github.com/rsc/go@v0.0.0-20150416155037-e040fd465409/src/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // state represents the state of an execution. It's not part of the 19 // template so that multiple executions of the same template 20 // can execute in parallel. 21 type state struct { 22 tmpl *Template 23 wr io.Writer 24 node parse.Node // current node, for errors 25 vars []variable // push-down stack of variable values. 26 } 27 28 // variable holds the dynamic value of a variable such as $, $x etc. 29 type variable struct { 30 name string 31 value reflect.Value 32 } 33 34 // push pushes a new variable on the stack. 35 func (s *state) push(name string, value reflect.Value) { 36 s.vars = append(s.vars, variable{name, value}) 37 } 38 39 // mark returns the length of the variable stack. 40 func (s *state) mark() int { 41 return len(s.vars) 42 } 43 44 // pop pops the variable stack up to the mark. 45 func (s *state) pop(mark int) { 46 s.vars = s.vars[0:mark] 47 } 48 49 // setVar overwrites the top-nth variable on the stack. Used by range iterations. 50 func (s *state) setVar(n int, value reflect.Value) { 51 s.vars[len(s.vars)-n].value = value 52 } 53 54 // varValue returns the value of the named variable. 55 func (s *state) varValue(name string) reflect.Value { 56 for i := s.mark() - 1; i >= 0; i-- { 57 if s.vars[i].name == name { 58 return s.vars[i].value 59 } 60 } 61 s.errorf("undefined variable: %s", name) 62 return zero 63 } 64 65 var zero reflect.Value 66 67 // at marks the state to be on node n, for error reporting. 68 func (s *state) at(node parse.Node) { 69 s.node = node 70 } 71 72 // doublePercent returns the string with %'s replaced by %%, if necessary, 73 // so it can be used safely inside a Printf format string. 74 func doublePercent(str string) string { 75 if strings.Contains(str, "%") { 76 str = strings.Replace(str, "%", "%%", -1) 77 } 78 return str 79 } 80 81 // errorf formats the error and terminates processing. 82 func (s *state) errorf(format string, args ...interface{}) { 83 name := doublePercent(s.tmpl.Name()) 84 if s.node == nil { 85 format = fmt.Sprintf("template: %s: %s", name, format) 86 } else { 87 location, context := s.tmpl.ErrorContext(s.node) 88 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 89 } 90 panic(fmt.Errorf(format, args...)) 91 } 92 93 // errRecover is the handler that turns panics into returns from the top 94 // level of Parse. 95 func errRecover(errp *error) { 96 e := recover() 97 if e != nil { 98 switch err := e.(type) { 99 case runtime.Error: 100 panic(e) 101 case error: 102 *errp = err 103 default: 104 panic(e) 105 } 106 } 107 } 108 109 // ExecuteTemplate applies the template associated with t that has the given name 110 // to the specified data object and writes the output to wr. 111 // If an error occurs executing the template or writing its output, 112 // execution stops, but partial results may already have been written to 113 // the output writer. 114 // A template may be executed safely in parallel. 115 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 116 tmpl := t.tmpl[name] 117 if tmpl == nil { 118 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 119 } 120 return tmpl.Execute(wr, data) 121 } 122 123 // Execute applies a parsed template to the specified data object, 124 // and writes the output to wr. 125 // If an error occurs executing the template or writing its output, 126 // execution stops, but partial results may already have been written to 127 // the output writer. 128 // A template may be executed safely in parallel. 129 func (t *Template) Execute(wr io.Writer, data interface{}) (err error) { 130 defer errRecover(&err) 131 value := reflect.ValueOf(data) 132 state := &state{ 133 tmpl: t, 134 wr: wr, 135 vars: []variable{{"$", value}}, 136 } 137 t.init() 138 if t.Tree == nil || t.Root == nil { 139 state.errorf("%q is an incomplete or empty template%s", t.Name(), t.DefinedTemplates()) 140 } 141 state.walk(value, t.Root) 142 return 143 } 144 145 // DefinedTemplates returns a string listing the defined templates, 146 // prefixed by the string "defined templates are: ". If there are none, 147 // it returns the empty string. For generating an error message here 148 // and in html/template. 149 func (t *Template) DefinedTemplates() string { 150 if t.common == nil { 151 return "" 152 } 153 var b bytes.Buffer 154 for name, tmpl := range t.tmpl { 155 if tmpl.Tree == nil || tmpl.Root == nil { 156 continue 157 } 158 if b.Len() > 0 { 159 b.WriteString(", ") 160 } 161 fmt.Fprintf(&b, "%q", name) 162 } 163 var s string 164 if b.Len() > 0 { 165 s = "; defined templates are: " + b.String() 166 } 167 return s 168 } 169 170 // Walk functions step through the major pieces of the template structure, 171 // generating output as they go. 172 func (s *state) walk(dot reflect.Value, node parse.Node) { 173 s.at(node) 174 switch node := node.(type) { 175 case *parse.ActionNode: 176 // Do not pop variables so they persist until next end. 177 // Also, if the action declares variables, don't print the result. 178 val := s.evalPipeline(dot, node.Pipe) 179 if len(node.Pipe.Decl) == 0 { 180 s.printValue(node, val) 181 } 182 case *parse.IfNode: 183 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 184 case *parse.ListNode: 185 for _, node := range node.Nodes { 186 s.walk(dot, node) 187 } 188 case *parse.RangeNode: 189 s.walkRange(dot, node) 190 case *parse.TemplateNode: 191 s.walkTemplate(dot, node) 192 case *parse.TextNode: 193 if _, err := s.wr.Write(node.Text); err != nil { 194 s.errorf("%s", err) 195 } 196 case *parse.WithNode: 197 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 198 default: 199 s.errorf("unknown node: %s", node) 200 } 201 } 202 203 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 204 // are identical in behavior except that 'with' sets dot. 205 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 206 defer s.pop(s.mark()) 207 val := s.evalPipeline(dot, pipe) 208 truth, ok := isTrue(val) 209 if !ok { 210 s.errorf("if/with can't use %v", val) 211 } 212 if truth { 213 if typ == parse.NodeWith { 214 s.walk(val, list) 215 } else { 216 s.walk(dot, list) 217 } 218 } else if elseList != nil { 219 s.walk(dot, elseList) 220 } 221 } 222 223 // isTrue reports whether the value is 'true', in the sense of not the zero of its type, 224 // and whether the value has a meaningful truth value. 225 func isTrue(val reflect.Value) (truth, ok bool) { 226 if !val.IsValid() { 227 // Something like var x interface{}, never set. It's a form of nil. 228 return false, true 229 } 230 switch val.Kind() { 231 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 232 truth = val.Len() > 0 233 case reflect.Bool: 234 truth = val.Bool() 235 case reflect.Complex64, reflect.Complex128: 236 truth = val.Complex() != 0 237 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 238 truth = !val.IsNil() 239 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 240 truth = val.Int() != 0 241 case reflect.Float32, reflect.Float64: 242 truth = val.Float() != 0 243 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 244 truth = val.Uint() != 0 245 case reflect.Struct: 246 truth = true // Struct values are always true. 247 default: 248 return 249 } 250 return truth, true 251 } 252 253 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 254 s.at(r) 255 defer s.pop(s.mark()) 256 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 257 // mark top of stack before any variables in the body are pushed. 258 mark := s.mark() 259 oneIteration := func(index, elem reflect.Value) { 260 // Set top var (lexically the second if there are two) to the element. 261 if len(r.Pipe.Decl) > 0 { 262 s.setVar(1, elem) 263 } 264 // Set next var (lexically the first if there are two) to the index. 265 if len(r.Pipe.Decl) > 1 { 266 s.setVar(2, index) 267 } 268 s.walk(elem, r.List) 269 s.pop(mark) 270 } 271 switch val.Kind() { 272 case reflect.Array, reflect.Slice: 273 if val.Len() == 0 { 274 break 275 } 276 for i := 0; i < val.Len(); i++ { 277 oneIteration(reflect.ValueOf(i), val.Index(i)) 278 } 279 return 280 case reflect.Map: 281 if val.Len() == 0 { 282 break 283 } 284 for _, key := range sortKeys(val.MapKeys()) { 285 oneIteration(key, val.MapIndex(key)) 286 } 287 return 288 case reflect.Chan: 289 if val.IsNil() { 290 break 291 } 292 i := 0 293 for ; ; i++ { 294 elem, ok := val.Recv() 295 if !ok { 296 break 297 } 298 oneIteration(reflect.ValueOf(i), elem) 299 } 300 if i == 0 { 301 break 302 } 303 return 304 case reflect.Invalid: 305 break // An invalid value is likely a nil map, etc. and acts like an empty map. 306 default: 307 s.errorf("range can't iterate over %v", val) 308 } 309 if r.ElseList != nil { 310 s.walk(dot, r.ElseList) 311 } 312 } 313 314 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 315 s.at(t) 316 tmpl := s.tmpl.tmpl[t.Name] 317 if tmpl == nil { 318 s.errorf("template %q not defined", t.Name) 319 } 320 // Variables declared by the pipeline persist. 321 dot = s.evalPipeline(dot, t.Pipe) 322 newState := *s 323 newState.tmpl = tmpl 324 // No dynamic scoping: template invocations inherit no variables. 325 newState.vars = []variable{{"$", dot}} 326 newState.walk(dot, tmpl.Root) 327 } 328 329 // Eval functions evaluate pipelines, commands, and their elements and extract 330 // values from the data structure by examining fields, calling methods, and so on. 331 // The printing of those values happens only through walk functions. 332 333 // evalPipeline returns the value acquired by evaluating a pipeline. If the 334 // pipeline has a variable declaration, the variable will be pushed on the 335 // stack. Callers should therefore pop the stack after they are finished 336 // executing commands depending on the pipeline value. 337 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 338 if pipe == nil { 339 return 340 } 341 s.at(pipe) 342 for _, cmd := range pipe.Cmds { 343 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 344 // If the object has type interface{}, dig down one level to the thing inside. 345 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 346 value = reflect.ValueOf(value.Interface()) // lovely! 347 } 348 } 349 for _, variable := range pipe.Decl { 350 s.push(variable.Ident[0], value) 351 } 352 return value 353 } 354 355 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 356 if len(args) > 1 || final.IsValid() { 357 s.errorf("can't give argument to non-function %s", args[0]) 358 } 359 } 360 361 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 362 firstWord := cmd.Args[0] 363 switch n := firstWord.(type) { 364 case *parse.FieldNode: 365 return s.evalFieldNode(dot, n, cmd.Args, final) 366 case *parse.ChainNode: 367 return s.evalChainNode(dot, n, cmd.Args, final) 368 case *parse.IdentifierNode: 369 // Must be a function. 370 return s.evalFunction(dot, n, cmd, cmd.Args, final) 371 case *parse.PipeNode: 372 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 373 return s.evalPipeline(dot, n) 374 case *parse.VariableNode: 375 return s.evalVariableNode(dot, n, cmd.Args, final) 376 } 377 s.at(firstWord) 378 s.notAFunction(cmd.Args, final) 379 switch word := firstWord.(type) { 380 case *parse.BoolNode: 381 return reflect.ValueOf(word.True) 382 case *parse.DotNode: 383 return dot 384 case *parse.NilNode: 385 s.errorf("nil is not a command") 386 case *parse.NumberNode: 387 return s.idealConstant(word) 388 case *parse.StringNode: 389 return reflect.ValueOf(word.Text) 390 } 391 s.errorf("can't evaluate command %q", firstWord) 392 panic("not reached") 393 } 394 395 // idealConstant is called to return the value of a number in a context where 396 // we don't know the type. In that case, the syntax of the number tells us 397 // its type, and we use Go rules to resolve. Note there is no such thing as 398 // a uint ideal constant in this situation - the value must be of int type. 399 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 400 // These are ideal constants but we don't know the type 401 // and we have no context. (If it was a method argument, 402 // we'd know what we need.) The syntax guides us to some extent. 403 s.at(constant) 404 switch { 405 case constant.IsComplex: 406 return reflect.ValueOf(constant.Complex128) // incontrovertible. 407 case constant.IsFloat && !isHexConstant(constant.Text) && strings.IndexAny(constant.Text, ".eE") >= 0: 408 return reflect.ValueOf(constant.Float64) 409 case constant.IsInt: 410 n := int(constant.Int64) 411 if int64(n) != constant.Int64 { 412 s.errorf("%s overflows int", constant.Text) 413 } 414 return reflect.ValueOf(n) 415 case constant.IsUint: 416 s.errorf("%s overflows int", constant.Text) 417 } 418 return zero 419 } 420 421 func isHexConstant(s string) bool { 422 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 423 } 424 425 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 426 s.at(field) 427 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 428 } 429 430 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 431 s.at(chain) 432 if len(chain.Field) == 0 { 433 s.errorf("internal error: no fields in evalChainNode") 434 } 435 if chain.Node.Type() == parse.NodeNil { 436 s.errorf("indirection through explicit nil in %s", chain) 437 } 438 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 439 pipe := s.evalArg(dot, nil, chain.Node) 440 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 441 } 442 443 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 444 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 445 s.at(variable) 446 value := s.varValue(variable.Ident[0]) 447 if len(variable.Ident) == 1 { 448 s.notAFunction(args, final) 449 return value 450 } 451 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 452 } 453 454 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 455 // dot is the environment in which to evaluate arguments, while 456 // receiver is the value being walked along the chain. 457 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 458 n := len(ident) 459 for i := 0; i < n-1; i++ { 460 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 461 } 462 // Now if it's a method, it gets the arguments. 463 return s.evalField(dot, ident[n-1], node, args, final, receiver) 464 } 465 466 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 467 s.at(node) 468 name := node.Ident 469 function, ok := findFunction(name, s.tmpl) 470 if !ok { 471 s.errorf("%q is not a defined function", name) 472 } 473 return s.evalCall(dot, function, cmd, name, args, final) 474 } 475 476 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 477 // The 'final' argument represents the return value from the preceding 478 // value of the pipeline, if any. 479 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 480 if !receiver.IsValid() { 481 return zero 482 } 483 typ := receiver.Type() 484 receiver, _ = indirect(receiver) 485 // Unless it's an interface, need to get to a value of type *T to guarantee 486 // we see all methods of T and *T. 487 ptr := receiver 488 if ptr.Kind() != reflect.Interface && ptr.CanAddr() { 489 ptr = ptr.Addr() 490 } 491 if method := ptr.MethodByName(fieldName); method.IsValid() { 492 return s.evalCall(dot, method, node, fieldName, args, final) 493 } 494 hasArgs := len(args) > 1 || final.IsValid() 495 // It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil. 496 receiver, isNil := indirect(receiver) 497 if isNil { 498 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 499 } 500 switch receiver.Kind() { 501 case reflect.Struct: 502 tField, ok := receiver.Type().FieldByName(fieldName) 503 if ok { 504 field := receiver.FieldByIndex(tField.Index) 505 if tField.PkgPath != "" { // field is unexported 506 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 507 } 508 // If it's a function, we must call it. 509 if hasArgs { 510 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 511 } 512 return field 513 } 514 s.errorf("%s is not a field of struct type %s", fieldName, typ) 515 case reflect.Map: 516 // If it's a map, attempt to use the field name as a key. 517 nameVal := reflect.ValueOf(fieldName) 518 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 519 if hasArgs { 520 s.errorf("%s is not a method but has arguments", fieldName) 521 } 522 result := receiver.MapIndex(nameVal) 523 if !result.IsValid() { 524 switch s.tmpl.option.missingKey { 525 case mapInvalid: 526 // Just use the invalid value. 527 case mapZeroValue: 528 result = reflect.Zero(receiver.Type().Elem()) 529 case mapError: 530 s.errorf("map has no entry for key %q", fieldName) 531 } 532 } 533 return result 534 } 535 } 536 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 537 panic("not reached") 538 } 539 540 var ( 541 errorType = reflect.TypeOf((*error)(nil)).Elem() 542 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 543 ) 544 545 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 546 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 547 // as the function itself. 548 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 549 if args != nil { 550 args = args[1:] // Zeroth arg is function name/node; not passed to function. 551 } 552 typ := fun.Type() 553 numIn := len(args) 554 if final.IsValid() { 555 numIn++ 556 } 557 numFixed := len(args) 558 if typ.IsVariadic() { 559 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 560 if numIn < numFixed { 561 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 562 } 563 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { 564 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 565 } 566 if !goodFunc(typ) { 567 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 568 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 569 } 570 // Build the arg list. 571 argv := make([]reflect.Value, numIn) 572 // Args must be evaluated. Fixed args first. 573 i := 0 574 for ; i < numFixed && i < len(args); i++ { 575 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 576 } 577 // Now the ... args. 578 if typ.IsVariadic() { 579 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 580 for ; i < len(args); i++ { 581 argv[i] = s.evalArg(dot, argType, args[i]) 582 } 583 } 584 // Add final value if necessary. 585 if final.IsValid() { 586 t := typ.In(typ.NumIn() - 1) 587 if typ.IsVariadic() { 588 t = t.Elem() 589 } 590 argv[i] = s.validateType(final, t) 591 } 592 result := fun.Call(argv) 593 // If we have an error that is not nil, stop execution and return that error to the caller. 594 if len(result) == 2 && !result[1].IsNil() { 595 s.at(node) 596 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 597 } 598 return result[0] 599 } 600 601 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 602 func canBeNil(typ reflect.Type) bool { 603 switch typ.Kind() { 604 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 605 return true 606 } 607 return false 608 } 609 610 // validateType guarantees that the value is valid and assignable to the type. 611 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 612 if !value.IsValid() { 613 if typ == nil || canBeNil(typ) { 614 // An untyped nil interface{}. Accept as a proper nil value. 615 return reflect.Zero(typ) 616 } 617 s.errorf("invalid value; expected %s", typ) 618 } 619 if typ != nil && !value.Type().AssignableTo(typ) { 620 if value.Kind() == reflect.Interface && !value.IsNil() { 621 value = value.Elem() 622 if value.Type().AssignableTo(typ) { 623 return value 624 } 625 // fallthrough 626 } 627 // Does one dereference or indirection work? We could do more, as we 628 // do with method receivers, but that gets messy and method receivers 629 // are much more constrained, so it makes more sense there than here. 630 // Besides, one is almost always all you need. 631 switch { 632 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 633 value = value.Elem() 634 if !value.IsValid() { 635 s.errorf("dereference of nil pointer of type %s", typ) 636 } 637 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 638 value = value.Addr() 639 default: 640 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 641 } 642 } 643 return value 644 } 645 646 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 647 s.at(n) 648 switch arg := n.(type) { 649 case *parse.DotNode: 650 return s.validateType(dot, typ) 651 case *parse.NilNode: 652 if canBeNil(typ) { 653 return reflect.Zero(typ) 654 } 655 s.errorf("cannot assign nil to %s", typ) 656 case *parse.FieldNode: 657 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 658 case *parse.VariableNode: 659 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 660 case *parse.PipeNode: 661 return s.validateType(s.evalPipeline(dot, arg), typ) 662 case *parse.IdentifierNode: 663 return s.evalFunction(dot, arg, arg, nil, zero) 664 case *parse.ChainNode: 665 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 666 } 667 switch typ.Kind() { 668 case reflect.Bool: 669 return s.evalBool(typ, n) 670 case reflect.Complex64, reflect.Complex128: 671 return s.evalComplex(typ, n) 672 case reflect.Float32, reflect.Float64: 673 return s.evalFloat(typ, n) 674 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 675 return s.evalInteger(typ, n) 676 case reflect.Interface: 677 if typ.NumMethod() == 0 { 678 return s.evalEmptyInterface(dot, n) 679 } 680 case reflect.String: 681 return s.evalString(typ, n) 682 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 683 return s.evalUnsignedInteger(typ, n) 684 } 685 s.errorf("can't handle %s for arg of type %s", n, typ) 686 panic("not reached") 687 } 688 689 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 690 s.at(n) 691 if n, ok := n.(*parse.BoolNode); ok { 692 value := reflect.New(typ).Elem() 693 value.SetBool(n.True) 694 return value 695 } 696 s.errorf("expected bool; found %s", n) 697 panic("not reached") 698 } 699 700 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 701 s.at(n) 702 if n, ok := n.(*parse.StringNode); ok { 703 value := reflect.New(typ).Elem() 704 value.SetString(n.Text) 705 return value 706 } 707 s.errorf("expected string; found %s", n) 708 panic("not reached") 709 } 710 711 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 712 s.at(n) 713 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 714 value := reflect.New(typ).Elem() 715 value.SetInt(n.Int64) 716 return value 717 } 718 s.errorf("expected integer; found %s", n) 719 panic("not reached") 720 } 721 722 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 723 s.at(n) 724 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 725 value := reflect.New(typ).Elem() 726 value.SetUint(n.Uint64) 727 return value 728 } 729 s.errorf("expected unsigned integer; found %s", n) 730 panic("not reached") 731 } 732 733 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 734 s.at(n) 735 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 736 value := reflect.New(typ).Elem() 737 value.SetFloat(n.Float64) 738 return value 739 } 740 s.errorf("expected float; found %s", n) 741 panic("not reached") 742 } 743 744 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 745 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 746 value := reflect.New(typ).Elem() 747 value.SetComplex(n.Complex128) 748 return value 749 } 750 s.errorf("expected complex; found %s", n) 751 panic("not reached") 752 } 753 754 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 755 s.at(n) 756 switch n := n.(type) { 757 case *parse.BoolNode: 758 return reflect.ValueOf(n.True) 759 case *parse.DotNode: 760 return dot 761 case *parse.FieldNode: 762 return s.evalFieldNode(dot, n, nil, zero) 763 case *parse.IdentifierNode: 764 return s.evalFunction(dot, n, n, nil, zero) 765 case *parse.NilNode: 766 // NilNode is handled in evalArg, the only place that calls here. 767 s.errorf("evalEmptyInterface: nil (can't happen)") 768 case *parse.NumberNode: 769 return s.idealConstant(n) 770 case *parse.StringNode: 771 return reflect.ValueOf(n.Text) 772 case *parse.VariableNode: 773 return s.evalVariableNode(dot, n, nil, zero) 774 case *parse.PipeNode: 775 return s.evalPipeline(dot, n) 776 } 777 s.errorf("can't handle assignment of %s to empty interface argument", n) 778 panic("not reached") 779 } 780 781 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 782 // We indirect through pointers and empty interfaces (only) because 783 // non-empty interfaces have methods we might need. 784 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 785 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 786 if v.IsNil() { 787 return v, true 788 } 789 if v.Kind() == reflect.Interface && v.NumMethod() > 0 { 790 break 791 } 792 } 793 return v, false 794 } 795 796 // printValue writes the textual representation of the value to the output of 797 // the template. 798 func (s *state) printValue(n parse.Node, v reflect.Value) { 799 s.at(n) 800 iface, ok := printableValue(v) 801 if !ok { 802 s.errorf("can't print %s of type %s", n, v.Type()) 803 } 804 fmt.Fprint(s.wr, iface) 805 } 806 807 // printableValue returns the, possibly indirected, interface value inside v that 808 // is best for a call to formatted printer. 809 func printableValue(v reflect.Value) (interface{}, bool) { 810 if v.Kind() == reflect.Ptr { 811 v, _ = indirect(v) // fmt.Fprint handles nil. 812 } 813 if !v.IsValid() { 814 return "<no value>", true 815 } 816 817 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 818 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 819 v = v.Addr() 820 } else { 821 switch v.Kind() { 822 case reflect.Chan, reflect.Func: 823 return nil, false 824 } 825 } 826 } 827 return v.Interface(), true 828 } 829 830 // Types to help sort the keys in a map for reproducible output. 831 832 type rvs []reflect.Value 833 834 func (x rvs) Len() int { return len(x) } 835 func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 836 837 type rvInts struct{ rvs } 838 839 func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } 840 841 type rvUints struct{ rvs } 842 843 func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } 844 845 type rvFloats struct{ rvs } 846 847 func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } 848 849 type rvStrings struct{ rvs } 850 851 func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } 852 853 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 854 func sortKeys(v []reflect.Value) []reflect.Value { 855 if len(v) <= 1 { 856 return v 857 } 858 switch v[0].Kind() { 859 case reflect.Float32, reflect.Float64: 860 sort.Sort(rvFloats{v}) 861 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 862 sort.Sort(rvInts{v}) 863 case reflect.String: 864 sort.Sort(rvStrings{v}) 865 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 866 sort.Sort(rvUints{v}) 867 } 868 return v 869 }