github.com/rsc/go@v0.0.0-20150416155037-e040fd465409/src/crypto/rsa/rsa.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package rsa implements RSA encryption as specified in PKCS#1.
     6  package rsa
     7  
     8  import (
     9  	"crypto"
    10  	"crypto/rand"
    11  	"crypto/subtle"
    12  	"errors"
    13  	"hash"
    14  	"io"
    15  	"math/big"
    16  )
    17  
    18  var bigZero = big.NewInt(0)
    19  var bigOne = big.NewInt(1)
    20  
    21  // A PublicKey represents the public part of an RSA key.
    22  type PublicKey struct {
    23  	N *big.Int // modulus
    24  	E int      // public exponent
    25  }
    26  
    27  // OAEPOptions is an interface for passing options to OAEP decryption using the
    28  // crypto.Decrypter interface.
    29  type OAEPOptions struct {
    30  	// Hash is the hash function that will be used when generating the mask.
    31  	Hash crypto.Hash
    32  	// Label is an arbitrary byte string that must be equal to the value
    33  	// used when encrypting.
    34  	Label []byte
    35  }
    36  
    37  var (
    38  	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
    39  	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
    40  	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
    41  )
    42  
    43  // checkPub sanity checks the public key before we use it.
    44  // We require pub.E to fit into a 32-bit integer so that we
    45  // do not have different behavior depending on whether
    46  // int is 32 or 64 bits. See also
    47  // http://www.imperialviolet.org/2012/03/16/rsae.html.
    48  func checkPub(pub *PublicKey) error {
    49  	if pub.N == nil {
    50  		return errPublicModulus
    51  	}
    52  	if pub.E < 2 {
    53  		return errPublicExponentSmall
    54  	}
    55  	if pub.E > 1<<31-1 {
    56  		return errPublicExponentLarge
    57  	}
    58  	return nil
    59  }
    60  
    61  // A PrivateKey represents an RSA key
    62  type PrivateKey struct {
    63  	PublicKey            // public part.
    64  	D         *big.Int   // private exponent
    65  	Primes    []*big.Int // prime factors of N, has >= 2 elements.
    66  
    67  	// Precomputed contains precomputed values that speed up private
    68  	// operations, if available.
    69  	Precomputed PrecomputedValues
    70  }
    71  
    72  // Public returns the public key corresponding to priv.
    73  func (priv *PrivateKey) Public() crypto.PublicKey {
    74  	return &priv.PublicKey
    75  }
    76  
    77  // Sign signs msg with priv, reading randomness from rand. If opts is a
    78  // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
    79  // be used. This method is intended to support keys where the private part is
    80  // kept in, for example, a hardware module. Common uses should use the Sign*
    81  // functions in this package.
    82  func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
    83  	if pssOpts, ok := opts.(*PSSOptions); ok {
    84  		return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
    85  	}
    86  
    87  	return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
    88  }
    89  
    90  // Decrypt decrypts ciphertext with priv. If opts is nil or of type
    91  // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
    92  // opts must have type *OAEPOptions and OAEP decryption is done.
    93  func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
    94  	if opts == nil {
    95  		return DecryptPKCS1v15(rand, priv, ciphertext)
    96  	}
    97  
    98  	switch opts := opts.(type) {
    99  	case *OAEPOptions:
   100  		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
   101  
   102  	case *PKCS1v15DecryptOptions:
   103  		if l := opts.SessionKeyLen; l > 0 {
   104  			plaintext = make([]byte, l)
   105  			if _, err := io.ReadFull(rand, plaintext); err != nil {
   106  				return nil, err
   107  			}
   108  			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
   109  				return nil, err
   110  			}
   111  			return plaintext, nil
   112  		} else {
   113  			return DecryptPKCS1v15(rand, priv, ciphertext)
   114  		}
   115  
   116  	default:
   117  		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
   118  	}
   119  }
   120  
   121  type PrecomputedValues struct {
   122  	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
   123  	Qinv   *big.Int // Q^-1 mod P
   124  
   125  	// CRTValues is used for the 3rd and subsequent primes. Due to a
   126  	// historical accident, the CRT for the first two primes is handled
   127  	// differently in PKCS#1 and interoperability is sufficiently
   128  	// important that we mirror this.
   129  	CRTValues []CRTValue
   130  }
   131  
   132  // CRTValue contains the precomputed chinese remainder theorem values.
   133  type CRTValue struct {
   134  	Exp   *big.Int // D mod (prime-1).
   135  	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
   136  	R     *big.Int // product of primes prior to this (inc p and q).
   137  }
   138  
   139  // Validate performs basic sanity checks on the key.
   140  // It returns nil if the key is valid, or else an error describing a problem.
   141  func (priv *PrivateKey) Validate() error {
   142  	if err := checkPub(&priv.PublicKey); err != nil {
   143  		return err
   144  	}
   145  
   146  	// Check that Πprimes == n.
   147  	modulus := new(big.Int).Set(bigOne)
   148  	for _, prime := range priv.Primes {
   149  		modulus.Mul(modulus, prime)
   150  	}
   151  	if modulus.Cmp(priv.N) != 0 {
   152  		return errors.New("crypto/rsa: invalid modulus")
   153  	}
   154  
   155  	// Check that de ≡ 1 mod p-1, for each prime.
   156  	// This implies that e is coprime to each p-1 as e has a multiplicative
   157  	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
   158  	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
   159  	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
   160  	congruence := new(big.Int)
   161  	de := new(big.Int).SetInt64(int64(priv.E))
   162  	de.Mul(de, priv.D)
   163  	for _, prime := range priv.Primes {
   164  		pminus1 := new(big.Int).Sub(prime, bigOne)
   165  		congruence.Mod(de, pminus1)
   166  		if congruence.Cmp(bigOne) != 0 {
   167  			return errors.New("crypto/rsa: invalid exponents")
   168  		}
   169  	}
   170  	return nil
   171  }
   172  
   173  // GenerateKey generates an RSA keypair of the given bit size using the
   174  // random source random (for example, crypto/rand.Reader).
   175  func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
   176  	return GenerateMultiPrimeKey(random, 2, bits)
   177  }
   178  
   179  // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
   180  // size and the given random source, as suggested in [1]. Although the public
   181  // keys are compatible (actually, indistinguishable) from the 2-prime case,
   182  // the private keys are not. Thus it may not be possible to export multi-prime
   183  // private keys in certain formats or to subsequently import them into other
   184  // code.
   185  //
   186  // Table 1 in [2] suggests maximum numbers of primes for a given size.
   187  //
   188  // [1] US patent 4405829 (1972, expired)
   189  // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
   190  func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
   191  	priv = new(PrivateKey)
   192  	priv.E = 65537
   193  
   194  	if nprimes < 2 {
   195  		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
   196  	}
   197  
   198  	primes := make([]*big.Int, nprimes)
   199  
   200  NextSetOfPrimes:
   201  	for {
   202  		todo := bits
   203  		// crypto/rand should set the top two bits in each prime.
   204  		// Thus each prime has the form
   205  		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
   206  		// And the product is:
   207  		//   P = 2^todo × α
   208  		// where α is the product of nprimes numbers of the form 0.11...
   209  		//
   210  		// If α < 1/2 (which can happen for nprimes > 2), we need to
   211  		// shift todo to compensate for lost bits: the mean value of 0.11...
   212  		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
   213  		// will give good results.
   214  		if nprimes >= 7 {
   215  			todo += (nprimes - 2) / 5
   216  		}
   217  		for i := 0; i < nprimes; i++ {
   218  			primes[i], err = rand.Prime(random, todo/(nprimes-i))
   219  			if err != nil {
   220  				return nil, err
   221  			}
   222  			todo -= primes[i].BitLen()
   223  		}
   224  
   225  		// Make sure that primes is pairwise unequal.
   226  		for i, prime := range primes {
   227  			for j := 0; j < i; j++ {
   228  				if prime.Cmp(primes[j]) == 0 {
   229  					continue NextSetOfPrimes
   230  				}
   231  			}
   232  		}
   233  
   234  		n := new(big.Int).Set(bigOne)
   235  		totient := new(big.Int).Set(bigOne)
   236  		pminus1 := new(big.Int)
   237  		for _, prime := range primes {
   238  			n.Mul(n, prime)
   239  			pminus1.Sub(prime, bigOne)
   240  			totient.Mul(totient, pminus1)
   241  		}
   242  		if n.BitLen() != bits {
   243  			// This should never happen for nprimes == 2 because
   244  			// crypto/rand should set the top two bits in each prime.
   245  			// For nprimes > 2 we hope it does not happen often.
   246  			continue NextSetOfPrimes
   247  		}
   248  
   249  		g := new(big.Int)
   250  		priv.D = new(big.Int)
   251  		y := new(big.Int)
   252  		e := big.NewInt(int64(priv.E))
   253  		g.GCD(priv.D, y, e, totient)
   254  
   255  		if g.Cmp(bigOne) == 0 {
   256  			if priv.D.Sign() < 0 {
   257  				priv.D.Add(priv.D, totient)
   258  			}
   259  			priv.Primes = primes
   260  			priv.N = n
   261  
   262  			break
   263  		}
   264  	}
   265  
   266  	priv.Precompute()
   267  	return
   268  }
   269  
   270  // incCounter increments a four byte, big-endian counter.
   271  func incCounter(c *[4]byte) {
   272  	if c[3]++; c[3] != 0 {
   273  		return
   274  	}
   275  	if c[2]++; c[2] != 0 {
   276  		return
   277  	}
   278  	if c[1]++; c[1] != 0 {
   279  		return
   280  	}
   281  	c[0]++
   282  }
   283  
   284  // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
   285  // specified in PKCS#1 v2.1.
   286  func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
   287  	var counter [4]byte
   288  	var digest []byte
   289  
   290  	done := 0
   291  	for done < len(out) {
   292  		hash.Write(seed)
   293  		hash.Write(counter[0:4])
   294  		digest = hash.Sum(digest[:0])
   295  		hash.Reset()
   296  
   297  		for i := 0; i < len(digest) && done < len(out); i++ {
   298  			out[done] ^= digest[i]
   299  			done++
   300  		}
   301  		incCounter(&counter)
   302  	}
   303  }
   304  
   305  // ErrMessageTooLong is returned when attempting to encrypt a message which is
   306  // too large for the size of the public key.
   307  var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
   308  
   309  func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
   310  	e := big.NewInt(int64(pub.E))
   311  	c.Exp(m, e, pub.N)
   312  	return c
   313  }
   314  
   315  // EncryptOAEP encrypts the given message with RSA-OAEP.
   316  // The message must be no longer than the length of the public modulus less
   317  // twice the hash length plus 2.
   318  func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
   319  	if err := checkPub(pub); err != nil {
   320  		return nil, err
   321  	}
   322  	hash.Reset()
   323  	k := (pub.N.BitLen() + 7) / 8
   324  	if len(msg) > k-2*hash.Size()-2 {
   325  		err = ErrMessageTooLong
   326  		return
   327  	}
   328  
   329  	hash.Write(label)
   330  	lHash := hash.Sum(nil)
   331  	hash.Reset()
   332  
   333  	em := make([]byte, k)
   334  	seed := em[1 : 1+hash.Size()]
   335  	db := em[1+hash.Size():]
   336  
   337  	copy(db[0:hash.Size()], lHash)
   338  	db[len(db)-len(msg)-1] = 1
   339  	copy(db[len(db)-len(msg):], msg)
   340  
   341  	_, err = io.ReadFull(random, seed)
   342  	if err != nil {
   343  		return
   344  	}
   345  
   346  	mgf1XOR(db, hash, seed)
   347  	mgf1XOR(seed, hash, db)
   348  
   349  	m := new(big.Int)
   350  	m.SetBytes(em)
   351  	c := encrypt(new(big.Int), pub, m)
   352  	out = c.Bytes()
   353  
   354  	if len(out) < k {
   355  		// If the output is too small, we need to left-pad with zeros.
   356  		t := make([]byte, k)
   357  		copy(t[k-len(out):], out)
   358  		out = t
   359  	}
   360  
   361  	return
   362  }
   363  
   364  // ErrDecryption represents a failure to decrypt a message.
   365  // It is deliberately vague to avoid adaptive attacks.
   366  var ErrDecryption = errors.New("crypto/rsa: decryption error")
   367  
   368  // ErrVerification represents a failure to verify a signature.
   369  // It is deliberately vague to avoid adaptive attacks.
   370  var ErrVerification = errors.New("crypto/rsa: verification error")
   371  
   372  // modInverse returns ia, the inverse of a in the multiplicative group of prime
   373  // order n. It requires that a be a member of the group (i.e. less than n).
   374  func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
   375  	g := new(big.Int)
   376  	x := new(big.Int)
   377  	y := new(big.Int)
   378  	g.GCD(x, y, a, n)
   379  	if g.Cmp(bigOne) != 0 {
   380  		// In this case, a and n aren't coprime and we cannot calculate
   381  		// the inverse. This happens because the values of n are nearly
   382  		// prime (being the product of two primes) rather than truly
   383  		// prime.
   384  		return
   385  	}
   386  
   387  	if x.Cmp(bigOne) < 0 {
   388  		// 0 is not the multiplicative inverse of any element so, if x
   389  		// < 1, then x is negative.
   390  		x.Add(x, n)
   391  	}
   392  
   393  	return x, true
   394  }
   395  
   396  // Precompute performs some calculations that speed up private key operations
   397  // in the future.
   398  func (priv *PrivateKey) Precompute() {
   399  	if priv.Precomputed.Dp != nil {
   400  		return
   401  	}
   402  
   403  	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
   404  	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
   405  
   406  	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
   407  	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
   408  
   409  	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
   410  
   411  	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
   412  	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
   413  	for i := 2; i < len(priv.Primes); i++ {
   414  		prime := priv.Primes[i]
   415  		values := &priv.Precomputed.CRTValues[i-2]
   416  
   417  		values.Exp = new(big.Int).Sub(prime, bigOne)
   418  		values.Exp.Mod(priv.D, values.Exp)
   419  
   420  		values.R = new(big.Int).Set(r)
   421  		values.Coeff = new(big.Int).ModInverse(r, prime)
   422  
   423  		r.Mul(r, prime)
   424  	}
   425  }
   426  
   427  // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
   428  // random source is given, RSA blinding is used.
   429  func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   430  	// TODO(agl): can we get away with reusing blinds?
   431  	if c.Cmp(priv.N) > 0 {
   432  		err = ErrDecryption
   433  		return
   434  	}
   435  
   436  	var ir *big.Int
   437  	if random != nil {
   438  		// Blinding enabled. Blinding involves multiplying c by r^e.
   439  		// Then the decryption operation performs (m^e * r^e)^d mod n
   440  		// which equals mr mod n. The factor of r can then be removed
   441  		// by multiplying by the multiplicative inverse of r.
   442  
   443  		var r *big.Int
   444  
   445  		for {
   446  			r, err = rand.Int(random, priv.N)
   447  			if err != nil {
   448  				return
   449  			}
   450  			if r.Cmp(bigZero) == 0 {
   451  				r = bigOne
   452  			}
   453  			var ok bool
   454  			ir, ok = modInverse(r, priv.N)
   455  			if ok {
   456  				break
   457  			}
   458  		}
   459  		bigE := big.NewInt(int64(priv.E))
   460  		rpowe := new(big.Int).Exp(r, bigE, priv.N)
   461  		cCopy := new(big.Int).Set(c)
   462  		cCopy.Mul(cCopy, rpowe)
   463  		cCopy.Mod(cCopy, priv.N)
   464  		c = cCopy
   465  	}
   466  
   467  	if priv.Precomputed.Dp == nil {
   468  		m = new(big.Int).Exp(c, priv.D, priv.N)
   469  	} else {
   470  		// We have the precalculated values needed for the CRT.
   471  		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
   472  		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
   473  		m.Sub(m, m2)
   474  		if m.Sign() < 0 {
   475  			m.Add(m, priv.Primes[0])
   476  		}
   477  		m.Mul(m, priv.Precomputed.Qinv)
   478  		m.Mod(m, priv.Primes[0])
   479  		m.Mul(m, priv.Primes[1])
   480  		m.Add(m, m2)
   481  
   482  		for i, values := range priv.Precomputed.CRTValues {
   483  			prime := priv.Primes[2+i]
   484  			m2.Exp(c, values.Exp, prime)
   485  			m2.Sub(m2, m)
   486  			m2.Mul(m2, values.Coeff)
   487  			m2.Mod(m2, prime)
   488  			if m2.Sign() < 0 {
   489  				m2.Add(m2, prime)
   490  			}
   491  			m2.Mul(m2, values.R)
   492  			m.Add(m, m2)
   493  		}
   494  	}
   495  
   496  	if ir != nil {
   497  		// Unblind.
   498  		m.Mul(m, ir)
   499  		m.Mod(m, priv.N)
   500  	}
   501  
   502  	return
   503  }
   504  
   505  // DecryptOAEP decrypts ciphertext using RSA-OAEP.
   506  // If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
   507  func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
   508  	if err := checkPub(&priv.PublicKey); err != nil {
   509  		return nil, err
   510  	}
   511  	k := (priv.N.BitLen() + 7) / 8
   512  	if len(ciphertext) > k ||
   513  		k < hash.Size()*2+2 {
   514  		err = ErrDecryption
   515  		return
   516  	}
   517  
   518  	c := new(big.Int).SetBytes(ciphertext)
   519  
   520  	m, err := decrypt(random, priv, c)
   521  	if err != nil {
   522  		return
   523  	}
   524  
   525  	hash.Write(label)
   526  	lHash := hash.Sum(nil)
   527  	hash.Reset()
   528  
   529  	// Converting the plaintext number to bytes will strip any
   530  	// leading zeros so we may have to left pad. We do this unconditionally
   531  	// to avoid leaking timing information. (Although we still probably
   532  	// leak the number of leading zeros. It's not clear that we can do
   533  	// anything about this.)
   534  	em := leftPad(m.Bytes(), k)
   535  
   536  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   537  
   538  	seed := em[1 : hash.Size()+1]
   539  	db := em[hash.Size()+1:]
   540  
   541  	mgf1XOR(seed, hash, db)
   542  	mgf1XOR(db, hash, seed)
   543  
   544  	lHash2 := db[0:hash.Size()]
   545  
   546  	// We have to validate the plaintext in constant time in order to avoid
   547  	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
   548  	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
   549  	// v2.0. In J. Kilian, editor, Advances in Cryptology.
   550  	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
   551  
   552  	// The remainder of the plaintext must be zero or more 0x00, followed
   553  	// by 0x01, followed by the message.
   554  	//   lookingForIndex: 1 iff we are still looking for the 0x01
   555  	//   index: the offset of the first 0x01 byte
   556  	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
   557  	var lookingForIndex, index, invalid int
   558  	lookingForIndex = 1
   559  	rest := db[hash.Size():]
   560  
   561  	for i := 0; i < len(rest); i++ {
   562  		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
   563  		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
   564  		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
   565  		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
   566  		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
   567  	}
   568  
   569  	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
   570  		err = ErrDecryption
   571  		return
   572  	}
   573  
   574  	msg = rest[index+1:]
   575  	return
   576  }
   577  
   578  // leftPad returns a new slice of length size. The contents of input are right
   579  // aligned in the new slice.
   580  func leftPad(input []byte, size int) (out []byte) {
   581  	n := len(input)
   582  	if n > size {
   583  		n = size
   584  	}
   585  	out = make([]byte, size)
   586  	copy(out[len(out)-n:], input)
   587  	return
   588  }