github.com/rsc/go@v0.0.0-20150416155037-e040fd465409/src/math/big/float.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements multi-precision floating-point numbers.
     6  // Like in the GNU MPFR library (http://www.mpfr.org/), operands
     7  // can be of mixed precision. Unlike MPFR, the rounding mode is
     8  // not specified with each operation, but with each operand. The
     9  // rounding mode of the result operand determines the rounding
    10  // mode of an operation. This is a from-scratch implementation.
    11  
    12  package big
    13  
    14  import (
    15  	"fmt"
    16  	"math"
    17  )
    18  
    19  const debugFloat = true // enable for debugging
    20  
    21  // A nonzero finite Float represents a multi-precision floating point number
    22  //
    23  //   sign × mantissa × 2**exponent
    24  //
    25  // with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp.
    26  // A Float may also be zero (+0, -0) or infinite (+Inf, -Inf).
    27  // All Floats are ordered, and the ordering of two Floats x and y
    28  // is defined by x.Cmp(y).
    29  //
    30  // Each Float value also has a precision, rounding mode, and accuracy.
    31  // The precision is the maximum number of mantissa bits available to
    32  // represent the value. The rounding mode specifies how a result should
    33  // be rounded to fit into the mantissa bits, and accuracy describes the
    34  // rounding error with respect to the exact result.
    35  //
    36  // Unless specified otherwise, all operations (including setters) that
    37  // specify a *Float variable for the result (usually via the receiver
    38  // with the exception of MantExp), round the numeric result according
    39  // to the precision and rounding mode of the result variable.
    40  //
    41  // If the provided result precision is 0 (see below), it is set to the
    42  // precision of the argument with the largest precision value before any
    43  // rounding takes place, and the rounding mode remains unchanged. Thus,
    44  // uninitialized Floats provided as result arguments will have their
    45  // precision set to a reasonable value determined by the operands and
    46  // their mode is the zero value for RoundingMode (ToNearestEven).
    47  //
    48  // By setting the desired precision to 24 or 53 and using matching rounding
    49  // mode (typically ToNearestEven), Float operations produce the same results
    50  // as the corresponding float32 or float64 IEEE-754 arithmetic for operands
    51  // that correspond to normal (i.e., not denormal) float32 or float64 numbers.
    52  // Exponent underflow and overflow lead to a 0 or an Infinity for different
    53  // values than IEEE-754 because Float exponents have a much larger range.
    54  //
    55  // The zero (uninitialized) value for a Float is ready to use and represents
    56  // the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.
    57  //
    58  type Float struct {
    59  	prec uint32
    60  	mode RoundingMode
    61  	acc  Accuracy
    62  	form form
    63  	neg  bool
    64  	mant nat
    65  	exp  int32
    66  }
    67  
    68  // An ErrNaN panic is raised by a Float operation that would lead to
    69  // a NaN under IEEE-754 rules. An ErrNaN implements the error interface.
    70  type ErrNaN struct {
    71  	msg string
    72  }
    73  
    74  func (err ErrNaN) Error() string {
    75  	return err.msg
    76  }
    77  
    78  // NewFloat allocates and returns a new Float set to x,
    79  // with precision 53 and rounding mode ToNearestEven.
    80  // NewFloat panics with ErrNaN if x is a NaN.
    81  func NewFloat(x float64) *Float {
    82  	if math.IsNaN(x) {
    83  		panic(ErrNaN{"NewFloat(NaN)"})
    84  	}
    85  	return new(Float).SetFloat64(x)
    86  }
    87  
    88  // Exponent and precision limits.
    89  const (
    90  	MaxExp  = math.MaxInt32  // largest supported exponent
    91  	MinExp  = math.MinInt32  // smallest supported exponent
    92  	MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
    93  )
    94  
    95  // Internal representation: The mantissa bits x.mant of a nonzero finite
    96  // Float x are stored in a nat slice long enough to hold up to x.prec bits;
    97  // the slice may (but doesn't have to) be shorter if the mantissa contains
    98  // trailing 0 bits. x.mant is normalized if the msb of x.mant == 1 (i.e.,
    99  // the msb is shifted all the way "to the left"). Thus, if the mantissa has
   100  // trailing 0 bits or x.prec is not a multiple of the the Word size _W,
   101  // x.mant[0] has trailing zero bits. The msb of the mantissa corresponds
   102  // to the value 0.5; the exponent x.exp shifts the binary point as needed.
   103  //
   104  // A zero or non-finite Float x ignores x.mant and x.exp.
   105  //
   106  // x                 form      neg      mant         exp
   107  // ----------------------------------------------------------
   108  // ±0                zero      sign     -            -
   109  // 0 < |x| < +Inf    finite    sign     mantissa     exponent
   110  // ±Inf              inf       sign     -            -
   111  
   112  // A form value describes the internal representation.
   113  type form byte
   114  
   115  // The form value order is relevant - do not change!
   116  const (
   117  	zero form = iota
   118  	finite
   119  	inf
   120  )
   121  
   122  // RoundingMode determines how a Float value is rounded to the
   123  // desired precision. Rounding may change the Float value; the
   124  // rounding error is described by the Float's Accuracy.
   125  type RoundingMode byte
   126  
   127  // The following rounding modes are supported.
   128  const (
   129  	ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
   130  	ToNearestAway                     // == IEEE 754-2008 roundTiesToAway
   131  	ToZero                            // == IEEE 754-2008 roundTowardZero
   132  	AwayFromZero                      // no IEEE 754-2008 equivalent
   133  	ToNegativeInf                     // == IEEE 754-2008 roundTowardNegative
   134  	ToPositiveInf                     // == IEEE 754-2008 roundTowardPositive
   135  )
   136  
   137  //go:generate stringer -type=RoundingMode
   138  
   139  // Accuracy describes the rounding error produced by the most recent
   140  // operation that generated a Float value, relative to the exact value.
   141  type Accuracy int8
   142  
   143  // Constants describing the Accuracy of a Float.
   144  const (
   145  	Below Accuracy = -1
   146  	Exact Accuracy = 0
   147  	Above Accuracy = +1
   148  )
   149  
   150  //go:generate stringer -type=Accuracy
   151  
   152  // SetPrec sets z's precision to prec and returns the (possibly) rounded
   153  // value of z. Rounding occurs according to z's rounding mode if the mantissa
   154  // cannot be represented in prec bits without loss of precision.
   155  // SetPrec(0) maps all finite values to ±0; infinite values remain unchanged.
   156  // If prec > MaxPrec, it is set to MaxPrec.
   157  func (z *Float) SetPrec(prec uint) *Float {
   158  	z.acc = Exact // optimistically assume no rounding is needed
   159  
   160  	// special case
   161  	if prec == 0 {
   162  		z.prec = 0
   163  		if z.form == finite {
   164  			// truncate z to 0
   165  			z.acc = makeAcc(z.neg)
   166  			z.form = zero
   167  		}
   168  		return z
   169  	}
   170  
   171  	// general case
   172  	if prec > MaxPrec {
   173  		prec = MaxPrec
   174  	}
   175  	old := z.prec
   176  	z.prec = uint32(prec)
   177  	if z.prec < old {
   178  		z.round(0)
   179  	}
   180  	return z
   181  }
   182  
   183  func makeAcc(above bool) Accuracy {
   184  	if above {
   185  		return Above
   186  	}
   187  	return Below
   188  }
   189  
   190  // SetMode sets z's rounding mode to mode and returns an exact z.
   191  // z remains unchanged otherwise.
   192  // z.SetMode(z.Mode()) is a cheap way to set z's accuracy to Exact.
   193  func (z *Float) SetMode(mode RoundingMode) *Float {
   194  	z.mode = mode
   195  	z.acc = Exact
   196  	return z
   197  }
   198  
   199  // Prec returns the mantissa precision of x in bits.
   200  // The result may be 0 for |x| == 0 and |x| == Inf.
   201  func (x *Float) Prec() uint {
   202  	return uint(x.prec)
   203  }
   204  
   205  // MinPrec returns the minimum precision required to represent x exactly
   206  // (i.e., the smallest prec before x.SetPrec(prec) would start rounding x).
   207  // The result is 0 for |x| == 0 and |x| == Inf.
   208  func (x *Float) MinPrec() uint {
   209  	if x.form != finite {
   210  		return 0
   211  	}
   212  	return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
   213  }
   214  
   215  // Mode returns the rounding mode of x.
   216  func (x *Float) Mode() RoundingMode {
   217  	return x.mode
   218  }
   219  
   220  // Acc returns the accuracy of x produced by the most recent operation.
   221  func (x *Float) Acc() Accuracy {
   222  	return x.acc
   223  }
   224  
   225  // Sign returns:
   226  //
   227  //	-1 if x <   0
   228  //	 0 if x is ±0
   229  //	+1 if x >   0
   230  //
   231  func (x *Float) Sign() int {
   232  	if debugFloat {
   233  		x.validate()
   234  	}
   235  	if x.form == zero {
   236  		return 0
   237  	}
   238  	if x.neg {
   239  		return -1
   240  	}
   241  	return 1
   242  }
   243  
   244  // MantExp breaks x into its mantissa and exponent components
   245  // and returns the exponent. If a non-nil mant argument is
   246  // provided its value is set to the mantissa of x, with the
   247  // same precision and rounding mode as x. The components
   248  // satisfy x == mant × 2**exp, with 0.5 <= |mant| < 1.0.
   249  // Calling MantExp with a nil argument is an efficient way to
   250  // get the exponent of the receiver.
   251  //
   252  // Special cases are:
   253  //
   254  //	(  ±0).MantExp(mant) = 0, with mant set to   ±0
   255  //	(±Inf).MantExp(mant) = 0, with mant set to ±Inf
   256  //
   257  // x and mant may be the same in which case x is set to its
   258  // mantissa value.
   259  func (x *Float) MantExp(mant *Float) (exp int) {
   260  	if debugFloat {
   261  		x.validate()
   262  	}
   263  	if x.form == finite {
   264  		exp = int(x.exp)
   265  	}
   266  	if mant != nil {
   267  		mant.Copy(x)
   268  		if mant.form == finite {
   269  			mant.exp = 0
   270  		}
   271  	}
   272  	return
   273  }
   274  
   275  func (z *Float) setExpAndRound(exp int64, sbit uint) {
   276  	if exp < MinExp {
   277  		// underflow
   278  		z.acc = makeAcc(z.neg)
   279  		z.form = zero
   280  		return
   281  	}
   282  
   283  	if exp > MaxExp {
   284  		// overflow
   285  		z.acc = makeAcc(!z.neg)
   286  		z.form = inf
   287  		return
   288  	}
   289  
   290  	z.form = finite
   291  	z.exp = int32(exp)
   292  	z.round(sbit)
   293  }
   294  
   295  // SetMantExp sets z to mant × 2**exp and and returns z.
   296  // The result z has the same precision and rounding mode
   297  // as mant. SetMantExp is an inverse of MantExp but does
   298  // not require 0.5 <= |mant| < 1.0. Specifically:
   299  //
   300  //	mant := new(Float)
   301  //	new(Float).SetMantExp(mant, x.SetMantExp(mant)).Cmp(x).Eql() is true
   302  //
   303  // Special cases are:
   304  //
   305  //	z.SetMantExp(  ±0, exp) =   ±0
   306  //	z.SetMantExp(±Inf, exp) = ±Inf
   307  //
   308  // z and mant may be the same in which case z's exponent
   309  // is set to exp.
   310  func (z *Float) SetMantExp(mant *Float, exp int) *Float {
   311  	if debugFloat {
   312  		z.validate()
   313  		mant.validate()
   314  	}
   315  	z.Copy(mant)
   316  	if z.form != finite {
   317  		return z
   318  	}
   319  	z.setExpAndRound(int64(z.exp)+int64(exp), 0)
   320  	return z
   321  }
   322  
   323  // Signbit returns true if x is negative or negative zero.
   324  func (x *Float) Signbit() bool {
   325  	return x.neg
   326  }
   327  
   328  // IsInf reports whether x is +Inf or -Inf.
   329  func (x *Float) IsInf() bool {
   330  	return x.form == inf
   331  }
   332  
   333  // IsInt reports whether x is an integer.
   334  // ±Inf values are not integers.
   335  func (x *Float) IsInt() bool {
   336  	if debugFloat {
   337  		x.validate()
   338  	}
   339  	// special cases
   340  	if x.form != finite {
   341  		return x.form == zero
   342  	}
   343  	// x.form == finite
   344  	if x.exp <= 0 {
   345  		return false
   346  	}
   347  	// x.exp > 0
   348  	return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa
   349  }
   350  
   351  // debugging support
   352  func (x *Float) validate() {
   353  	if !debugFloat {
   354  		// avoid performance bugs
   355  		panic("validate called but debugFloat is not set")
   356  	}
   357  	if x.form != finite {
   358  		return
   359  	}
   360  	m := len(x.mant)
   361  	if m == 0 {
   362  		panic("nonzero finite number with empty mantissa")
   363  	}
   364  	const msb = 1 << (_W - 1)
   365  	if x.mant[m-1]&msb == 0 {
   366  		panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Format('p', 0)))
   367  	}
   368  	if x.prec == 0 {
   369  		panic("zero precision finite number")
   370  	}
   371  }
   372  
   373  // round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
   374  // sbit must be 0 or 1 and summarizes any "sticky bit" information one might
   375  // have before calling round. z's mantissa must be normalized (with the msb set)
   376  // or empty.
   377  //
   378  // CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
   379  // sign of z. For correct rounding, the sign of z must be set correctly before
   380  // calling round.
   381  func (z *Float) round(sbit uint) {
   382  	if debugFloat {
   383  		z.validate()
   384  		if z.form > finite {
   385  			panic(fmt.Sprintf("round called for non-finite value %s", z))
   386  		}
   387  	}
   388  	// z.form <= finite
   389  
   390  	z.acc = Exact
   391  	if z.form == zero {
   392  		return
   393  	}
   394  	// z.form == finite && len(z.mant) > 0
   395  	// m > 0 implies z.prec > 0 (checked by validate)
   396  
   397  	m := uint32(len(z.mant)) // present mantissa length in words
   398  	bits := m * _W           // present mantissa bits
   399  	if bits <= z.prec {
   400  		// mantissa fits => nothing to do
   401  		return
   402  	}
   403  	// bits > z.prec
   404  
   405  	n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
   406  
   407  	// Rounding is based on two bits: the rounding bit (rbit) and the
   408  	// sticky bit (sbit). The rbit is the bit immediately before the
   409  	// z.prec leading mantissa bits (the "0.5"). The sbit is set if any
   410  	// of the bits before the rbit are set (the "0.25", "0.125", etc.):
   411  	//
   412  	//   rbit  sbit  => "fractional part"
   413  	//
   414  	//   0     0        == 0
   415  	//   0     1        >  0  , < 0.5
   416  	//   1     0        == 0.5
   417  	//   1     1        >  0.5, < 1.0
   418  
   419  	// bits > z.prec: mantissa too large => round
   420  	r := uint(bits - z.prec - 1) // rounding bit position; r >= 0
   421  	rbit := z.mant.bit(r)        // rounding bit
   422  	if sbit == 0 {
   423  		sbit = z.mant.sticky(r)
   424  	}
   425  	if debugFloat && sbit&^1 != 0 {
   426  		panic(fmt.Sprintf("invalid sbit %#x", sbit))
   427  	}
   428  
   429  	// convert ToXInf rounding modes
   430  	mode := z.mode
   431  	switch mode {
   432  	case ToNegativeInf:
   433  		mode = ToZero
   434  		if z.neg {
   435  			mode = AwayFromZero
   436  		}
   437  	case ToPositiveInf:
   438  		mode = AwayFromZero
   439  		if z.neg {
   440  			mode = ToZero
   441  		}
   442  	}
   443  
   444  	// cut off extra words
   445  	if m > n {
   446  		copy(z.mant, z.mant[m-n:]) // move n last words to front
   447  		z.mant = z.mant[:n]
   448  	}
   449  
   450  	// determine number of trailing zero bits t
   451  	t := n*_W - z.prec // 0 <= t < _W
   452  	lsb := Word(1) << t
   453  
   454  	// make rounding decision
   455  	// TODO(gri) This can be simplified (see Bits.round in bits_test.go).
   456  	switch mode {
   457  	case ToZero:
   458  		// nothing to do
   459  	case ToNearestEven, ToNearestAway:
   460  		if rbit == 0 {
   461  			// rounding bits == 0b0x
   462  			mode = ToZero
   463  		} else if sbit == 1 {
   464  			// rounding bits == 0b11
   465  			mode = AwayFromZero
   466  		}
   467  	case AwayFromZero:
   468  		if rbit|sbit == 0 {
   469  			mode = ToZero
   470  		}
   471  	default:
   472  		// ToXInf modes have been converted to ToZero or AwayFromZero
   473  		panic("unreachable")
   474  	}
   475  
   476  	// round and determine accuracy
   477  	switch mode {
   478  	case ToZero:
   479  		if rbit|sbit != 0 {
   480  			z.acc = Below
   481  		}
   482  
   483  	case ToNearestEven, ToNearestAway:
   484  		if debugFloat && rbit != 1 {
   485  			panic("internal error in rounding")
   486  		}
   487  		if mode == ToNearestEven && sbit == 0 && z.mant[0]&lsb == 0 {
   488  			z.acc = Below
   489  			break
   490  		}
   491  		// mode == ToNearestAway || sbit == 1 || z.mant[0]&lsb != 0
   492  		fallthrough
   493  
   494  	case AwayFromZero:
   495  		// add 1 to mantissa
   496  		if addVW(z.mant, z.mant, lsb) != 0 {
   497  			// overflow => shift mantissa right by 1 and add msb
   498  			shrVU(z.mant, z.mant, 1)
   499  			z.mant[n-1] |= 1 << (_W - 1)
   500  			// adjust exponent
   501  			if z.exp < MaxExp {
   502  				z.exp++
   503  			} else {
   504  				// exponent overflow
   505  				z.acc = makeAcc(!z.neg)
   506  				z.form = inf
   507  				return
   508  			}
   509  		}
   510  		z.acc = Above
   511  	}
   512  
   513  	// zero out trailing bits in least-significant word
   514  	z.mant[0] &^= lsb - 1
   515  
   516  	// update accuracy
   517  	if z.acc != Exact && z.neg {
   518  		z.acc = -z.acc
   519  	}
   520  
   521  	if debugFloat {
   522  		z.validate()
   523  	}
   524  
   525  	return
   526  }
   527  
   528  // nlz returns the number of leading zero bits in x.
   529  func nlz(x Word) uint {
   530  	return _W - uint(bitLen(x))
   531  }
   532  
   533  func nlz64(x uint64) uint {
   534  	// TODO(gri) this can be done more nicely
   535  	if _W == 32 {
   536  		if x>>32 == 0 {
   537  			return 32 + nlz(Word(x))
   538  		}
   539  		return nlz(Word(x >> 32))
   540  	}
   541  	if _W == 64 {
   542  		return nlz(Word(x))
   543  	}
   544  	panic("unreachable")
   545  }
   546  
   547  func (z *Float) setBits64(neg bool, x uint64) *Float {
   548  	if z.prec == 0 {
   549  		z.prec = 64
   550  	}
   551  	z.acc = Exact
   552  	z.neg = neg
   553  	if x == 0 {
   554  		z.form = zero
   555  		return z
   556  	}
   557  	// x != 0
   558  	z.form = finite
   559  	s := nlz64(x)
   560  	z.mant = z.mant.setUint64(x << s)
   561  	z.exp = int32(64 - s) // always fits
   562  	if z.prec < 64 {
   563  		z.round(0)
   564  	}
   565  	return z
   566  }
   567  
   568  // SetUint64 sets z to the (possibly rounded) value of x and returns z.
   569  // If z's precision is 0, it is changed to 64 (and rounding will have
   570  // no effect).
   571  func (z *Float) SetUint64(x uint64) *Float {
   572  	return z.setBits64(false, x)
   573  }
   574  
   575  // SetInt64 sets z to the (possibly rounded) value of x and returns z.
   576  // If z's precision is 0, it is changed to 64 (and rounding will have
   577  // no effect).
   578  func (z *Float) SetInt64(x int64) *Float {
   579  	u := x
   580  	if u < 0 {
   581  		u = -u
   582  	}
   583  	// We cannot simply call z.SetUint64(uint64(u)) and change
   584  	// the sign afterwards because the sign affects rounding.
   585  	return z.setBits64(x < 0, uint64(u))
   586  }
   587  
   588  // SetFloat64 sets z to the (possibly rounded) value of x and returns z.
   589  // If z's precision is 0, it is changed to 53 (and rounding will have
   590  // no effect). SetFloat64 panics with ErrNaN if x is a NaN.
   591  func (z *Float) SetFloat64(x float64) *Float {
   592  	if z.prec == 0 {
   593  		z.prec = 53
   594  	}
   595  	if math.IsNaN(x) {
   596  		panic(ErrNaN{"Float.SetFloat64(NaN)"})
   597  	}
   598  	z.acc = Exact
   599  	z.neg = math.Signbit(x) // handle -0, -Inf correctly
   600  	if x == 0 {
   601  		z.form = zero
   602  		return z
   603  	}
   604  	if math.IsInf(x, 0) {
   605  		z.form = inf
   606  		return z
   607  	}
   608  	// normalized x != 0
   609  	z.form = finite
   610  	fmant, exp := math.Frexp(x) // get normalized mantissa
   611  	z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
   612  	z.exp = int32(exp) // always fits
   613  	if z.prec < 53 {
   614  		z.round(0)
   615  	}
   616  	return z
   617  }
   618  
   619  // fnorm normalizes mantissa m by shifting it to the left
   620  // such that the msb of the most-significant word (msw) is 1.
   621  // It returns the shift amount. It assumes that len(m) != 0.
   622  func fnorm(m nat) int64 {
   623  	if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
   624  		panic("msw of mantissa is 0")
   625  	}
   626  	s := nlz(m[len(m)-1])
   627  	if s > 0 {
   628  		c := shlVU(m, m, s)
   629  		if debugFloat && c != 0 {
   630  			panic("nlz or shlVU incorrect")
   631  		}
   632  	}
   633  	return int64(s)
   634  }
   635  
   636  // SetInt sets z to the (possibly rounded) value of x and returns z.
   637  // If z's precision is 0, it is changed to the larger of x.BitLen()
   638  // or 64 (and rounding will have no effect).
   639  func (z *Float) SetInt(x *Int) *Float {
   640  	// TODO(gri) can be more efficient if z.prec > 0
   641  	// but small compared to the size of x, or if there
   642  	// are many trailing 0's.
   643  	bits := uint32(x.BitLen())
   644  	if z.prec == 0 {
   645  		z.prec = umax32(bits, 64)
   646  	}
   647  	z.acc = Exact
   648  	z.neg = x.neg
   649  	if len(x.abs) == 0 {
   650  		z.form = zero
   651  		return z
   652  	}
   653  	// x != 0
   654  	z.mant = z.mant.set(x.abs)
   655  	fnorm(z.mant)
   656  	z.setExpAndRound(int64(bits), 0)
   657  	return z
   658  }
   659  
   660  // SetRat sets z to the (possibly rounded) value of x and returns z.
   661  // If z's precision is 0, it is changed to the largest of a.BitLen(),
   662  // b.BitLen(), or 64; with x = a/b.
   663  func (z *Float) SetRat(x *Rat) *Float {
   664  	if x.IsInt() {
   665  		return z.SetInt(x.Num())
   666  	}
   667  	var a, b Float
   668  	a.SetInt(x.Num())
   669  	b.SetInt(x.Denom())
   670  	if z.prec == 0 {
   671  		z.prec = umax32(a.prec, b.prec)
   672  	}
   673  	return z.Quo(&a, &b)
   674  }
   675  
   676  // SetInf sets z to the infinite Float -Inf if signbit is
   677  // set, or +Inf if signbit is not set, and returns z. The
   678  // precision of z is unchanged and the result is always
   679  // Exact.
   680  func (z *Float) SetInf(signbit bool) *Float {
   681  	z.acc = Exact
   682  	z.form = inf
   683  	z.neg = signbit
   684  	return z
   685  }
   686  
   687  // Set sets z to the (possibly rounded) value of x and returns z.
   688  // If z's precision is 0, it is changed to the precision of x
   689  // before setting z (and rounding will have no effect).
   690  // Rounding is performed according to z's precision and rounding
   691  // mode; and z's accuracy reports the result error relative to the
   692  // exact (not rounded) result.
   693  func (z *Float) Set(x *Float) *Float {
   694  	if debugFloat {
   695  		x.validate()
   696  	}
   697  	z.acc = Exact
   698  	if z != x {
   699  		z.form = x.form
   700  		z.neg = x.neg
   701  		if x.form == finite {
   702  			z.exp = x.exp
   703  			z.mant = z.mant.set(x.mant)
   704  		}
   705  		if z.prec == 0 {
   706  			z.prec = x.prec
   707  		} else if z.prec < x.prec {
   708  			z.round(0)
   709  		}
   710  	}
   711  	return z
   712  }
   713  
   714  // Copy sets z to x, with the same precision, rounding mode, and
   715  // accuracy as x, and returns z. x is not changed even if z and
   716  // x are the same.
   717  func (z *Float) Copy(x *Float) *Float {
   718  	if debugFloat {
   719  		x.validate()
   720  	}
   721  	if z != x {
   722  		z.prec = x.prec
   723  		z.mode = x.mode
   724  		z.acc = x.acc
   725  		z.form = x.form
   726  		z.neg = x.neg
   727  		if z.form == finite {
   728  			z.mant = z.mant.set(x.mant)
   729  			z.exp = x.exp
   730  		}
   731  	}
   732  	return z
   733  }
   734  
   735  func high32(x nat) uint32 {
   736  	// TODO(gri) This can be done more efficiently on 32bit platforms.
   737  	return uint32(high64(x) >> 32)
   738  }
   739  
   740  func high64(x nat) uint64 {
   741  	i := len(x)
   742  	if i == 0 {
   743  		return 0
   744  	}
   745  	// i > 0
   746  	v := uint64(x[i-1])
   747  	if _W == 32 {
   748  		v <<= 32
   749  		if i > 1 {
   750  			v |= uint64(x[i-2])
   751  		}
   752  	}
   753  	return v
   754  }
   755  
   756  // Uint64 returns the unsigned integer resulting from truncating x
   757  // towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
   758  // if x is an integer and Below otherwise.
   759  // The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
   760  // for x > math.MaxUint64.
   761  func (x *Float) Uint64() (uint64, Accuracy) {
   762  	if debugFloat {
   763  		x.validate()
   764  	}
   765  
   766  	switch x.form {
   767  	case finite:
   768  		if x.neg {
   769  			return 0, Above
   770  		}
   771  		// 0 < x < +Inf
   772  		if x.exp <= 0 {
   773  			// 0 < x < 1
   774  			return 0, Below
   775  		}
   776  		// 1 <= x < Inf
   777  		if x.exp <= 64 {
   778  			// u = trunc(x) fits into a uint64
   779  			u := high64(x.mant) >> (64 - uint32(x.exp))
   780  			if x.MinPrec() <= 64 {
   781  				return u, Exact
   782  			}
   783  			return u, Below // x truncated
   784  		}
   785  		// x too large
   786  		return math.MaxUint64, Below
   787  
   788  	case zero:
   789  		return 0, Exact
   790  
   791  	case inf:
   792  		if x.neg {
   793  			return 0, Above
   794  		}
   795  		return math.MaxUint64, Below
   796  	}
   797  
   798  	panic("unreachable")
   799  }
   800  
   801  // Int64 returns the integer resulting from truncating x towards zero.
   802  // If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
   803  // an integer, and Above (x < 0) or Below (x > 0) otherwise.
   804  // The result is (math.MinInt64, Above) for x < math.MinInt64,
   805  // and (math.MaxInt64, Below) for x > math.MaxInt64.
   806  func (x *Float) Int64() (int64, Accuracy) {
   807  	if debugFloat {
   808  		x.validate()
   809  	}
   810  
   811  	switch x.form {
   812  	case finite:
   813  		// 0 < |x| < +Inf
   814  		acc := makeAcc(x.neg)
   815  		if x.exp <= 0 {
   816  			// 0 < |x| < 1
   817  			return 0, acc
   818  		}
   819  		// x.exp > 0
   820  
   821  		// 1 <= |x| < +Inf
   822  		if x.exp <= 63 {
   823  			// i = trunc(x) fits into an int64 (excluding math.MinInt64)
   824  			i := int64(high64(x.mant) >> (64 - uint32(x.exp)))
   825  			if x.neg {
   826  				i = -i
   827  			}
   828  			if x.MinPrec() <= uint(x.exp) {
   829  				return i, Exact
   830  			}
   831  			return i, acc // x truncated
   832  		}
   833  		if x.neg {
   834  			// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
   835  			if x.exp == 64 && x.MinPrec() == 1 {
   836  				acc = Exact
   837  			}
   838  			return math.MinInt64, acc
   839  		}
   840  		// x too large
   841  		return math.MaxInt64, Below
   842  
   843  	case zero:
   844  		return 0, Exact
   845  
   846  	case inf:
   847  		if x.neg {
   848  			return math.MinInt64, Above
   849  		}
   850  		return math.MaxInt64, Below
   851  	}
   852  
   853  	panic("unreachable")
   854  }
   855  
   856  // TODO(gri) Float32 and Float64 are very similar internally but for the
   857  // floatxx parameters and some conversions. Should factor out shared code.
   858  
   859  // Float32 returns the float32 value nearest to x. If x is too small to be
   860  // represented by a float32 (|x| < math.SmallestNonzeroFloat32), the result
   861  // is (0, Below) or (-0, Above), respectively, depending on the sign of x.
   862  // If x is too large to be represented by a float32 (|x| > math.MaxFloat32),
   863  // the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
   864  func (x *Float) Float32() (float32, Accuracy) {
   865  	if debugFloat {
   866  		x.validate()
   867  	}
   868  
   869  	switch x.form {
   870  	case finite:
   871  		// 0 < |x| < +Inf
   872  
   873  		const (
   874  			fbits = 32                //        float size
   875  			mbits = 23                //        mantissa size (excluding implicit msb)
   876  			ebits = fbits - mbits - 1 //     8  exponent size
   877  			bias  = 1<<(ebits-1) - 1  //   127  exponent bias
   878  			dmin  = 1 - bias - mbits  //  -149  smallest unbiased exponent (denormal)
   879  			emin  = 1 - bias          //  -126  smallest unbiased exponent (normal)
   880  			emax  = bias              //   127  largest unbiased exponent (normal)
   881  		)
   882  
   883  		// Float mantissae m have an explicit msb and are in the range 0.5 <= m < 1.0.
   884  		// floatxx mantissae have an implicit msb and are in the range 1.0 <= m < 2.0.
   885  		// For a given mantissa m, we need to add 1 to a floatxx exponent to get the
   886  		// corresponding Float exponent.
   887  		// (see also implementation of math.Ldexp for similar code)
   888  
   889  		if x.exp < dmin+1 {
   890  			// underflow
   891  			if x.neg {
   892  				var z float32
   893  				return -z, Above
   894  			}
   895  			return 0.0, Below
   896  		}
   897  		// x.exp >= dmin+1
   898  
   899  		var r Float
   900  		r.prec = mbits + 1 // +1 for implicit msb
   901  		if x.exp < emin+1 {
   902  			// denormal number - round to fewer bits
   903  			r.prec = uint32(x.exp - dmin)
   904  		}
   905  		r.Set(x)
   906  
   907  		// Rounding may have caused r to overflow to ±Inf
   908  		// (rounding never causes underflows to 0).
   909  		if r.form == inf {
   910  			r.exp = emax + 2 // cause overflow below
   911  		}
   912  
   913  		if r.exp > emax+1 {
   914  			// overflow
   915  			if x.neg {
   916  				return float32(math.Inf(-1)), Below
   917  			}
   918  			return float32(math.Inf(+1)), Above
   919  		}
   920  		// dmin+1 <= r.exp <= emax+1
   921  
   922  		var s uint32
   923  		if r.neg {
   924  			s = 1 << (fbits - 1)
   925  		}
   926  
   927  		m := high32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
   928  
   929  		// Rounding may have caused a denormal number to
   930  		// become normal. Check again.
   931  		c := float32(1.0)
   932  		if r.exp < emin+1 {
   933  			// denormal number
   934  			r.exp += mbits
   935  			c = 1.0 / (1 << mbits) // 2**-mbits
   936  		}
   937  		// emin+1 <= r.exp <= emax+1
   938  		e := uint32(r.exp-emin) << mbits
   939  
   940  		return c * math.Float32frombits(s|e|m), r.acc
   941  
   942  	case zero:
   943  		if x.neg {
   944  			var z float32
   945  			return -z, Exact
   946  		}
   947  		return 0.0, Exact
   948  
   949  	case inf:
   950  		if x.neg {
   951  			return float32(math.Inf(-1)), Exact
   952  		}
   953  		return float32(math.Inf(+1)), Exact
   954  	}
   955  
   956  	panic("unreachable")
   957  }
   958  
   959  // Float64 returns the float64 value nearest to x. If x is too small to be
   960  // represented by a float64 (|x| < math.SmallestNonzeroFloat64), the result
   961  // is (0, Below) or (-0, Above), respectively, depending on the sign of x.
   962  // If x is too large to be represented by a float64 (|x| > math.MaxFloat64),
   963  // the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
   964  func (x *Float) Float64() (float64, Accuracy) {
   965  	if debugFloat {
   966  		x.validate()
   967  	}
   968  
   969  	switch x.form {
   970  	case finite:
   971  		// 0 < |x| < +Inf
   972  
   973  		const (
   974  			fbits = 64                //        float size
   975  			mbits = 52                //        mantissa size (excluding implicit msb)
   976  			ebits = fbits - mbits - 1 //    11  exponent size
   977  			bias  = 1<<(ebits-1) - 1  //  1023  exponent bias
   978  			dmin  = 1 - bias - mbits  // -1074  smallest unbiased exponent (denormal)
   979  			emin  = 1 - bias          // -1022  smallest unbiased exponent (normal)
   980  			emax  = bias              //  1023  largest unbiased exponent (normal)
   981  		)
   982  
   983  		// Float mantissae m have an explicit msb and are in the range 0.5 <= m < 1.0.
   984  		// floatxx mantissae have an implicit msb and are in the range 1.0 <= m < 2.0.
   985  		// For a given mantissa m, we need to add 1 to a floatxx exponent to get the
   986  		// corresponding Float exponent.
   987  		// (see also implementation of math.Ldexp for similar code)
   988  
   989  		if x.exp < dmin+1 {
   990  			// underflow
   991  			if x.neg {
   992  				var z float64
   993  				return -z, Above
   994  			}
   995  			return 0.0, Below
   996  		}
   997  		// x.exp >= dmin+1
   998  
   999  		var r Float
  1000  		r.prec = mbits + 1 // +1 for implicit msb
  1001  		if x.exp < emin+1 {
  1002  			// denormal number - round to fewer bits
  1003  			r.prec = uint32(x.exp - dmin)
  1004  		}
  1005  		r.Set(x)
  1006  
  1007  		// Rounding may have caused r to overflow to ±Inf
  1008  		// (rounding never causes underflows to 0).
  1009  		if r.form == inf {
  1010  			r.exp = emax + 2 // cause overflow below
  1011  		}
  1012  
  1013  		if r.exp > emax+1 {
  1014  			// overflow
  1015  			if x.neg {
  1016  				return math.Inf(-1), Below
  1017  			}
  1018  			return math.Inf(+1), Above
  1019  		}
  1020  		// dmin+1 <= r.exp <= emax+1
  1021  
  1022  		var s uint64
  1023  		if r.neg {
  1024  			s = 1 << (fbits - 1)
  1025  		}
  1026  
  1027  		m := high64(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
  1028  
  1029  		// Rounding may have caused a denormal number to
  1030  		// become normal. Check again.
  1031  		c := 1.0
  1032  		if r.exp < emin+1 {
  1033  			// denormal number
  1034  			r.exp += mbits
  1035  			c = 1.0 / (1 << mbits) // 2**-mbits
  1036  		}
  1037  		// emin+1 <= r.exp <= emax+1
  1038  		e := uint64(r.exp-emin) << mbits
  1039  
  1040  		return c * math.Float64frombits(s|e|m), r.acc
  1041  
  1042  	case zero:
  1043  		if x.neg {
  1044  			var z float64
  1045  			return -z, Exact
  1046  		}
  1047  		return 0.0, Exact
  1048  
  1049  	case inf:
  1050  		if x.neg {
  1051  			return math.Inf(-1), Exact
  1052  		}
  1053  		return math.Inf(+1), Exact
  1054  	}
  1055  
  1056  	panic("unreachable")
  1057  }
  1058  
  1059  // Int returns the result of truncating x towards zero;
  1060  // or nil if x is an infinity.
  1061  // The result is Exact if x.IsInt(); otherwise it is Below
  1062  // for x > 0, and Above for x < 0.
  1063  // If a non-nil *Int argument z is provided, Int stores
  1064  // the result in z instead of allocating a new Int.
  1065  func (x *Float) Int(z *Int) (*Int, Accuracy) {
  1066  	if debugFloat {
  1067  		x.validate()
  1068  	}
  1069  
  1070  	if z == nil && x.form <= finite {
  1071  		z = new(Int)
  1072  	}
  1073  
  1074  	switch x.form {
  1075  	case finite:
  1076  		// 0 < |x| < +Inf
  1077  		acc := makeAcc(x.neg)
  1078  		if x.exp <= 0 {
  1079  			// 0 < |x| < 1
  1080  			return z.SetInt64(0), acc
  1081  		}
  1082  		// x.exp > 0
  1083  
  1084  		// 1 <= |x| < +Inf
  1085  		// determine minimum required precision for x
  1086  		allBits := uint(len(x.mant)) * _W
  1087  		exp := uint(x.exp)
  1088  		if x.MinPrec() <= exp {
  1089  			acc = Exact
  1090  		}
  1091  		// shift mantissa as needed
  1092  		if z == nil {
  1093  			z = new(Int)
  1094  		}
  1095  		z.neg = x.neg
  1096  		switch {
  1097  		case exp > allBits:
  1098  			z.abs = z.abs.shl(x.mant, exp-allBits)
  1099  		default:
  1100  			z.abs = z.abs.set(x.mant)
  1101  		case exp < allBits:
  1102  			z.abs = z.abs.shr(x.mant, allBits-exp)
  1103  		}
  1104  		return z, acc
  1105  
  1106  	case zero:
  1107  		return z.SetInt64(0), Exact
  1108  
  1109  	case inf:
  1110  		return nil, makeAcc(x.neg)
  1111  	}
  1112  
  1113  	panic("unreachable")
  1114  }
  1115  
  1116  // Rat returns the rational number corresponding to x;
  1117  // or nil if x is an infinity.
  1118  // The result is Exact is x is not an Inf.
  1119  // If a non-nil *Rat argument z is provided, Rat stores
  1120  // the result in z instead of allocating a new Rat.
  1121  func (x *Float) Rat(z *Rat) (*Rat, Accuracy) {
  1122  	if debugFloat {
  1123  		x.validate()
  1124  	}
  1125  
  1126  	if z == nil && x.form <= finite {
  1127  		z = new(Rat)
  1128  	}
  1129  
  1130  	switch x.form {
  1131  	case finite:
  1132  		// 0 < |x| < +Inf
  1133  		allBits := int32(len(x.mant)) * _W
  1134  		// build up numerator and denominator
  1135  		z.a.neg = x.neg
  1136  		switch {
  1137  		case x.exp > allBits:
  1138  			z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
  1139  			z.b.abs = z.b.abs[:0] // == 1 (see Rat)
  1140  			// z already in normal form
  1141  		default:
  1142  			z.a.abs = z.a.abs.set(x.mant)
  1143  			z.b.abs = z.b.abs[:0] // == 1 (see Rat)
  1144  			// z already in normal form
  1145  		case x.exp < allBits:
  1146  			z.a.abs = z.a.abs.set(x.mant)
  1147  			t := z.b.abs.setUint64(1)
  1148  			z.b.abs = t.shl(t, uint(allBits-x.exp))
  1149  			z.norm()
  1150  		}
  1151  		return z, Exact
  1152  
  1153  	case zero:
  1154  		return z.SetInt64(0), Exact
  1155  
  1156  	case inf:
  1157  		return nil, makeAcc(x.neg)
  1158  	}
  1159  
  1160  	panic("unreachable")
  1161  }
  1162  
  1163  // Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
  1164  // and returns z.
  1165  func (z *Float) Abs(x *Float) *Float {
  1166  	z.Set(x)
  1167  	z.neg = false
  1168  	return z
  1169  }
  1170  
  1171  // Neg sets z to the (possibly rounded) value of x with its sign negated,
  1172  // and returns z.
  1173  func (z *Float) Neg(x *Float) *Float {
  1174  	z.Set(x)
  1175  	z.neg = !z.neg
  1176  	return z
  1177  }
  1178  
  1179  func validateBinaryOperands(x, y *Float) {
  1180  	if !debugFloat {
  1181  		// avoid performance bugs
  1182  		panic("validateBinaryOperands called but debugFloat is not set")
  1183  	}
  1184  	if len(x.mant) == 0 {
  1185  		panic("empty mantissa for x")
  1186  	}
  1187  	if len(y.mant) == 0 {
  1188  		panic("empty mantissa for y")
  1189  	}
  1190  }
  1191  
  1192  // z = x + y, ignoring signs of x and y for the addition
  1193  // but using the sign of z for rounding the result.
  1194  // x and y must have a non-empty mantissa and valid exponent.
  1195  func (z *Float) uadd(x, y *Float) {
  1196  	// Note: This implementation requires 2 shifts most of the
  1197  	// time. It is also inefficient if exponents or precisions
  1198  	// differ by wide margins. The following article describes
  1199  	// an efficient (but much more complicated) implementation
  1200  	// compatible with the internal representation used here:
  1201  	//
  1202  	// Vincent Lefèvre: "The Generic Multiple-Precision Floating-
  1203  	// Point Addition With Exact Rounding (as in the MPFR Library)"
  1204  	// http://www.vinc17.net/research/papers/rnc6.pdf
  1205  
  1206  	if debugFloat {
  1207  		validateBinaryOperands(x, y)
  1208  	}
  1209  
  1210  	// compute exponents ex, ey for mantissa with "binary point"
  1211  	// on the right (mantissa.0) - use int64 to avoid overflow
  1212  	ex := int64(x.exp) - int64(len(x.mant))*_W
  1213  	ey := int64(y.exp) - int64(len(y.mant))*_W
  1214  
  1215  	// TODO(gri) having a combined add-and-shift primitive
  1216  	//           could make this code significantly faster
  1217  	switch {
  1218  	case ex < ey:
  1219  		// cannot re-use z.mant w/o testing for aliasing
  1220  		t := nat(nil).shl(y.mant, uint(ey-ex))
  1221  		z.mant = z.mant.add(x.mant, t)
  1222  	default:
  1223  		// ex == ey, no shift needed
  1224  		z.mant = z.mant.add(x.mant, y.mant)
  1225  	case ex > ey:
  1226  		// cannot re-use z.mant w/o testing for aliasing
  1227  		t := nat(nil).shl(x.mant, uint(ex-ey))
  1228  		z.mant = z.mant.add(t, y.mant)
  1229  		ex = ey
  1230  	}
  1231  	// len(z.mant) > 0
  1232  
  1233  	z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
  1234  }
  1235  
  1236  // z = x - y for |x| > |y|, ignoring signs of x and y for the subtraction
  1237  // but using the sign of z for rounding the result.
  1238  // x and y must have a non-empty mantissa and valid exponent.
  1239  func (z *Float) usub(x, y *Float) {
  1240  	// This code is symmetric to uadd.
  1241  	// We have not factored the common code out because
  1242  	// eventually uadd (and usub) should be optimized
  1243  	// by special-casing, and the code will diverge.
  1244  
  1245  	if debugFloat {
  1246  		validateBinaryOperands(x, y)
  1247  	}
  1248  
  1249  	ex := int64(x.exp) - int64(len(x.mant))*_W
  1250  	ey := int64(y.exp) - int64(len(y.mant))*_W
  1251  
  1252  	switch {
  1253  	case ex < ey:
  1254  		// cannot re-use z.mant w/o testing for aliasing
  1255  		t := nat(nil).shl(y.mant, uint(ey-ex))
  1256  		z.mant = t.sub(x.mant, t)
  1257  	default:
  1258  		// ex == ey, no shift needed
  1259  		z.mant = z.mant.sub(x.mant, y.mant)
  1260  	case ex > ey:
  1261  		// cannot re-use z.mant w/o testing for aliasing
  1262  		t := nat(nil).shl(x.mant, uint(ex-ey))
  1263  		z.mant = t.sub(t, y.mant)
  1264  		ex = ey
  1265  	}
  1266  
  1267  	// operands may have cancelled each other out
  1268  	if len(z.mant) == 0 {
  1269  		z.acc = Exact
  1270  		z.form = zero
  1271  		z.neg = false
  1272  		return
  1273  	}
  1274  	// len(z.mant) > 0
  1275  
  1276  	z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
  1277  }
  1278  
  1279  // z = x * y, ignoring signs of x and y for the multiplication
  1280  // but using the sign of z for rounding the result.
  1281  // x and y must have a non-empty mantissa and valid exponent.
  1282  func (z *Float) umul(x, y *Float) {
  1283  	if debugFloat {
  1284  		validateBinaryOperands(x, y)
  1285  	}
  1286  
  1287  	// Note: This is doing too much work if the precision
  1288  	// of z is less than the sum of the precisions of x
  1289  	// and y which is often the case (e.g., if all floats
  1290  	// have the same precision).
  1291  	// TODO(gri) Optimize this for the common case.
  1292  
  1293  	e := int64(x.exp) + int64(y.exp)
  1294  	z.mant = z.mant.mul(x.mant, y.mant)
  1295  
  1296  	z.setExpAndRound(e-fnorm(z.mant), 0)
  1297  }
  1298  
  1299  // z = x / y, ignoring signs of x and y for the division
  1300  // but using the sign of z for rounding the result.
  1301  // x and y must have a non-empty mantissa and valid exponent.
  1302  func (z *Float) uquo(x, y *Float) {
  1303  	if debugFloat {
  1304  		validateBinaryOperands(x, y)
  1305  	}
  1306  
  1307  	// mantissa length in words for desired result precision + 1
  1308  	// (at least one extra bit so we get the rounding bit after
  1309  	// the division)
  1310  	n := int(z.prec/_W) + 1
  1311  
  1312  	// compute adjusted x.mant such that we get enough result precision
  1313  	xadj := x.mant
  1314  	if d := n - len(x.mant) + len(y.mant); d > 0 {
  1315  		// d extra words needed => add d "0 digits" to x
  1316  		xadj = make(nat, len(x.mant)+d)
  1317  		copy(xadj[d:], x.mant)
  1318  	}
  1319  	// TODO(gri): If we have too many digits (d < 0), we should be able
  1320  	// to shorten x for faster division. But we must be extra careful
  1321  	// with rounding in that case.
  1322  
  1323  	// Compute d before division since there may be aliasing of x.mant
  1324  	// (via xadj) or y.mant with z.mant.
  1325  	d := len(xadj) - len(y.mant)
  1326  
  1327  	// divide
  1328  	var r nat
  1329  	z.mant, r = z.mant.div(nil, xadj, y.mant)
  1330  	e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W
  1331  
  1332  	// The result is long enough to include (at least) the rounding bit.
  1333  	// If there's a non-zero remainder, the corresponding fractional part
  1334  	// (if it were computed), would have a non-zero sticky bit (if it were
  1335  	// zero, it couldn't have a non-zero remainder).
  1336  	var sbit uint
  1337  	if len(r) > 0 {
  1338  		sbit = 1
  1339  	}
  1340  
  1341  	z.setExpAndRound(e-fnorm(z.mant), sbit)
  1342  }
  1343  
  1344  // ucmp returns -1, 0, or +1, depending on whether
  1345  // |x| < |y|, |x| == |y|, or |x| > |y|.
  1346  // x and y must have a non-empty mantissa and valid exponent.
  1347  func (x *Float) ucmp(y *Float) int {
  1348  	if debugFloat {
  1349  		validateBinaryOperands(x, y)
  1350  	}
  1351  
  1352  	switch {
  1353  	case x.exp < y.exp:
  1354  		return -1
  1355  	case x.exp > y.exp:
  1356  		return +1
  1357  	}
  1358  	// x.exp == y.exp
  1359  
  1360  	// compare mantissas
  1361  	i := len(x.mant)
  1362  	j := len(y.mant)
  1363  	for i > 0 || j > 0 {
  1364  		var xm, ym Word
  1365  		if i > 0 {
  1366  			i--
  1367  			xm = x.mant[i]
  1368  		}
  1369  		if j > 0 {
  1370  			j--
  1371  			ym = y.mant[j]
  1372  		}
  1373  		switch {
  1374  		case xm < ym:
  1375  			return -1
  1376  		case xm > ym:
  1377  			return +1
  1378  		}
  1379  	}
  1380  
  1381  	return 0
  1382  }
  1383  
  1384  // Handling of sign bit as defined by IEEE 754-2008, section 6.3:
  1385  //
  1386  // When neither the inputs nor result are NaN, the sign of a product or
  1387  // quotient is the exclusive OR of the operands’ signs; the sign of a sum,
  1388  // or of a difference x−y regarded as a sum x+(−y), differs from at most
  1389  // one of the addends’ signs; and the sign of the result of conversions,
  1390  // the quantize operation, the roundToIntegral operations, and the
  1391  // roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
  1392  // These rules shall apply even when operands or results are zero or infinite.
  1393  //
  1394  // When the sum of two operands with opposite signs (or the difference of
  1395  // two operands with like signs) is exactly zero, the sign of that sum (or
  1396  // difference) shall be +0 in all rounding-direction attributes except
  1397  // roundTowardNegative; under that attribute, the sign of an exact zero
  1398  // sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
  1399  // sign as x even when x is zero.
  1400  //
  1401  // See also: http://play.golang.org/p/RtH3UCt5IH
  1402  
  1403  // Add sets z to the rounded sum x+y and returns z. If z's precision is 0,
  1404  // it is changed to the larger of x's or y's precision before the operation.
  1405  // Rounding is performed according to z's precision and rounding mode; and
  1406  // z's accuracy reports the result error relative to the exact (not rounded)
  1407  // result. Add panics with ErrNaN if x and y are infinities with opposite
  1408  // signs. The value of z is undefined in that case.
  1409  //
  1410  // BUG(gri) When rounding ToNegativeInf, the sign of Float values rounded to 0 is incorrect.
  1411  func (z *Float) Add(x, y *Float) *Float {
  1412  	if debugFloat {
  1413  		x.validate()
  1414  		y.validate()
  1415  	}
  1416  
  1417  	if z.prec == 0 {
  1418  		z.prec = umax32(x.prec, y.prec)
  1419  	}
  1420  
  1421  	if x.form == finite && y.form == finite {
  1422  		// x + y (commom case)
  1423  		z.neg = x.neg
  1424  		if x.neg == y.neg {
  1425  			// x + y == x + y
  1426  			// (-x) + (-y) == -(x + y)
  1427  			z.uadd(x, y)
  1428  		} else {
  1429  			// x + (-y) == x - y == -(y - x)
  1430  			// (-x) + y == y - x == -(x - y)
  1431  			if x.ucmp(y) > 0 {
  1432  				z.usub(x, y)
  1433  			} else {
  1434  				z.neg = !z.neg
  1435  				z.usub(y, x)
  1436  			}
  1437  		}
  1438  		return z
  1439  	}
  1440  
  1441  	if x.form == inf && y.form == inf && x.neg != y.neg {
  1442  		// +Inf + -Inf
  1443  		// -Inf + +Inf
  1444  		// value of z is undefined but make sure it's valid
  1445  		z.acc = Exact
  1446  		z.form = zero
  1447  		z.neg = false
  1448  		panic(ErrNaN{"addition of infinities with opposite signs"})
  1449  	}
  1450  
  1451  	if x.form == zero && y.form == zero {
  1452  		// ±0 + ±0
  1453  		z.acc = Exact
  1454  		z.form = zero
  1455  		z.neg = x.neg && y.neg // -0 + -0 == -0
  1456  		return z
  1457  	}
  1458  
  1459  	if x.form == inf || y.form == zero {
  1460  		// ±Inf + y
  1461  		// x + ±0
  1462  		return z.Set(x)
  1463  	}
  1464  
  1465  	// ±0 + y
  1466  	// x + ±Inf
  1467  	return z.Set(y)
  1468  }
  1469  
  1470  // Sub sets z to the rounded difference x-y and returns z.
  1471  // Precision, rounding, and accuracy reporting are as for Add.
  1472  // Sub panics with ErrNaN if x and y are infinities with equal
  1473  // signs. The value of z is undefined in that case.
  1474  func (z *Float) Sub(x, y *Float) *Float {
  1475  	if debugFloat {
  1476  		x.validate()
  1477  		y.validate()
  1478  	}
  1479  
  1480  	if z.prec == 0 {
  1481  		z.prec = umax32(x.prec, y.prec)
  1482  	}
  1483  
  1484  	if x.form == finite && y.form == finite {
  1485  		// x - y (common case)
  1486  		z.neg = x.neg
  1487  		if x.neg != y.neg {
  1488  			// x - (-y) == x + y
  1489  			// (-x) - y == -(x + y)
  1490  			z.uadd(x, y)
  1491  		} else {
  1492  			// x - y == x - y == -(y - x)
  1493  			// (-x) - (-y) == y - x == -(x - y)
  1494  			if x.ucmp(y) > 0 {
  1495  				z.usub(x, y)
  1496  			} else {
  1497  				z.neg = !z.neg
  1498  				z.usub(y, x)
  1499  			}
  1500  		}
  1501  		return z
  1502  	}
  1503  
  1504  	if x.form == inf && y.form == inf && x.neg == y.neg {
  1505  		// +Inf - +Inf
  1506  		// -Inf - -Inf
  1507  		// value of z is undefined but make sure it's valid
  1508  		z.acc = Exact
  1509  		z.form = zero
  1510  		z.neg = false
  1511  		panic(ErrNaN{"subtraction of infinities with equal signs"})
  1512  	}
  1513  
  1514  	if x.form == zero && y.form == zero {
  1515  		// ±0 - ±0
  1516  		z.acc = Exact
  1517  		z.form = zero
  1518  		z.neg = x.neg && !y.neg // -0 - +0 == -0
  1519  		return z
  1520  	}
  1521  
  1522  	if x.form == inf || y.form == zero {
  1523  		// ±Inf - y
  1524  		// x - ±0
  1525  		return z.Set(x)
  1526  	}
  1527  
  1528  	// ±0 - y
  1529  	// x - ±Inf
  1530  	return z.Neg(y)
  1531  }
  1532  
  1533  // Mul sets z to the rounded product x*y and returns z.
  1534  // Precision, rounding, and accuracy reporting are as for Add.
  1535  // Mul panics with ErrNaN if one operand is zero and the other
  1536  // operand an infinity. The value of z is undefined in that case.
  1537  func (z *Float) Mul(x, y *Float) *Float {
  1538  	if debugFloat {
  1539  		x.validate()
  1540  		y.validate()
  1541  	}
  1542  
  1543  	if z.prec == 0 {
  1544  		z.prec = umax32(x.prec, y.prec)
  1545  	}
  1546  
  1547  	z.neg = x.neg != y.neg
  1548  
  1549  	if x.form == finite && y.form == finite {
  1550  		// x * y (common case)
  1551  		z.umul(x, y)
  1552  		return z
  1553  	}
  1554  
  1555  	z.acc = Exact
  1556  	if x.form == zero && y.form == inf || x.form == inf && y.form == zero {
  1557  		// ±0 * ±Inf
  1558  		// ±Inf * ±0
  1559  		// value of z is undefined but make sure it's valid
  1560  		z.form = zero
  1561  		z.neg = false
  1562  		panic(ErrNaN{"multiplication of zero with infinity"})
  1563  	}
  1564  
  1565  	if x.form == inf || y.form == inf {
  1566  		// ±Inf * y
  1567  		// x * ±Inf
  1568  		z.form = inf
  1569  		return z
  1570  	}
  1571  
  1572  	// ±0 * y
  1573  	// x * ±0
  1574  	z.form = zero
  1575  	return z
  1576  }
  1577  
  1578  // Quo sets z to the rounded quotient x/y and returns z.
  1579  // Precision, rounding, and accuracy reporting are as for Add.
  1580  // Quo panics with ErrNaN if both operands are zero or infinities.
  1581  // The value of z is undefined in that case.
  1582  func (z *Float) Quo(x, y *Float) *Float {
  1583  	if debugFloat {
  1584  		x.validate()
  1585  		y.validate()
  1586  	}
  1587  
  1588  	if z.prec == 0 {
  1589  		z.prec = umax32(x.prec, y.prec)
  1590  	}
  1591  
  1592  	z.neg = x.neg != y.neg
  1593  
  1594  	if x.form == finite && y.form == finite {
  1595  		// x / y (common case)
  1596  		z.uquo(x, y)
  1597  		return z
  1598  	}
  1599  
  1600  	z.acc = Exact
  1601  	if x.form == zero && y.form == zero || x.form == inf && y.form == inf {
  1602  		// ±0 / ±0
  1603  		// ±Inf / ±Inf
  1604  		// value of z is undefined but make sure it's valid
  1605  		z.form = zero
  1606  		z.neg = false
  1607  		panic(ErrNaN{"division of zero by zero or infinity by infinity"})
  1608  	}
  1609  
  1610  	if x.form == zero || y.form == inf {
  1611  		// ±0 / y
  1612  		// x / ±Inf
  1613  		z.form = zero
  1614  		return z
  1615  	}
  1616  
  1617  	// x / ±0
  1618  	// ±Inf / y
  1619  	z.form = inf
  1620  	return z
  1621  }
  1622  
  1623  // Cmp compares x and y and returns:
  1624  //
  1625  //   -1 if x <  y
  1626  //    0 if x == y (incl. -0 == 0, -Inf == -Inf, and +Inf == +Inf)
  1627  //   +1 if x >  y
  1628  //
  1629  func (x *Float) Cmp(y *Float) int {
  1630  	if debugFloat {
  1631  		x.validate()
  1632  		y.validate()
  1633  	}
  1634  
  1635  	mx := x.ord()
  1636  	my := y.ord()
  1637  	switch {
  1638  	case mx < my:
  1639  		return -1
  1640  	case mx > my:
  1641  		return +1
  1642  	}
  1643  	// mx == my
  1644  
  1645  	// only if |mx| == 1 we have to compare the mantissae
  1646  	switch mx {
  1647  	case -1:
  1648  		return y.ucmp(x)
  1649  	case +1:
  1650  		return x.ucmp(y)
  1651  	}
  1652  
  1653  	return 0
  1654  }
  1655  
  1656  // ord classifies x and returns:
  1657  //
  1658  //	-2 if -Inf == x
  1659  //	-1 if -Inf < x < 0
  1660  //	 0 if x == 0 (signed or unsigned)
  1661  //	+1 if 0 < x < +Inf
  1662  //	+2 if x == +Inf
  1663  //
  1664  func (x *Float) ord() int {
  1665  	var m int
  1666  	switch x.form {
  1667  	case finite:
  1668  		m = 1
  1669  	case zero:
  1670  		return 0
  1671  	case inf:
  1672  		m = 2
  1673  	}
  1674  	if x.neg {
  1675  		m = -m
  1676  	}
  1677  	return m
  1678  }
  1679  
  1680  func umax32(x, y uint32) uint32 {
  1681  	if x > y {
  1682  		return x
  1683  	}
  1684  	return y
  1685  }