github.com/rsc/go@v0.0.0-20150416155037-e040fd465409/src/image/jpeg/reader.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package jpeg implements a JPEG image decoder and encoder. 6 // 7 // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf. 8 package jpeg 9 10 import ( 11 "image" 12 "image/color" 13 "image/internal/imageutil" 14 "io" 15 ) 16 17 // TODO(nigeltao): fix up the doc comment style so that sentences start with 18 // the name of the type or function that they annotate. 19 20 // A FormatError reports that the input is not a valid JPEG. 21 type FormatError string 22 23 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } 24 25 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. 26 type UnsupportedError string 27 28 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } 29 30 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio") 31 32 // Component specification, specified in section B.2.2. 33 type component struct { 34 h int // Horizontal sampling factor. 35 v int // Vertical sampling factor. 36 c uint8 // Component identifier. 37 tq uint8 // Quantization table destination selector. 38 } 39 40 const ( 41 dcTable = 0 42 acTable = 1 43 maxTc = 1 44 maxTh = 3 45 maxTq = 3 46 47 maxComponents = 4 48 ) 49 50 const ( 51 sof0Marker = 0xc0 // Start Of Frame (Baseline). 52 sof1Marker = 0xc1 // Start Of Frame (Extended Sequential). 53 sof2Marker = 0xc2 // Start Of Frame (Progressive). 54 dhtMarker = 0xc4 // Define Huffman Table. 55 rst0Marker = 0xd0 // ReSTart (0). 56 rst7Marker = 0xd7 // ReSTart (7). 57 soiMarker = 0xd8 // Start Of Image. 58 eoiMarker = 0xd9 // End Of Image. 59 sosMarker = 0xda // Start Of Scan. 60 dqtMarker = 0xdb // Define Quantization Table. 61 driMarker = 0xdd // Define Restart Interval. 62 comMarker = 0xfe // COMment. 63 // "APPlication specific" markers aren't part of the JPEG spec per se, 64 // but in practice, their use is described at 65 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html 66 app0Marker = 0xe0 67 app14Marker = 0xee 68 app15Marker = 0xef 69 ) 70 71 // See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 72 const ( 73 adobeTransformUnknown = 0 74 adobeTransformYCbCr = 1 75 adobeTransformYCbCrK = 2 76 ) 77 78 // unzig maps from the zig-zag ordering to the natural ordering. For example, 79 // unzig[3] is the column and row of the fourth element in zig-zag order. The 80 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). 81 var unzig = [blockSize]int{ 82 0, 1, 8, 16, 9, 2, 3, 10, 83 17, 24, 32, 25, 18, 11, 4, 5, 84 12, 19, 26, 33, 40, 48, 41, 34, 85 27, 20, 13, 6, 7, 14, 21, 28, 86 35, 42, 49, 56, 57, 50, 43, 36, 87 29, 22, 15, 23, 30, 37, 44, 51, 88 58, 59, 52, 45, 38, 31, 39, 46, 89 53, 60, 61, 54, 47, 55, 62, 63, 90 } 91 92 // Reader is deprecated. 93 type Reader interface { 94 io.ByteReader 95 io.Reader 96 } 97 98 // bits holds the unprocessed bits that have been taken from the byte-stream. 99 // The n least significant bits of a form the unread bits, to be read in MSB to 100 // LSB order. 101 type bits struct { 102 a uint32 // accumulator. 103 m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0. 104 n int32 // the number of unread bits in a. 105 } 106 107 type decoder struct { 108 r io.Reader 109 bits bits 110 // bytes is a byte buffer, similar to a bufio.Reader, except that it 111 // has to be able to unread more than 1 byte, due to byte stuffing. 112 // Byte stuffing is specified in section F.1.2.3. 113 bytes struct { 114 // buf[i:j] are the buffered bytes read from the underlying 115 // io.Reader that haven't yet been passed further on. 116 buf [4096]byte 117 i, j int 118 // nUnreadable is the number of bytes to back up i after 119 // overshooting. It can be 0, 1 or 2. 120 nUnreadable int 121 } 122 width, height int 123 124 img1 *image.Gray 125 img3 *image.YCbCr 126 blackPix []byte 127 blackStride int 128 129 ri int // Restart Interval. 130 nComp int 131 progressive bool 132 jfif bool 133 adobeTransformValid bool 134 adobeTransform uint8 135 eobRun uint16 // End-of-Band run, specified in section G.1.2.2. 136 137 comp [maxComponents]component 138 progCoeffs [maxComponents][]block // Saved state between progressive-mode scans. 139 huff [maxTc + 1][maxTh + 1]huffman 140 quant [maxTq + 1]block // Quantization tables, in zig-zag order. 141 tmp [2 * blockSize]byte 142 } 143 144 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It 145 // should only be called when there are no unread bytes in d.bytes. 146 func (d *decoder) fill() error { 147 if d.bytes.i != d.bytes.j { 148 panic("jpeg: fill called when unread bytes exist") 149 } 150 // Move the last 2 bytes to the start of the buffer, in case we need 151 // to call unreadByteStuffedByte. 152 if d.bytes.j > 2 { 153 d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2] 154 d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1] 155 d.bytes.i, d.bytes.j = 2, 2 156 } 157 // Fill in the rest of the buffer. 158 n, err := d.r.Read(d.bytes.buf[d.bytes.j:]) 159 d.bytes.j += n 160 if n > 0 { 161 err = nil 162 } 163 return err 164 } 165 166 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call, 167 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table 168 // requires at least 8 bits for look-up, which means that Huffman decoding can 169 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot 170 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte. 171 func (d *decoder) unreadByteStuffedByte() { 172 if d.bytes.nUnreadable == 0 { 173 return 174 } 175 d.bytes.i -= d.bytes.nUnreadable 176 d.bytes.nUnreadable = 0 177 if d.bits.n >= 8 { 178 d.bits.a >>= 8 179 d.bits.n -= 8 180 d.bits.m >>= 8 181 } 182 } 183 184 // readByte returns the next byte, whether buffered or not buffered. It does 185 // not care about byte stuffing. 186 func (d *decoder) readByte() (x byte, err error) { 187 for d.bytes.i == d.bytes.j { 188 if err = d.fill(); err != nil { 189 return 0, err 190 } 191 } 192 x = d.bytes.buf[d.bytes.i] 193 d.bytes.i++ 194 d.bytes.nUnreadable = 0 195 return x, nil 196 } 197 198 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a 199 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00. 200 var errMissingFF00 = FormatError("missing 0xff00 sequence") 201 202 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data. 203 func (d *decoder) readByteStuffedByte() (x byte, err error) { 204 // Take the fast path if d.bytes.buf contains at least two bytes. 205 if d.bytes.i+2 <= d.bytes.j { 206 x = d.bytes.buf[d.bytes.i] 207 d.bytes.i++ 208 d.bytes.nUnreadable = 1 209 if x != 0xff { 210 return x, err 211 } 212 if d.bytes.buf[d.bytes.i] != 0x00 { 213 return 0, errMissingFF00 214 } 215 d.bytes.i++ 216 d.bytes.nUnreadable = 2 217 return 0xff, nil 218 } 219 220 x, err = d.readByte() 221 if err != nil { 222 return 0, err 223 } 224 if x != 0xff { 225 d.bytes.nUnreadable = 1 226 return x, nil 227 } 228 229 x, err = d.readByte() 230 if err != nil { 231 d.bytes.nUnreadable = 1 232 return 0, err 233 } 234 d.bytes.nUnreadable = 2 235 if x != 0x00 { 236 return 0, errMissingFF00 237 } 238 return 0xff, nil 239 } 240 241 // readFull reads exactly len(p) bytes into p. It does not care about byte 242 // stuffing. 243 func (d *decoder) readFull(p []byte) error { 244 // Unread the overshot bytes, if any. 245 d.unreadByteStuffedByte() 246 247 for { 248 n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j]) 249 p = p[n:] 250 d.bytes.i += n 251 if len(p) == 0 { 252 break 253 } 254 if err := d.fill(); err != nil { 255 if err == io.EOF { 256 err = io.ErrUnexpectedEOF 257 } 258 return err 259 } 260 } 261 return nil 262 } 263 264 // ignore ignores the next n bytes. 265 func (d *decoder) ignore(n int) error { 266 // Unread the overshot bytes, if any. 267 d.unreadByteStuffedByte() 268 269 for { 270 m := d.bytes.j - d.bytes.i 271 if m > n { 272 m = n 273 } 274 d.bytes.i += m 275 n -= m 276 if n == 0 { 277 break 278 } 279 if err := d.fill(); err != nil { 280 if err == io.EOF { 281 err = io.ErrUnexpectedEOF 282 } 283 return err 284 } 285 } 286 return nil 287 } 288 289 // Specified in section B.2.2. 290 func (d *decoder) processSOF(n int) error { 291 if d.nComp != 0 { 292 return FormatError("multiple SOF markers") 293 } 294 switch n { 295 case 6 + 3*1: // Grayscale image. 296 d.nComp = 1 297 case 6 + 3*3: // YCbCr or RGB image. 298 d.nComp = 3 299 case 6 + 3*4: // YCbCrK or CMYK image. 300 d.nComp = 4 301 default: 302 return UnsupportedError("number of components") 303 } 304 if err := d.readFull(d.tmp[:n]); err != nil { 305 return err 306 } 307 // We only support 8-bit precision. 308 if d.tmp[0] != 8 { 309 return UnsupportedError("precision") 310 } 311 d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) 312 d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) 313 if int(d.tmp[5]) != d.nComp { 314 return FormatError("SOF has wrong length") 315 } 316 317 for i := 0; i < d.nComp; i++ { 318 d.comp[i].c = d.tmp[6+3*i] 319 // Section B.2.2 states that "the value of C_i shall be different from 320 // the values of C_1 through C_(i-1)". 321 for j := 0; j < i; j++ { 322 if d.comp[i].c == d.comp[j].c { 323 return FormatError("repeated component identifier") 324 } 325 } 326 327 d.comp[i].tq = d.tmp[8+3*i] 328 if d.comp[i].tq > maxTq { 329 return FormatError("bad Tq value") 330 } 331 332 hv := d.tmp[7+3*i] 333 h, v := int(hv>>4), int(hv&0x0f) 334 if h < 1 || 4 < h || v < 1 || 4 < v { 335 return FormatError("luma/chroma subsampling ratio") 336 } 337 if h == 3 || v == 3 { 338 return errUnsupportedSubsamplingRatio 339 } 340 switch d.nComp { 341 case 1: 342 // If a JPEG image has only one component, section A.2 says "this data 343 // is non-interleaved by definition" and section A.2.2 says "[in this 344 // case...] the order of data units within a scan shall be left-to-right 345 // and top-to-bottom... regardless of the values of H_1 and V_1". Section 346 // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be 347 // one data unit". Similarly, section A.1.1 explains that it is the ratio 348 // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale 349 // images, H_1 is the maximum H_j for all components j, so that ratio is 350 // always 1. The component's (h, v) is effectively always (1, 1): even if 351 // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 352 // MCUs, not two 16x8 MCUs. 353 h, v = 1, 1 354 355 case 3: 356 // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0, 357 // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the 358 // (h, v) values for the Y component are either (1, 1), (1, 2), 359 // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values 360 // must be a multiple of the Cb and Cr component's values. We also 361 // assume that the two chroma components have the same subsampling 362 // ratio. 363 switch i { 364 case 0: // Y. 365 // We have already verified, above, that h and v are both 366 // either 1, 2 or 4, so invalid (h, v) combinations are those 367 // with v == 4. 368 if v == 4 { 369 return errUnsupportedSubsamplingRatio 370 } 371 case 1: // Cb. 372 if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 { 373 return errUnsupportedSubsamplingRatio 374 } 375 case 2: // Cr. 376 if d.comp[1].h != h || d.comp[1].v != v { 377 return errUnsupportedSubsamplingRatio 378 } 379 } 380 381 case 4: 382 // For 4-component images (either CMYK or YCbCrK), we only support two 383 // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22]. 384 // Theoretically, 4-component JPEG images could mix and match hv values 385 // but in practice, those two combinations are the only ones in use, 386 // and it simplifies the applyBlack code below if we can assume that: 387 // - for CMYK, the C and K channels have full samples, and if the M 388 // and Y channels subsample, they subsample both horizontally and 389 // vertically. 390 // - for YCbCrK, the Y and K channels have full samples. 391 switch i { 392 case 0: 393 if hv != 0x11 && hv != 0x22 { 394 return errUnsupportedSubsamplingRatio 395 } 396 case 1, 2: 397 if hv != 0x11 { 398 return errUnsupportedSubsamplingRatio 399 } 400 case 3: 401 if d.comp[0].h != h || d.comp[0].v != v { 402 return errUnsupportedSubsamplingRatio 403 } 404 } 405 } 406 407 d.comp[i].h = h 408 d.comp[i].v = v 409 } 410 return nil 411 } 412 413 // Specified in section B.2.4.1. 414 func (d *decoder) processDQT(n int) error { 415 loop: 416 for n > 0 { 417 n-- 418 x, err := d.readByte() 419 if err != nil { 420 return err 421 } 422 tq := x & 0x0f 423 if tq > maxTq { 424 return FormatError("bad Tq value") 425 } 426 switch x >> 4 { 427 default: 428 return FormatError("bad Pq value") 429 case 0: 430 if n < blockSize { 431 break loop 432 } 433 n -= blockSize 434 if err := d.readFull(d.tmp[:blockSize]); err != nil { 435 return err 436 } 437 for i := range d.quant[tq] { 438 d.quant[tq][i] = int32(d.tmp[i]) 439 } 440 case 1: 441 if n < 2*blockSize { 442 break loop 443 } 444 n -= 2 * blockSize 445 if err := d.readFull(d.tmp[:2*blockSize]); err != nil { 446 return err 447 } 448 for i := range d.quant[tq] { 449 d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1]) 450 } 451 } 452 } 453 if n != 0 { 454 return FormatError("DQT has wrong length") 455 } 456 return nil 457 } 458 459 // Specified in section B.2.4.4. 460 func (d *decoder) processDRI(n int) error { 461 if n != 2 { 462 return FormatError("DRI has wrong length") 463 } 464 if err := d.readFull(d.tmp[:2]); err != nil { 465 return err 466 } 467 d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) 468 return nil 469 } 470 471 func (d *decoder) processApp0Marker(n int) error { 472 if n < 5 { 473 return d.ignore(n) 474 } 475 if err := d.readFull(d.tmp[:5]); err != nil { 476 return err 477 } 478 n -= 5 479 480 d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00' 481 482 if n > 0 { 483 return d.ignore(n) 484 } 485 return nil 486 } 487 488 func (d *decoder) processApp14Marker(n int) error { 489 if n < 12 { 490 return d.ignore(n) 491 } 492 if err := d.readFull(d.tmp[:12]); err != nil { 493 return err 494 } 495 n -= 12 496 497 if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' { 498 d.adobeTransformValid = true 499 d.adobeTransform = d.tmp[11] 500 } 501 502 if n > 0 { 503 return d.ignore(n) 504 } 505 return nil 506 } 507 508 // decode reads a JPEG image from r and returns it as an image.Image. 509 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { 510 d.r = r 511 512 // Check for the Start Of Image marker. 513 if err := d.readFull(d.tmp[:2]); err != nil { 514 return nil, err 515 } 516 if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { 517 return nil, FormatError("missing SOI marker") 518 } 519 520 // Process the remaining segments until the End Of Image marker. 521 for { 522 err := d.readFull(d.tmp[:2]) 523 if err != nil { 524 return nil, err 525 } 526 for d.tmp[0] != 0xff { 527 // Strictly speaking, this is a format error. However, libjpeg is 528 // liberal in what it accepts. As of version 9, next_marker in 529 // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and 530 // continues to decode the stream. Even before next_marker sees 531 // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many 532 // bytes as it can, possibly past the end of a scan's data. It 533 // effectively puts back any markers that it overscanned (e.g. an 534 // "\xff\xd9" EOI marker), but it does not put back non-marker data, 535 // and thus it can silently ignore a small number of extraneous 536 // non-marker bytes before next_marker has a chance to see them (and 537 // print a warning). 538 // 539 // We are therefore also liberal in what we accept. Extraneous data 540 // is silently ignored. 541 // 542 // This is similar to, but not exactly the same as, the restart 543 // mechanism within a scan (the RST[0-7] markers). 544 // 545 // Note that extraneous 0xff bytes in e.g. SOS data are escaped as 546 // "\xff\x00", and so are detected a little further down below. 547 d.tmp[0] = d.tmp[1] 548 d.tmp[1], err = d.readByte() 549 if err != nil { 550 return nil, err 551 } 552 } 553 marker := d.tmp[1] 554 if marker == 0 { 555 // Treat "\xff\x00" as extraneous data. 556 continue 557 } 558 for marker == 0xff { 559 // Section B.1.1.2 says, "Any marker may optionally be preceded by any 560 // number of fill bytes, which are bytes assigned code X'FF'". 561 marker, err = d.readByte() 562 if err != nil { 563 return nil, err 564 } 565 } 566 if marker == eoiMarker { // End Of Image. 567 break 568 } 569 if rst0Marker <= marker && marker <= rst7Marker { 570 // Figures B.2 and B.16 of the specification suggest that restart markers should 571 // only occur between Entropy Coded Segments and not after the final ECS. 572 // However, some encoders may generate incorrect JPEGs with a final restart 573 // marker. That restart marker will be seen here instead of inside the processSOS 574 // method, and is ignored as a harmless error. Restart markers have no extra data, 575 // so we check for this before we read the 16-bit length of the segment. 576 continue 577 } 578 579 // Read the 16-bit length of the segment. The value includes the 2 bytes for the 580 // length itself, so we subtract 2 to get the number of remaining bytes. 581 if err = d.readFull(d.tmp[:2]); err != nil { 582 return nil, err 583 } 584 n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 585 if n < 0 { 586 return nil, FormatError("short segment length") 587 } 588 589 switch marker { 590 case sof0Marker, sof1Marker, sof2Marker: 591 d.progressive = marker == sof2Marker 592 err = d.processSOF(n) 593 if configOnly && d.jfif { 594 return nil, err 595 } 596 case dhtMarker: 597 if configOnly { 598 err = d.ignore(n) 599 } else { 600 err = d.processDHT(n) 601 } 602 case dqtMarker: 603 if configOnly { 604 err = d.ignore(n) 605 } else { 606 err = d.processDQT(n) 607 } 608 case sosMarker: 609 if configOnly { 610 return nil, nil 611 } 612 err = d.processSOS(n) 613 case driMarker: 614 if configOnly { 615 err = d.ignore(n) 616 } else { 617 err = d.processDRI(n) 618 } 619 case app0Marker: 620 err = d.processApp0Marker(n) 621 case app14Marker: 622 err = d.processApp14Marker(n) 623 default: 624 if app0Marker <= marker && marker <= app15Marker || marker == comMarker { 625 err = d.ignore(n) 626 } else if marker < 0xc0 { // See Table B.1 "Marker code assignments". 627 err = FormatError("unknown marker") 628 } else { 629 err = UnsupportedError("unknown marker") 630 } 631 } 632 if err != nil { 633 return nil, err 634 } 635 } 636 if d.img1 != nil { 637 return d.img1, nil 638 } 639 if d.img3 != nil { 640 if d.blackPix != nil { 641 return d.applyBlack() 642 } else if d.isRGB() { 643 return d.convertToRGB() 644 } 645 return d.img3, nil 646 } 647 return nil, FormatError("missing SOS marker") 648 } 649 650 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula 651 // used depends on whether the JPEG image is stored as CMYK or YCbCrK, 652 // indicated by the APP14 (Adobe) metadata. 653 // 654 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full 655 // ink, so we apply "v = 255 - v" at various points. Note that a double 656 // inversion is a no-op, so inversions might be implicit in the code below. 657 func (d *decoder) applyBlack() (image.Image, error) { 658 if !d.adobeTransformValid { 659 return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata") 660 } 661 662 // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB 663 // or CMYK)" as per 664 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 665 // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c. 666 if d.adobeTransform != adobeTransformUnknown { 667 // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get 668 // CMY, and patch in the original K. The RGB to CMY inversion cancels 669 // out the 'Adobe inversion' described in the applyBlack doc comment 670 // above, so in practice, only the fourth channel (black) is inverted. 671 bounds := d.img3.Bounds() 672 img := image.NewRGBA(bounds) 673 imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min) 674 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 675 for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 676 img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)] 677 } 678 } 679 return &image.CMYK{ 680 Pix: img.Pix, 681 Stride: img.Stride, 682 Rect: img.Rect, 683 }, nil 684 } 685 686 // The first three channels (cyan, magenta, yellow) of the CMYK 687 // were decoded into d.img3, but each channel was decoded into a separate 688 // []byte slice, and some channels may be subsampled. We interleave the 689 // separate channels into an image.CMYK's single []byte slice containing 4 690 // contiguous bytes per pixel. 691 bounds := d.img3.Bounds() 692 img := image.NewCMYK(bounds) 693 694 translations := [4]struct { 695 src []byte 696 stride int 697 }{ 698 {d.img3.Y, d.img3.YStride}, 699 {d.img3.Cb, d.img3.CStride}, 700 {d.img3.Cr, d.img3.CStride}, 701 {d.blackPix, d.blackStride}, 702 } 703 for t, translation := range translations { 704 subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v 705 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 706 sy := y - bounds.Min.Y 707 if subsample { 708 sy /= 2 709 } 710 for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 711 sx := x - bounds.Min.X 712 if subsample { 713 sx /= 2 714 } 715 img.Pix[i] = 255 - translation.src[sy*translation.stride+sx] 716 } 717 } 718 } 719 return img, nil 720 } 721 722 func (d *decoder) isRGB() bool { 723 if d.jfif { 724 return false 725 } 726 if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown { 727 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 728 // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr. 729 return true 730 } 731 return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B' 732 } 733 734 func (d *decoder) convertToRGB() (image.Image, error) { 735 cScale := d.comp[0].h / d.comp[1].h 736 bounds := d.img3.Bounds() 737 img := image.NewRGBA(bounds) 738 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { 739 po := img.PixOffset(bounds.Min.X, y) 740 yo := d.img3.YOffset(bounds.Min.X, y) 741 co := d.img3.COffset(bounds.Min.X, y) 742 for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ { 743 img.Pix[po+4*i+0] = d.img3.Y[yo+i] 744 img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale] 745 img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale] 746 img.Pix[po+4*i+3] = 255 747 } 748 } 749 return img, nil 750 } 751 752 // Decode reads a JPEG image from r and returns it as an image.Image. 753 func Decode(r io.Reader) (image.Image, error) { 754 var d decoder 755 return d.decode(r, false) 756 } 757 758 // DecodeConfig returns the color model and dimensions of a JPEG image without 759 // decoding the entire image. 760 func DecodeConfig(r io.Reader) (image.Config, error) { 761 var d decoder 762 if _, err := d.decode(r, true); err != nil { 763 return image.Config{}, err 764 } 765 switch d.nComp { 766 case 1: 767 return image.Config{ 768 ColorModel: color.GrayModel, 769 Width: d.width, 770 Height: d.height, 771 }, nil 772 case 3: 773 cm := color.YCbCrModel 774 if d.isRGB() { 775 cm = color.RGBAModel 776 } 777 return image.Config{ 778 ColorModel: cm, 779 Width: d.width, 780 Height: d.height, 781 }, nil 782 case 4: 783 return image.Config{ 784 ColorModel: color.CMYKModel, 785 Width: d.width, 786 Height: d.height, 787 }, nil 788 } 789 return image.Config{}, FormatError("missing SOF marker") 790 } 791 792 func init() { 793 image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) 794 }