249 if (ret.sigpc == 0) { 250 // Skip getSiginfo/sighandler/sigtrampgo/sigtramp/handler. 251 n = runtime_callers(5, &loc[0], 1, false); 252 if (n > 0) { 253 ret.sigpc = loc[0].pc; 254 } 255 } 256 257 return ret; 258 } 259 260 // Dump registers when crashing in a signal. 261 // There is no portable way to write this, 262 // so we just have some CPU/OS specific implementations. 263 264 void dumpregs(siginfo_t *, void *) 265 __asm__(GOSYM_PREFIX "runtime.dumpregs"); 266 267 void 268 dumpregs(siginfo_t *info __attribute__((unused)), void *context __attribute__((unused))) 269 { 270 #if defined(__x86_64__) && defined(__linux__) 271 { 272 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext; 273 274 runtime_printf("rax %X\n", m->gregs[REG_RAX]); 275 runtime_printf("rbx %X\n", m->gregs[REG_RBX]); 276 runtime_printf("rcx %X\n", m->gregs[REG_RCX]); 277 runtime_printf("rdx %X\n", m->gregs[REG_RDX]); 278 runtime_printf("rdi %X\n", m->gregs[REG_RDI]); 279 runtime_printf("rsi %X\n", m->gregs[REG_RSI]); 280 runtime_printf("rbp %X\n", m->gregs[REG_RBP]); 281 runtime_printf("rsp %X\n", m->gregs[REG_RSP]); 282 runtime_printf("r8 %X\n", m->gregs[REG_R8]); 283 runtime_printf("r9 %X\n", m->gregs[REG_R9]); 284 runtime_printf("r10 %X\n", m->gregs[REG_R10]); 285 runtime_printf("r11 %X\n", m->gregs[REG_R11]); 286 runtime_printf("r12 %X\n", m->gregs[REG_R12]); 287 runtime_printf("r13 %X\n", m->gregs[REG_R13]); 288 runtime_printf("r14 %X\n", m->gregs[REG_R14]); 289 runtime_printf("r15 %X\n", m->gregs[REG_R15]); 290 runtime_printf("rip %X\n", m->gregs[REG_RIP]); 291 runtime_printf("rflags %X\n", m->gregs[REG_EFL]); 292 runtime_printf("cs %X\n", m->gregs[REG_CSGSFS] & 0xffff); 293 runtime_printf("fs %X\n", (m->gregs[REG_CSGSFS] >> 16) & 0xffff); 294 runtime_printf("gs %X\n", (m->gregs[REG_CSGSFS] >> 32) & 0xffff); 295 } 296 #elif defined(__i386__) && defined(__linux__) 297 { 298 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext; 299 300 runtime_printf("eax %x\n", m->gregs[REG_EAX]); 301 runtime_printf("ebx %x\n", m->gregs[REG_EBX]); 302 runtime_printf("ecx %x\n", m->gregs[REG_ECX]); 303 runtime_printf("edx %x\n", m->gregs[REG_EDX]); 304 runtime_printf("edi %x\n", m->gregs[REG_EDI]); 305 runtime_printf("esi %x\n", m->gregs[REG_ESI]); 306 runtime_printf("ebp %x\n", m->gregs[REG_EBP]); 307 runtime_printf("esp %x\n", m->gregs[REG_ESP]); 308 runtime_printf("eip %x\n", m->gregs[REG_EIP]); 309 runtime_printf("eflags %x\n", m->gregs[REG_EFL]); 310 runtime_printf("cs %x\n", m->gregs[REG_CS]); 311 runtime_printf("fs %x\n", m->gregs[REG_FS]); 312 runtime_printf("gs %x\n", m->gregs[REG_GS]); 313 } 314 #elif defined(__alpha__) && defined(__linux__) 315 { 316 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext; 317 318 runtime_printf("v0 %X\n", m->sc_regs[0]); 319 runtime_printf("t0 %X\n", m->sc_regs[1]); 320 runtime_printf("t1 %X\n", m->sc_regs[2]); 321 runtime_printf("t2 %X\n", m->sc_regs[3]); 322 runtime_printf("t3 %X\n", m->sc_regs[4]); 323 runtime_printf("t4 %X\n", m->sc_regs[5]); 324 runtime_printf("t5 %X\n", m->sc_regs[6]); 325 runtime_printf("t6 %X\n", m->sc_regs[7]); 326 runtime_printf("t7 %X\n", m->sc_regs[8]); 327 runtime_printf("s0 %X\n", m->sc_regs[9]); 328 runtime_printf("s1 %X\n", m->sc_regs[10]); 329 runtime_printf("s2 %X\n", m->sc_regs[11]); 330 runtime_printf("s3 %X\n", m->sc_regs[12]); 331 runtime_printf("s4 %X\n", m->sc_regs[13]); 332 runtime_printf("s5 %X\n", m->sc_regs[14]); 333 runtime_printf("fp %X\n", m->sc_regs[15]); 334 runtime_printf("a0 %X\n", m->sc_regs[16]); 335 runtime_printf("a1 %X\n", m->sc_regs[17]); 336 runtime_printf("a2 %X\n", m->sc_regs[18]); 337 runtime_printf("a3 %X\n", m->sc_regs[19]); 338 runtime_printf("a4 %X\n", m->sc_regs[20]); 339 runtime_printf("a5 %X\n", m->sc_regs[21]); 340 runtime_printf("t8 %X\n", m->sc_regs[22]); 341 runtime_printf("t9 %X\n", m->sc_regs[23]); 342 runtime_printf("t10 %X\n", m->sc_regs[24]); 343 runtime_printf("t11 %X\n", m->sc_regs[25]); 344 runtime_printf("ra %X\n", m->sc_regs[26]); 345 runtime_printf("t12 %X\n", m->sc_regs[27]); 346 runtime_printf("at %X\n", m->sc_regs[28]); 347 runtime_printf("gp %X\n", m->sc_regs[29]); 348 runtime_printf("sp %X\n", m->sc_regs[30]); 349 runtime_printf("pc %X\n", m->sc_pc); 350 } 351 #elif defined(__PPC__) && defined(__linux__) 352 { 353 int i; 354 355 # if defined(__PPC64__) 356 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext; 357 358 for (i = 0; i < 32; i++) 359 runtime_printf("r%d %X\n", i, m->gp_regs[i]); 360 runtime_printf("pc %X\n", m->gp_regs[32]); 361 runtime_printf("msr %X\n", m->gp_regs[33]); 362 runtime_printf("cr %X\n", m->gp_regs[38]); 363 runtime_printf("lr %X\n", m->gp_regs[36]); 364 runtime_printf("ctr %X\n", m->gp_regs[35]); 365 runtime_printf("xer %X\n", m->gp_regs[37]); 366 # else 367 # if defined(__GLIBC__) 368 mcontext_t *m = ((ucontext_t*)(context))->uc_mcontext.uc_regs; 369 # else 370 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext; 371 # endif 372 373 for (i = 0; i < 32; i++) 374 runtime_printf("r%d %x\n", i, m->gregs[i]); 375 runtime_printf("pc %x\n", m->gregs[32]); 376 runtime_printf("msr %x\n", m->gregs[33]); 377 runtime_printf("cr %x\n", m->gregs[38]); 378 runtime_printf("lr %x\n", m->gregs[36]); 379 runtime_printf("ctr %x\n", m->gregs[35]); 380 runtime_printf("xer %x\n", m->gregs[37]); 381 # endif 382 } 383 #elif defined(__PPC__) && defined(_AIX) 384 { 385 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext; 386 int i; 387 388 for (i = 0; i < 32; i++) 389 runtime_printf("r%d %p\n", i, m->jmp_context.gpr[i]); 390 runtime_printf("pc %p\n", m->jmp_context.iar); 391 runtime_printf("msr %p\n", m->jmp_context.msr); 392 runtime_printf("cr %x\n", m->jmp_context.cr); 393 runtime_printf("lr %p\n", m->jmp_context.lr); 394 runtime_printf("ctr %p\n", m->jmp_context.ctr); 395 runtime_printf("xer %x\n", m->jmp_context.xer); 396 } 397 #elif defined(__aarch64__) && defined(__linux__) 398 { 399 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext; 400 int i; 401 402 for (i = 0; i < 31; i++) 403 runtime_printf("x%d %X\n", i, m->regs[i]); 404 runtime_printf("sp %X\n", m->sp); 405 runtime_printf("pc %X\n", m->pc); 406 runtime_printf("pstate %X\n", m->pstate); 407 } 408 #endif 409 }