github.com/rsc/tmp@v0.0.0-20240517235954-6deaab19748b/bootstrap/internal/gc/big/int.go (about)

     1  // Do not edit. Bootstrap copy of /Users/rsc/g/go/src/cmd/internal/gc/big/int.go
     2  
     3  // Copyright 2009 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  // This file implements signed multi-precision integers.
     8  
     9  package big
    10  
    11  import (
    12  	"fmt"
    13  	"io"
    14  	"math/rand"
    15  	"strings"
    16  )
    17  
    18  // An Int represents a signed multi-precision integer.
    19  // The zero value for an Int represents the value 0.
    20  type Int struct {
    21  	neg bool // sign
    22  	abs nat  // absolute value of the integer
    23  }
    24  
    25  var intOne = &Int{false, natOne}
    26  
    27  // Sign returns:
    28  //
    29  //	-1 if x <  0
    30  //	 0 if x == 0
    31  //	+1 if x >  0
    32  //
    33  func (x *Int) Sign() int {
    34  	if len(x.abs) == 0 {
    35  		return 0
    36  	}
    37  	if x.neg {
    38  		return -1
    39  	}
    40  	return 1
    41  }
    42  
    43  // SetInt64 sets z to x and returns z.
    44  func (z *Int) SetInt64(x int64) *Int {
    45  	neg := false
    46  	if x < 0 {
    47  		neg = true
    48  		x = -x
    49  	}
    50  	z.abs = z.abs.setUint64(uint64(x))
    51  	z.neg = neg
    52  	return z
    53  }
    54  
    55  // SetUint64 sets z to x and returns z.
    56  func (z *Int) SetUint64(x uint64) *Int {
    57  	z.abs = z.abs.setUint64(x)
    58  	z.neg = false
    59  	return z
    60  }
    61  
    62  // NewInt allocates and returns a new Int set to x.
    63  func NewInt(x int64) *Int {
    64  	return new(Int).SetInt64(x)
    65  }
    66  
    67  // Set sets z to x and returns z.
    68  func (z *Int) Set(x *Int) *Int {
    69  	if z != x {
    70  		z.abs = z.abs.set(x.abs)
    71  		z.neg = x.neg
    72  	}
    73  	return z
    74  }
    75  
    76  // Bits provides raw (unchecked but fast) access to x by returning its
    77  // absolute value as a little-endian Word slice. The result and x share
    78  // the same underlying array.
    79  // Bits is intended to support implementation of missing low-level Int
    80  // functionality outside this package; it should be avoided otherwise.
    81  func (x *Int) Bits() []Word {
    82  	return x.abs
    83  }
    84  
    85  // SetBits provides raw (unchecked but fast) access to z by setting its
    86  // value to abs, interpreted as a little-endian Word slice, and returning
    87  // z. The result and abs share the same underlying array.
    88  // SetBits is intended to support implementation of missing low-level Int
    89  // functionality outside this package; it should be avoided otherwise.
    90  func (z *Int) SetBits(abs []Word) *Int {
    91  	z.abs = nat(abs).norm()
    92  	z.neg = false
    93  	return z
    94  }
    95  
    96  // Abs sets z to |x| (the absolute value of x) and returns z.
    97  func (z *Int) Abs(x *Int) *Int {
    98  	z.Set(x)
    99  	z.neg = false
   100  	return z
   101  }
   102  
   103  // Neg sets z to -x and returns z.
   104  func (z *Int) Neg(x *Int) *Int {
   105  	z.Set(x)
   106  	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
   107  	return z
   108  }
   109  
   110  // Add sets z to the sum x+y and returns z.
   111  func (z *Int) Add(x, y *Int) *Int {
   112  	neg := x.neg
   113  	if x.neg == y.neg {
   114  		// x + y == x + y
   115  		// (-x) + (-y) == -(x + y)
   116  		z.abs = z.abs.add(x.abs, y.abs)
   117  	} else {
   118  		// x + (-y) == x - y == -(y - x)
   119  		// (-x) + y == y - x == -(x - y)
   120  		if x.abs.cmp(y.abs) >= 0 {
   121  			z.abs = z.abs.sub(x.abs, y.abs)
   122  		} else {
   123  			neg = !neg
   124  			z.abs = z.abs.sub(y.abs, x.abs)
   125  		}
   126  	}
   127  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   128  	return z
   129  }
   130  
   131  // Sub sets z to the difference x-y and returns z.
   132  func (z *Int) Sub(x, y *Int) *Int {
   133  	neg := x.neg
   134  	if x.neg != y.neg {
   135  		// x - (-y) == x + y
   136  		// (-x) - y == -(x + y)
   137  		z.abs = z.abs.add(x.abs, y.abs)
   138  	} else {
   139  		// x - y == x - y == -(y - x)
   140  		// (-x) - (-y) == y - x == -(x - y)
   141  		if x.abs.cmp(y.abs) >= 0 {
   142  			z.abs = z.abs.sub(x.abs, y.abs)
   143  		} else {
   144  			neg = !neg
   145  			z.abs = z.abs.sub(y.abs, x.abs)
   146  		}
   147  	}
   148  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   149  	return z
   150  }
   151  
   152  // Mul sets z to the product x*y and returns z.
   153  func (z *Int) Mul(x, y *Int) *Int {
   154  	// x * y == x * y
   155  	// x * (-y) == -(x * y)
   156  	// (-x) * y == -(x * y)
   157  	// (-x) * (-y) == x * y
   158  	z.abs = z.abs.mul(x.abs, y.abs)
   159  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   160  	return z
   161  }
   162  
   163  // MulRange sets z to the product of all integers
   164  // in the range [a, b] inclusively and returns z.
   165  // If a > b (empty range), the result is 1.
   166  func (z *Int) MulRange(a, b int64) *Int {
   167  	switch {
   168  	case a > b:
   169  		return z.SetInt64(1) // empty range
   170  	case a <= 0 && b >= 0:
   171  		return z.SetInt64(0) // range includes 0
   172  	}
   173  	// a <= b && (b < 0 || a > 0)
   174  
   175  	neg := false
   176  	if a < 0 {
   177  		neg = (b-a)&1 == 0
   178  		a, b = -b, -a
   179  	}
   180  
   181  	z.abs = z.abs.mulRange(uint64(a), uint64(b))
   182  	z.neg = neg
   183  	return z
   184  }
   185  
   186  // Binomial sets z to the binomial coefficient of (n, k) and returns z.
   187  func (z *Int) Binomial(n, k int64) *Int {
   188  	// reduce the number of multiplications by reducing k
   189  	if n/2 < k && k <= n {
   190  		k = n - k // Binomial(n, k) == Binomial(n, n-k)
   191  	}
   192  	var a, b Int
   193  	a.MulRange(n-k+1, n)
   194  	b.MulRange(1, k)
   195  	return z.Quo(&a, &b)
   196  }
   197  
   198  // Quo sets z to the quotient x/y for y != 0 and returns z.
   199  // If y == 0, a division-by-zero run-time panic occurs.
   200  // Quo implements truncated division (like Go); see QuoRem for more details.
   201  func (z *Int) Quo(x, y *Int) *Int {
   202  	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
   203  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   204  	return z
   205  }
   206  
   207  // Rem sets z to the remainder x%y for y != 0 and returns z.
   208  // If y == 0, a division-by-zero run-time panic occurs.
   209  // Rem implements truncated modulus (like Go); see QuoRem for more details.
   210  func (z *Int) Rem(x, y *Int) *Int {
   211  	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
   212  	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
   213  	return z
   214  }
   215  
   216  // QuoRem sets z to the quotient x/y and r to the remainder x%y
   217  // and returns the pair (z, r) for y != 0.
   218  // If y == 0, a division-by-zero run-time panic occurs.
   219  //
   220  // QuoRem implements T-division and modulus (like Go):
   221  //
   222  //	q = x/y      with the result truncated to zero
   223  //	r = x - y*q
   224  //
   225  // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
   226  // See DivMod for Euclidean division and modulus (unlike Go).
   227  //
   228  func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
   229  	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
   230  	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
   231  	return z, r
   232  }
   233  
   234  // Div sets z to the quotient x/y for y != 0 and returns z.
   235  // If y == 0, a division-by-zero run-time panic occurs.
   236  // Div implements Euclidean division (unlike Go); see DivMod for more details.
   237  func (z *Int) Div(x, y *Int) *Int {
   238  	y_neg := y.neg // z may be an alias for y
   239  	var r Int
   240  	z.QuoRem(x, y, &r)
   241  	if r.neg {
   242  		if y_neg {
   243  			z.Add(z, intOne)
   244  		} else {
   245  			z.Sub(z, intOne)
   246  		}
   247  	}
   248  	return z
   249  }
   250  
   251  // Mod sets z to the modulus x%y for y != 0 and returns z.
   252  // If y == 0, a division-by-zero run-time panic occurs.
   253  // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
   254  func (z *Int) Mod(x, y *Int) *Int {
   255  	y0 := y // save y
   256  	if z == y || alias(z.abs, y.abs) {
   257  		y0 = new(Int).Set(y)
   258  	}
   259  	var q Int
   260  	q.QuoRem(x, y, z)
   261  	if z.neg {
   262  		if y0.neg {
   263  			z.Sub(z, y0)
   264  		} else {
   265  			z.Add(z, y0)
   266  		}
   267  	}
   268  	return z
   269  }
   270  
   271  // DivMod sets z to the quotient x div y and m to the modulus x mod y
   272  // and returns the pair (z, m) for y != 0.
   273  // If y == 0, a division-by-zero run-time panic occurs.
   274  //
   275  // DivMod implements Euclidean division and modulus (unlike Go):
   276  //
   277  //	q = x div y  such that
   278  //	m = x - y*q  with 0 <= m < |q|
   279  //
   280  // (See Raymond T. Boute, ``The Euclidean definition of the functions
   281  // div and mod''. ACM Transactions on Programming Languages and
   282  // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
   283  // ACM press.)
   284  // See QuoRem for T-division and modulus (like Go).
   285  //
   286  func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
   287  	y0 := y // save y
   288  	if z == y || alias(z.abs, y.abs) {
   289  		y0 = new(Int).Set(y)
   290  	}
   291  	z.QuoRem(x, y, m)
   292  	if m.neg {
   293  		if y0.neg {
   294  			z.Add(z, intOne)
   295  			m.Sub(m, y0)
   296  		} else {
   297  			z.Sub(z, intOne)
   298  			m.Add(m, y0)
   299  		}
   300  	}
   301  	return z, m
   302  }
   303  
   304  // Cmp compares x and y and returns:
   305  //
   306  //   -1 if x <  y
   307  //    0 if x == y
   308  //   +1 if x >  y
   309  //
   310  func (x *Int) Cmp(y *Int) (r int) {
   311  	// x cmp y == x cmp y
   312  	// x cmp (-y) == x
   313  	// (-x) cmp y == y
   314  	// (-x) cmp (-y) == -(x cmp y)
   315  	switch {
   316  	case x.neg == y.neg:
   317  		r = x.abs.cmp(y.abs)
   318  		if x.neg {
   319  			r = -r
   320  		}
   321  	case x.neg:
   322  		r = -1
   323  	default:
   324  		r = 1
   325  	}
   326  	return
   327  }
   328  
   329  // low32 returns the least significant 32 bits of z.
   330  func low32(z nat) uint32 {
   331  	if len(z) == 0 {
   332  		return 0
   333  	}
   334  	return uint32(z[0])
   335  }
   336  
   337  // low64 returns the least significant 64 bits of z.
   338  func low64(z nat) uint64 {
   339  	if len(z) == 0 {
   340  		return 0
   341  	}
   342  	v := uint64(z[0])
   343  	if _W == 32 && len(z) > 1 {
   344  		v |= uint64(z[1]) << 32
   345  	}
   346  	return v
   347  }
   348  
   349  // Int64 returns the int64 representation of x.
   350  // If x cannot be represented in an int64, the result is undefined.
   351  func (x *Int) Int64() int64 {
   352  	v := int64(low64(x.abs))
   353  	if x.neg {
   354  		v = -v
   355  	}
   356  	return v
   357  }
   358  
   359  // Uint64 returns the uint64 representation of x.
   360  // If x cannot be represented in a uint64, the result is undefined.
   361  func (x *Int) Uint64() uint64 {
   362  	return low64(x.abs)
   363  }
   364  
   365  // SetString sets z to the value of s, interpreted in the given base,
   366  // and returns z and a boolean indicating success. If SetString fails,
   367  // the value of z is undefined but the returned value is nil.
   368  //
   369  // The base argument must be 0 or a value between 2 and MaxBase. If the base
   370  // is 0, the string prefix determines the actual conversion base. A prefix of
   371  // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
   372  // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
   373  //
   374  func (z *Int) SetString(s string, base int) (*Int, bool) {
   375  	r := strings.NewReader(s)
   376  	_, _, err := z.scan(r, base)
   377  	if err != nil {
   378  		return nil, false
   379  	}
   380  	_, err = r.ReadByte()
   381  	if err != io.EOF {
   382  		return nil, false
   383  	}
   384  	return z, true // err == io.EOF => scan consumed all of s
   385  }
   386  
   387  // SetBytes interprets buf as the bytes of a big-endian unsigned
   388  // integer, sets z to that value, and returns z.
   389  func (z *Int) SetBytes(buf []byte) *Int {
   390  	z.abs = z.abs.setBytes(buf)
   391  	z.neg = false
   392  	return z
   393  }
   394  
   395  // Bytes returns the absolute value of x as a big-endian byte slice.
   396  func (x *Int) Bytes() []byte {
   397  	buf := make([]byte, len(x.abs)*_S)
   398  	return buf[x.abs.bytes(buf):]
   399  }
   400  
   401  // BitLen returns the length of the absolute value of x in bits.
   402  // The bit length of 0 is 0.
   403  func (x *Int) BitLen() int {
   404  	return x.abs.bitLen()
   405  }
   406  
   407  // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
   408  // If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y.
   409  // See Knuth, volume 2, section 4.6.3.
   410  func (z *Int) Exp(x, y, m *Int) *Int {
   411  	var yWords nat
   412  	if !y.neg {
   413  		yWords = y.abs
   414  	}
   415  	// y >= 0
   416  
   417  	var mWords nat
   418  	if m != nil {
   419  		mWords = m.abs // m.abs may be nil for m == 0
   420  	}
   421  
   422  	z.abs = z.abs.expNN(x.abs, yWords, mWords)
   423  	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
   424  	if z.neg && len(mWords) > 0 {
   425  		// make modulus result positive
   426  		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
   427  		z.neg = false
   428  	}
   429  
   430  	return z
   431  }
   432  
   433  // GCD sets z to the greatest common divisor of a and b, which both must
   434  // be > 0, and returns z.
   435  // If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
   436  // If either a or b is <= 0, GCD sets z = x = y = 0.
   437  func (z *Int) GCD(x, y, a, b *Int) *Int {
   438  	if a.Sign() <= 0 || b.Sign() <= 0 {
   439  		z.SetInt64(0)
   440  		if x != nil {
   441  			x.SetInt64(0)
   442  		}
   443  		if y != nil {
   444  			y.SetInt64(0)
   445  		}
   446  		return z
   447  	}
   448  	if x == nil && y == nil {
   449  		return z.binaryGCD(a, b)
   450  	}
   451  
   452  	A := new(Int).Set(a)
   453  	B := new(Int).Set(b)
   454  
   455  	X := new(Int)
   456  	Y := new(Int).SetInt64(1)
   457  
   458  	lastX := new(Int).SetInt64(1)
   459  	lastY := new(Int)
   460  
   461  	q := new(Int)
   462  	temp := new(Int)
   463  
   464  	for len(B.abs) > 0 {
   465  		r := new(Int)
   466  		q, r = q.QuoRem(A, B, r)
   467  
   468  		A, B = B, r
   469  
   470  		temp.Set(X)
   471  		X.Mul(X, q)
   472  		X.neg = !X.neg
   473  		X.Add(X, lastX)
   474  		lastX.Set(temp)
   475  
   476  		temp.Set(Y)
   477  		Y.Mul(Y, q)
   478  		Y.neg = !Y.neg
   479  		Y.Add(Y, lastY)
   480  		lastY.Set(temp)
   481  	}
   482  
   483  	if x != nil {
   484  		*x = *lastX
   485  	}
   486  
   487  	if y != nil {
   488  		*y = *lastY
   489  	}
   490  
   491  	*z = *A
   492  	return z
   493  }
   494  
   495  // binaryGCD sets z to the greatest common divisor of a and b, which both must
   496  // be > 0, and returns z.
   497  // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
   498  func (z *Int) binaryGCD(a, b *Int) *Int {
   499  	u := z
   500  	v := new(Int)
   501  
   502  	// use one Euclidean iteration to ensure that u and v are approx. the same size
   503  	switch {
   504  	case len(a.abs) > len(b.abs):
   505  		u.Set(b)
   506  		v.Rem(a, b)
   507  	case len(a.abs) < len(b.abs):
   508  		u.Set(a)
   509  		v.Rem(b, a)
   510  	default:
   511  		u.Set(a)
   512  		v.Set(b)
   513  	}
   514  
   515  	// v might be 0 now
   516  	if len(v.abs) == 0 {
   517  		return u
   518  	}
   519  	// u > 0 && v > 0
   520  
   521  	// determine largest k such that u = u' << k, v = v' << k
   522  	k := u.abs.trailingZeroBits()
   523  	if vk := v.abs.trailingZeroBits(); vk < k {
   524  		k = vk
   525  	}
   526  	u.Rsh(u, k)
   527  	v.Rsh(v, k)
   528  
   529  	// determine t (we know that u > 0)
   530  	t := new(Int)
   531  	if u.abs[0]&1 != 0 {
   532  		// u is odd
   533  		t.Neg(v)
   534  	} else {
   535  		t.Set(u)
   536  	}
   537  
   538  	for len(t.abs) > 0 {
   539  		// reduce t
   540  		t.Rsh(t, t.abs.trailingZeroBits())
   541  		if t.neg {
   542  			v, t = t, v
   543  			v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
   544  		} else {
   545  			u, t = t, u
   546  		}
   547  		t.Sub(u, v)
   548  	}
   549  
   550  	return z.Lsh(u, k)
   551  }
   552  
   553  // ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
   554  // If it returns true, x is prime with probability 1 - 1/4^n.
   555  // If it returns false, x is not prime. n must be > 0.
   556  func (x *Int) ProbablyPrime(n int) bool {
   557  	if n <= 0 {
   558  		panic("non-positive n for ProbablyPrime")
   559  	}
   560  	return !x.neg && x.abs.probablyPrime(n)
   561  }
   562  
   563  // Rand sets z to a pseudo-random number in [0, n) and returns z.
   564  func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
   565  	z.neg = false
   566  	if n.neg == true || len(n.abs) == 0 {
   567  		z.abs = nil
   568  		return z
   569  	}
   570  	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
   571  	return z
   572  }
   573  
   574  // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
   575  // and returns z. If g and n are not relatively prime, the result is undefined.
   576  func (z *Int) ModInverse(g, n *Int) *Int {
   577  	var d Int
   578  	d.GCD(z, nil, g, n)
   579  	// x and y are such that g*x + n*y = d. Since g and n are
   580  	// relatively prime, d = 1. Taking that modulo n results in
   581  	// g*x = 1, therefore x is the inverse element.
   582  	if z.neg {
   583  		z.Add(z, n)
   584  	}
   585  	return z
   586  }
   587  
   588  // Lsh sets z = x << n and returns z.
   589  func (z *Int) Lsh(x *Int, n uint) *Int {
   590  	z.abs = z.abs.shl(x.abs, n)
   591  	z.neg = x.neg
   592  	return z
   593  }
   594  
   595  // Rsh sets z = x >> n and returns z.
   596  func (z *Int) Rsh(x *Int, n uint) *Int {
   597  	if x.neg {
   598  		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
   599  		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
   600  		t = t.shr(t, n)
   601  		z.abs = t.add(t, natOne)
   602  		z.neg = true // z cannot be zero if x is negative
   603  		return z
   604  	}
   605  
   606  	z.abs = z.abs.shr(x.abs, n)
   607  	z.neg = false
   608  	return z
   609  }
   610  
   611  // Bit returns the value of the i'th bit of x. That is, it
   612  // returns (x>>i)&1. The bit index i must be >= 0.
   613  func (x *Int) Bit(i int) uint {
   614  	if i == 0 {
   615  		// optimization for common case: odd/even test of x
   616  		if len(x.abs) > 0 {
   617  			return uint(x.abs[0] & 1) // bit 0 is same for -x
   618  		}
   619  		return 0
   620  	}
   621  	if i < 0 {
   622  		panic("negative bit index")
   623  	}
   624  	if x.neg {
   625  		t := nat(nil).sub(x.abs, natOne)
   626  		return t.bit(uint(i)) ^ 1
   627  	}
   628  
   629  	return x.abs.bit(uint(i))
   630  }
   631  
   632  // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
   633  // That is, if b is 1 SetBit sets z = x | (1 << i);
   634  // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
   635  // SetBit will panic.
   636  func (z *Int) SetBit(x *Int, i int, b uint) *Int {
   637  	if i < 0 {
   638  		panic("negative bit index")
   639  	}
   640  	if x.neg {
   641  		t := z.abs.sub(x.abs, natOne)
   642  		t = t.setBit(t, uint(i), b^1)
   643  		z.abs = t.add(t, natOne)
   644  		z.neg = len(z.abs) > 0
   645  		return z
   646  	}
   647  	z.abs = z.abs.setBit(x.abs, uint(i), b)
   648  	z.neg = false
   649  	return z
   650  }
   651  
   652  // And sets z = x & y and returns z.
   653  func (z *Int) And(x, y *Int) *Int {
   654  	if x.neg == y.neg {
   655  		if x.neg {
   656  			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
   657  			x1 := nat(nil).sub(x.abs, natOne)
   658  			y1 := nat(nil).sub(y.abs, natOne)
   659  			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
   660  			z.neg = true // z cannot be zero if x and y are negative
   661  			return z
   662  		}
   663  
   664  		// x & y == x & y
   665  		z.abs = z.abs.and(x.abs, y.abs)
   666  		z.neg = false
   667  		return z
   668  	}
   669  
   670  	// x.neg != y.neg
   671  	if x.neg {
   672  		x, y = y, x // & is symmetric
   673  	}
   674  
   675  	// x & (-y) == x & ^(y-1) == x &^ (y-1)
   676  	y1 := nat(nil).sub(y.abs, natOne)
   677  	z.abs = z.abs.andNot(x.abs, y1)
   678  	z.neg = false
   679  	return z
   680  }
   681  
   682  // AndNot sets z = x &^ y and returns z.
   683  func (z *Int) AndNot(x, y *Int) *Int {
   684  	if x.neg == y.neg {
   685  		if x.neg {
   686  			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
   687  			x1 := nat(nil).sub(x.abs, natOne)
   688  			y1 := nat(nil).sub(y.abs, natOne)
   689  			z.abs = z.abs.andNot(y1, x1)
   690  			z.neg = false
   691  			return z
   692  		}
   693  
   694  		// x &^ y == x &^ y
   695  		z.abs = z.abs.andNot(x.abs, y.abs)
   696  		z.neg = false
   697  		return z
   698  	}
   699  
   700  	if x.neg {
   701  		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
   702  		x1 := nat(nil).sub(x.abs, natOne)
   703  		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
   704  		z.neg = true // z cannot be zero if x is negative and y is positive
   705  		return z
   706  	}
   707  
   708  	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
   709  	y1 := nat(nil).sub(y.abs, natOne)
   710  	z.abs = z.abs.and(x.abs, y1)
   711  	z.neg = false
   712  	return z
   713  }
   714  
   715  // Or sets z = x | y and returns z.
   716  func (z *Int) Or(x, y *Int) *Int {
   717  	if x.neg == y.neg {
   718  		if x.neg {
   719  			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
   720  			x1 := nat(nil).sub(x.abs, natOne)
   721  			y1 := nat(nil).sub(y.abs, natOne)
   722  			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
   723  			z.neg = true // z cannot be zero if x and y are negative
   724  			return z
   725  		}
   726  
   727  		// x | y == x | y
   728  		z.abs = z.abs.or(x.abs, y.abs)
   729  		z.neg = false
   730  		return z
   731  	}
   732  
   733  	// x.neg != y.neg
   734  	if x.neg {
   735  		x, y = y, x // | is symmetric
   736  	}
   737  
   738  	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
   739  	y1 := nat(nil).sub(y.abs, natOne)
   740  	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
   741  	z.neg = true // z cannot be zero if one of x or y is negative
   742  	return z
   743  }
   744  
   745  // Xor sets z = x ^ y and returns z.
   746  func (z *Int) Xor(x, y *Int) *Int {
   747  	if x.neg == y.neg {
   748  		if x.neg {
   749  			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
   750  			x1 := nat(nil).sub(x.abs, natOne)
   751  			y1 := nat(nil).sub(y.abs, natOne)
   752  			z.abs = z.abs.xor(x1, y1)
   753  			z.neg = false
   754  			return z
   755  		}
   756  
   757  		// x ^ y == x ^ y
   758  		z.abs = z.abs.xor(x.abs, y.abs)
   759  		z.neg = false
   760  		return z
   761  	}
   762  
   763  	// x.neg != y.neg
   764  	if x.neg {
   765  		x, y = y, x // ^ is symmetric
   766  	}
   767  
   768  	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
   769  	y1 := nat(nil).sub(y.abs, natOne)
   770  	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
   771  	z.neg = true // z cannot be zero if only one of x or y is negative
   772  	return z
   773  }
   774  
   775  // Not sets z = ^x and returns z.
   776  func (z *Int) Not(x *Int) *Int {
   777  	if x.neg {
   778  		// ^(-x) == ^(^(x-1)) == x-1
   779  		z.abs = z.abs.sub(x.abs, natOne)
   780  		z.neg = false
   781  		return z
   782  	}
   783  
   784  	// ^x == -x-1 == -(x+1)
   785  	z.abs = z.abs.add(x.abs, natOne)
   786  	z.neg = true // z cannot be zero if x is positive
   787  	return z
   788  }
   789  
   790  // Gob codec version. Permits backward-compatible changes to the encoding.
   791  const intGobVersion byte = 1
   792  
   793  // GobEncode implements the gob.GobEncoder interface.
   794  func (x *Int) GobEncode() ([]byte, error) {
   795  	if x == nil {
   796  		return nil, nil
   797  	}
   798  	buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
   799  	i := x.abs.bytes(buf) - 1            // i >= 0
   800  	b := intGobVersion << 1              // make space for sign bit
   801  	if x.neg {
   802  		b |= 1
   803  	}
   804  	buf[i] = b
   805  	return buf[i:], nil
   806  }
   807  
   808  // GobDecode implements the gob.GobDecoder interface.
   809  func (z *Int) GobDecode(buf []byte) error {
   810  	if len(buf) == 0 {
   811  		// Other side sent a nil or default value.
   812  		*z = Int{}
   813  		return nil
   814  	}
   815  	b := buf[0]
   816  	if b>>1 != intGobVersion {
   817  		return fmt.Errorf("Int.GobDecode: encoding version %d not supported", b>>1)
   818  	}
   819  	z.neg = b&1 != 0
   820  	z.abs = z.abs.setBytes(buf[1:])
   821  	return nil
   822  }
   823  
   824  // MarshalJSON implements the json.Marshaler interface.
   825  func (z *Int) MarshalJSON() ([]byte, error) {
   826  	// TODO(gri): get rid of the []byte/string conversions
   827  	return []byte(z.String()), nil
   828  }
   829  
   830  // UnmarshalJSON implements the json.Unmarshaler interface.
   831  func (z *Int) UnmarshalJSON(text []byte) error {
   832  	// TODO(gri): get rid of the []byte/string conversions
   833  	if _, ok := z.SetString(string(text), 0); !ok {
   834  		return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
   835  	}
   836  	return nil
   837  }
   838  
   839  // MarshalText implements the encoding.TextMarshaler interface.
   840  func (z *Int) MarshalText() (text []byte, err error) {
   841  	return []byte(z.String()), nil
   842  }
   843  
   844  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   845  func (z *Int) UnmarshalText(text []byte) error {
   846  	if _, ok := z.SetString(string(text), 0); !ok {
   847  		return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
   848  	}
   849  	return nil
   850  }