github.com/s1s1ty/go@v0.0.0-20180207192209-104445e3140f/src/compress/flate/inflate.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package flate implements the DEFLATE compressed data format, described in 6 // RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file 7 // formats. 8 package flate 9 10 import ( 11 "bufio" 12 "io" 13 mathbits "math/bits" 14 "strconv" 15 "sync" 16 ) 17 18 const ( 19 maxCodeLen = 16 // max length of Huffman code 20 // The next three numbers come from the RFC section 3.2.7, with the 21 // additional proviso in section 3.2.5 which implies that distance codes 22 // 30 and 31 should never occur in compressed data. 23 maxNumLit = 286 24 maxNumDist = 30 25 numCodes = 19 // number of codes in Huffman meta-code 26 ) 27 28 // Initialize the fixedHuffmanDecoder only once upon first use. 29 var fixedOnce sync.Once 30 var fixedHuffmanDecoder huffmanDecoder 31 32 // A CorruptInputError reports the presence of corrupt input at a given offset. 33 type CorruptInputError int64 34 35 func (e CorruptInputError) Error() string { 36 return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10) 37 } 38 39 // An InternalError reports an error in the flate code itself. 40 type InternalError string 41 42 func (e InternalError) Error() string { return "flate: internal error: " + string(e) } 43 44 // A ReadError reports an error encountered while reading input. 45 // 46 // Deprecated: No longer returned. 47 type ReadError struct { 48 Offset int64 // byte offset where error occurred 49 Err error // error returned by underlying Read 50 } 51 52 func (e *ReadError) Error() string { 53 return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error() 54 } 55 56 // A WriteError reports an error encountered while writing output. 57 // 58 // Deprecated: No longer returned. 59 type WriteError struct { 60 Offset int64 // byte offset where error occurred 61 Err error // error returned by underlying Write 62 } 63 64 func (e *WriteError) Error() string { 65 return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error() 66 } 67 68 // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to 69 // to switch to a new underlying Reader. This permits reusing a ReadCloser 70 // instead of allocating a new one. 71 type Resetter interface { 72 // Reset discards any buffered data and resets the Resetter as if it was 73 // newly initialized with the given reader. 74 Reset(r io.Reader, dict []byte) error 75 } 76 77 // The data structure for decoding Huffman tables is based on that of 78 // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits), 79 // For codes smaller than the table width, there are multiple entries 80 // (each combination of trailing bits has the same value). For codes 81 // larger than the table width, the table contains a link to an overflow 82 // table. The width of each entry in the link table is the maximum code 83 // size minus the chunk width. 84 // 85 // Note that you can do a lookup in the table even without all bits 86 // filled. Since the extra bits are zero, and the DEFLATE Huffman codes 87 // have the property that shorter codes come before longer ones, the 88 // bit length estimate in the result is a lower bound on the actual 89 // number of bits. 90 // 91 // See the following: 92 // http://www.gzip.org/algorithm.txt 93 94 // chunk & 15 is number of bits 95 // chunk >> 4 is value, including table link 96 97 const ( 98 huffmanChunkBits = 9 99 huffmanNumChunks = 1 << huffmanChunkBits 100 huffmanCountMask = 15 101 huffmanValueShift = 4 102 ) 103 104 type huffmanDecoder struct { 105 min int // the minimum code length 106 chunks [huffmanNumChunks]uint32 // chunks as described above 107 links [][]uint32 // overflow links 108 linkMask uint32 // mask the width of the link table 109 } 110 111 // Initialize Huffman decoding tables from array of code lengths. 112 // Following this function, h is guaranteed to be initialized into a complete 113 // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a 114 // degenerate case where the tree has only a single symbol with length 1. Empty 115 // trees are permitted. 116 func (h *huffmanDecoder) init(bits []int) bool { 117 // Sanity enables additional runtime tests during Huffman 118 // table construction. It's intended to be used during 119 // development to supplement the currently ad-hoc unit tests. 120 const sanity = false 121 122 if h.min != 0 { 123 *h = huffmanDecoder{} 124 } 125 126 // Count number of codes of each length, 127 // compute min and max length. 128 var count [maxCodeLen]int 129 var min, max int 130 for _, n := range bits { 131 if n == 0 { 132 continue 133 } 134 if min == 0 || n < min { 135 min = n 136 } 137 if n > max { 138 max = n 139 } 140 count[n]++ 141 } 142 143 // Empty tree. The decompressor.huffSym function will fail later if the tree 144 // is used. Technically, an empty tree is only valid for the HDIST tree and 145 // not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree 146 // is guaranteed to fail since it will attempt to use the tree to decode the 147 // codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is 148 // guaranteed to fail later since the compressed data section must be 149 // composed of at least one symbol (the end-of-block marker). 150 if max == 0 { 151 return true 152 } 153 154 code := 0 155 var nextcode [maxCodeLen]int 156 for i := min; i <= max; i++ { 157 code <<= 1 158 nextcode[i] = code 159 code += count[i] 160 } 161 162 // Check that the coding is complete (i.e., that we've 163 // assigned all 2-to-the-max possible bit sequences). 164 // Exception: To be compatible with zlib, we also need to 165 // accept degenerate single-code codings. See also 166 // TestDegenerateHuffmanCoding. 167 if code != 1<<uint(max) && !(code == 1 && max == 1) { 168 return false 169 } 170 171 h.min = min 172 if max > huffmanChunkBits { 173 numLinks := 1 << (uint(max) - huffmanChunkBits) 174 h.linkMask = uint32(numLinks - 1) 175 176 // create link tables 177 link := nextcode[huffmanChunkBits+1] >> 1 178 h.links = make([][]uint32, huffmanNumChunks-link) 179 for j := uint(link); j < huffmanNumChunks; j++ { 180 reverse := int(mathbits.Reverse16(uint16(j))) 181 reverse >>= uint(16 - huffmanChunkBits) 182 off := j - uint(link) 183 if sanity && h.chunks[reverse] != 0 { 184 panic("impossible: overwriting existing chunk") 185 } 186 h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1)) 187 h.links[off] = make([]uint32, numLinks) 188 } 189 } 190 191 for i, n := range bits { 192 if n == 0 { 193 continue 194 } 195 code := nextcode[n] 196 nextcode[n]++ 197 chunk := uint32(i<<huffmanValueShift | n) 198 reverse := int(mathbits.Reverse16(uint16(code))) 199 reverse >>= uint(16 - n) 200 if n <= huffmanChunkBits { 201 for off := reverse; off < len(h.chunks); off += 1 << uint(n) { 202 // We should never need to overwrite 203 // an existing chunk. Also, 0 is 204 // never a valid chunk, because the 205 // lower 4 "count" bits should be 206 // between 1 and 15. 207 if sanity && h.chunks[off] != 0 { 208 panic("impossible: overwriting existing chunk") 209 } 210 h.chunks[off] = chunk 211 } 212 } else { 213 j := reverse & (huffmanNumChunks - 1) 214 if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 { 215 // Longer codes should have been 216 // associated with a link table above. 217 panic("impossible: not an indirect chunk") 218 } 219 value := h.chunks[j] >> huffmanValueShift 220 linktab := h.links[value] 221 reverse >>= huffmanChunkBits 222 for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) { 223 if sanity && linktab[off] != 0 { 224 panic("impossible: overwriting existing chunk") 225 } 226 linktab[off] = chunk 227 } 228 } 229 } 230 231 if sanity { 232 // Above we've sanity checked that we never overwrote 233 // an existing entry. Here we additionally check that 234 // we filled the tables completely. 235 for i, chunk := range h.chunks { 236 if chunk == 0 { 237 // As an exception, in the degenerate 238 // single-code case, we allow odd 239 // chunks to be missing. 240 if code == 1 && i%2 == 1 { 241 continue 242 } 243 panic("impossible: missing chunk") 244 } 245 } 246 for _, linktab := range h.links { 247 for _, chunk := range linktab { 248 if chunk == 0 { 249 panic("impossible: missing chunk") 250 } 251 } 252 } 253 } 254 255 return true 256 } 257 258 // The actual read interface needed by NewReader. 259 // If the passed in io.Reader does not also have ReadByte, 260 // the NewReader will introduce its own buffering. 261 type Reader interface { 262 io.Reader 263 io.ByteReader 264 } 265 266 // Decompress state. 267 type decompressor struct { 268 // Input source. 269 r Reader 270 roffset int64 271 272 // Input bits, in top of b. 273 b uint32 274 nb uint 275 276 // Huffman decoders for literal/length, distance. 277 h1, h2 huffmanDecoder 278 279 // Length arrays used to define Huffman codes. 280 bits *[maxNumLit + maxNumDist]int 281 codebits *[numCodes]int 282 283 // Output history, buffer. 284 dict dictDecoder 285 286 // Temporary buffer (avoids repeated allocation). 287 buf [4]byte 288 289 // Next step in the decompression, 290 // and decompression state. 291 step func(*decompressor) 292 stepState int 293 final bool 294 err error 295 toRead []byte 296 hl, hd *huffmanDecoder 297 copyLen int 298 copyDist int 299 } 300 301 func (f *decompressor) nextBlock() { 302 for f.nb < 1+2 { 303 if f.err = f.moreBits(); f.err != nil { 304 return 305 } 306 } 307 f.final = f.b&1 == 1 308 f.b >>= 1 309 typ := f.b & 3 310 f.b >>= 2 311 f.nb -= 1 + 2 312 switch typ { 313 case 0: 314 f.dataBlock() 315 case 1: 316 // compressed, fixed Huffman tables 317 f.hl = &fixedHuffmanDecoder 318 f.hd = nil 319 f.huffmanBlock() 320 case 2: 321 // compressed, dynamic Huffman tables 322 if f.err = f.readHuffman(); f.err != nil { 323 break 324 } 325 f.hl = &f.h1 326 f.hd = &f.h2 327 f.huffmanBlock() 328 default: 329 // 3 is reserved. 330 f.err = CorruptInputError(f.roffset) 331 } 332 } 333 334 func (f *decompressor) Read(b []byte) (int, error) { 335 for { 336 if len(f.toRead) > 0 { 337 n := copy(b, f.toRead) 338 f.toRead = f.toRead[n:] 339 if len(f.toRead) == 0 { 340 return n, f.err 341 } 342 return n, nil 343 } 344 if f.err != nil { 345 return 0, f.err 346 } 347 f.step(f) 348 if f.err != nil && len(f.toRead) == 0 { 349 f.toRead = f.dict.readFlush() // Flush what's left in case of error 350 } 351 } 352 } 353 354 func (f *decompressor) Close() error { 355 if f.err == io.EOF { 356 return nil 357 } 358 return f.err 359 } 360 361 // RFC 1951 section 3.2.7. 362 // Compression with dynamic Huffman codes 363 364 var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} 365 366 func (f *decompressor) readHuffman() error { 367 // HLIT[5], HDIST[5], HCLEN[4]. 368 for f.nb < 5+5+4 { 369 if err := f.moreBits(); err != nil { 370 return err 371 } 372 } 373 nlit := int(f.b&0x1F) + 257 374 if nlit > maxNumLit { 375 return CorruptInputError(f.roffset) 376 } 377 f.b >>= 5 378 ndist := int(f.b&0x1F) + 1 379 if ndist > maxNumDist { 380 return CorruptInputError(f.roffset) 381 } 382 f.b >>= 5 383 nclen := int(f.b&0xF) + 4 384 // numCodes is 19, so nclen is always valid. 385 f.b >>= 4 386 f.nb -= 5 + 5 + 4 387 388 // (HCLEN+4)*3 bits: code lengths in the magic codeOrder order. 389 for i := 0; i < nclen; i++ { 390 for f.nb < 3 { 391 if err := f.moreBits(); err != nil { 392 return err 393 } 394 } 395 f.codebits[codeOrder[i]] = int(f.b & 0x7) 396 f.b >>= 3 397 f.nb -= 3 398 } 399 for i := nclen; i < len(codeOrder); i++ { 400 f.codebits[codeOrder[i]] = 0 401 } 402 if !f.h1.init(f.codebits[0:]) { 403 return CorruptInputError(f.roffset) 404 } 405 406 // HLIT + 257 code lengths, HDIST + 1 code lengths, 407 // using the code length Huffman code. 408 for i, n := 0, nlit+ndist; i < n; { 409 x, err := f.huffSym(&f.h1) 410 if err != nil { 411 return err 412 } 413 if x < 16 { 414 // Actual length. 415 f.bits[i] = x 416 i++ 417 continue 418 } 419 // Repeat previous length or zero. 420 var rep int 421 var nb uint 422 var b int 423 switch x { 424 default: 425 return InternalError("unexpected length code") 426 case 16: 427 rep = 3 428 nb = 2 429 if i == 0 { 430 return CorruptInputError(f.roffset) 431 } 432 b = f.bits[i-1] 433 case 17: 434 rep = 3 435 nb = 3 436 b = 0 437 case 18: 438 rep = 11 439 nb = 7 440 b = 0 441 } 442 for f.nb < nb { 443 if err := f.moreBits(); err != nil { 444 return err 445 } 446 } 447 rep += int(f.b & uint32(1<<nb-1)) 448 f.b >>= nb 449 f.nb -= nb 450 if i+rep > n { 451 return CorruptInputError(f.roffset) 452 } 453 for j := 0; j < rep; j++ { 454 f.bits[i] = b 455 i++ 456 } 457 } 458 459 if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) { 460 return CorruptInputError(f.roffset) 461 } 462 463 // As an optimization, we can initialize the min bits to read at a time 464 // for the HLIT tree to the length of the EOB marker since we know that 465 // every block must terminate with one. This preserves the property that 466 // we never read any extra bytes after the end of the DEFLATE stream. 467 if f.h1.min < f.bits[endBlockMarker] { 468 f.h1.min = f.bits[endBlockMarker] 469 } 470 471 return nil 472 } 473 474 // Decode a single Huffman block from f. 475 // hl and hd are the Huffman states for the lit/length values 476 // and the distance values, respectively. If hd == nil, using the 477 // fixed distance encoding associated with fixed Huffman blocks. 478 func (f *decompressor) huffmanBlock() { 479 const ( 480 stateInit = iota // Zero value must be stateInit 481 stateDict 482 ) 483 484 switch f.stepState { 485 case stateInit: 486 goto readLiteral 487 case stateDict: 488 goto copyHistory 489 } 490 491 readLiteral: 492 // Read literal and/or (length, distance) according to RFC section 3.2.3. 493 { 494 v, err := f.huffSym(f.hl) 495 if err != nil { 496 f.err = err 497 return 498 } 499 var n uint // number of bits extra 500 var length int 501 switch { 502 case v < 256: 503 f.dict.writeByte(byte(v)) 504 if f.dict.availWrite() == 0 { 505 f.toRead = f.dict.readFlush() 506 f.step = (*decompressor).huffmanBlock 507 f.stepState = stateInit 508 return 509 } 510 goto readLiteral 511 case v == 256: 512 f.finishBlock() 513 return 514 // otherwise, reference to older data 515 case v < 265: 516 length = v - (257 - 3) 517 n = 0 518 case v < 269: 519 length = v*2 - (265*2 - 11) 520 n = 1 521 case v < 273: 522 length = v*4 - (269*4 - 19) 523 n = 2 524 case v < 277: 525 length = v*8 - (273*8 - 35) 526 n = 3 527 case v < 281: 528 length = v*16 - (277*16 - 67) 529 n = 4 530 case v < 285: 531 length = v*32 - (281*32 - 131) 532 n = 5 533 case v < maxNumLit: 534 length = 258 535 n = 0 536 default: 537 f.err = CorruptInputError(f.roffset) 538 return 539 } 540 if n > 0 { 541 for f.nb < n { 542 if err = f.moreBits(); err != nil { 543 f.err = err 544 return 545 } 546 } 547 length += int(f.b & uint32(1<<n-1)) 548 f.b >>= n 549 f.nb -= n 550 } 551 552 var dist int 553 if f.hd == nil { 554 for f.nb < 5 { 555 if err = f.moreBits(); err != nil { 556 f.err = err 557 return 558 } 559 } 560 dist = int(mathbits.Reverse8(uint8(f.b & 0x1F << 3))) 561 f.b >>= 5 562 f.nb -= 5 563 } else { 564 if dist, err = f.huffSym(f.hd); err != nil { 565 f.err = err 566 return 567 } 568 } 569 570 switch { 571 case dist < 4: 572 dist++ 573 case dist < maxNumDist: 574 nb := uint(dist-2) >> 1 575 // have 1 bit in bottom of dist, need nb more. 576 extra := (dist & 1) << nb 577 for f.nb < nb { 578 if err = f.moreBits(); err != nil { 579 f.err = err 580 return 581 } 582 } 583 extra |= int(f.b & uint32(1<<nb-1)) 584 f.b >>= nb 585 f.nb -= nb 586 dist = 1<<(nb+1) + 1 + extra 587 default: 588 f.err = CorruptInputError(f.roffset) 589 return 590 } 591 592 // No check on length; encoding can be prescient. 593 if dist > f.dict.histSize() { 594 f.err = CorruptInputError(f.roffset) 595 return 596 } 597 598 f.copyLen, f.copyDist = length, dist 599 goto copyHistory 600 } 601 602 copyHistory: 603 // Perform a backwards copy according to RFC section 3.2.3. 604 { 605 cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen) 606 if cnt == 0 { 607 cnt = f.dict.writeCopy(f.copyDist, f.copyLen) 608 } 609 f.copyLen -= cnt 610 611 if f.dict.availWrite() == 0 || f.copyLen > 0 { 612 f.toRead = f.dict.readFlush() 613 f.step = (*decompressor).huffmanBlock // We need to continue this work 614 f.stepState = stateDict 615 return 616 } 617 goto readLiteral 618 } 619 } 620 621 // Copy a single uncompressed data block from input to output. 622 func (f *decompressor) dataBlock() { 623 // Uncompressed. 624 // Discard current half-byte. 625 f.nb = 0 626 f.b = 0 627 628 // Length then ones-complement of length. 629 nr, err := io.ReadFull(f.r, f.buf[0:4]) 630 f.roffset += int64(nr) 631 if err != nil { 632 if err == io.EOF { 633 err = io.ErrUnexpectedEOF 634 } 635 f.err = err 636 return 637 } 638 n := int(f.buf[0]) | int(f.buf[1])<<8 639 nn := int(f.buf[2]) | int(f.buf[3])<<8 640 if uint16(nn) != uint16(^n) { 641 f.err = CorruptInputError(f.roffset) 642 return 643 } 644 645 if n == 0 { 646 f.toRead = f.dict.readFlush() 647 f.finishBlock() 648 return 649 } 650 651 f.copyLen = n 652 f.copyData() 653 } 654 655 // copyData copies f.copyLen bytes from the underlying reader into f.hist. 656 // It pauses for reads when f.hist is full. 657 func (f *decompressor) copyData() { 658 buf := f.dict.writeSlice() 659 if len(buf) > f.copyLen { 660 buf = buf[:f.copyLen] 661 } 662 663 cnt, err := io.ReadFull(f.r, buf) 664 f.roffset += int64(cnt) 665 f.copyLen -= cnt 666 f.dict.writeMark(cnt) 667 if err != nil { 668 if err == io.EOF { 669 err = io.ErrUnexpectedEOF 670 } 671 f.err = err 672 return 673 } 674 675 if f.dict.availWrite() == 0 || f.copyLen > 0 { 676 f.toRead = f.dict.readFlush() 677 f.step = (*decompressor).copyData 678 return 679 } 680 f.finishBlock() 681 } 682 683 func (f *decompressor) finishBlock() { 684 if f.final { 685 if f.dict.availRead() > 0 { 686 f.toRead = f.dict.readFlush() 687 } 688 f.err = io.EOF 689 } 690 f.step = (*decompressor).nextBlock 691 } 692 693 func (f *decompressor) moreBits() error { 694 c, err := f.r.ReadByte() 695 if err != nil { 696 if err == io.EOF { 697 err = io.ErrUnexpectedEOF 698 } 699 return err 700 } 701 f.roffset++ 702 f.b |= uint32(c) << f.nb 703 f.nb += 8 704 return nil 705 } 706 707 // Read the next Huffman-encoded symbol from f according to h. 708 func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) { 709 // Since a huffmanDecoder can be empty or be composed of a degenerate tree 710 // with single element, huffSym must error on these two edge cases. In both 711 // cases, the chunks slice will be 0 for the invalid sequence, leading it 712 // satisfy the n == 0 check below. 713 n := uint(h.min) 714 for { 715 for f.nb < n { 716 if err := f.moreBits(); err != nil { 717 return 0, err 718 } 719 } 720 chunk := h.chunks[f.b&(huffmanNumChunks-1)] 721 n = uint(chunk & huffmanCountMask) 722 if n > huffmanChunkBits { 723 chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask] 724 n = uint(chunk & huffmanCountMask) 725 } 726 if n <= f.nb { 727 if n == 0 { 728 f.err = CorruptInputError(f.roffset) 729 return 0, f.err 730 } 731 f.b >>= n 732 f.nb -= n 733 return int(chunk >> huffmanValueShift), nil 734 } 735 } 736 } 737 738 func makeReader(r io.Reader) Reader { 739 if rr, ok := r.(Reader); ok { 740 return rr 741 } 742 return bufio.NewReader(r) 743 } 744 745 func fixedHuffmanDecoderInit() { 746 fixedOnce.Do(func() { 747 // These come from the RFC section 3.2.6. 748 var bits [288]int 749 for i := 0; i < 144; i++ { 750 bits[i] = 8 751 } 752 for i := 144; i < 256; i++ { 753 bits[i] = 9 754 } 755 for i := 256; i < 280; i++ { 756 bits[i] = 7 757 } 758 for i := 280; i < 288; i++ { 759 bits[i] = 8 760 } 761 fixedHuffmanDecoder.init(bits[:]) 762 }) 763 } 764 765 func (f *decompressor) Reset(r io.Reader, dict []byte) error { 766 *f = decompressor{ 767 r: makeReader(r), 768 bits: f.bits, 769 codebits: f.codebits, 770 dict: f.dict, 771 step: (*decompressor).nextBlock, 772 } 773 f.dict.init(maxMatchOffset, dict) 774 return nil 775 } 776 777 // NewReader returns a new ReadCloser that can be used 778 // to read the uncompressed version of r. 779 // If r does not also implement io.ByteReader, 780 // the decompressor may read more data than necessary from r. 781 // It is the caller's responsibility to call Close on the ReadCloser 782 // when finished reading. 783 // 784 // The ReadCloser returned by NewReader also implements Resetter. 785 func NewReader(r io.Reader) io.ReadCloser { 786 fixedHuffmanDecoderInit() 787 788 var f decompressor 789 f.r = makeReader(r) 790 f.bits = new([maxNumLit + maxNumDist]int) 791 f.codebits = new([numCodes]int) 792 f.step = (*decompressor).nextBlock 793 f.dict.init(maxMatchOffset, nil) 794 return &f 795 } 796 797 // NewReaderDict is like NewReader but initializes the reader 798 // with a preset dictionary. The returned Reader behaves as if 799 // the uncompressed data stream started with the given dictionary, 800 // which has already been read. NewReaderDict is typically used 801 // to read data compressed by NewWriterDict. 802 // 803 // The ReadCloser returned by NewReader also implements Resetter. 804 func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser { 805 fixedHuffmanDecoderInit() 806 807 var f decompressor 808 f.r = makeReader(r) 809 f.bits = new([maxNumLit + maxNumDist]int) 810 f.codebits = new([numCodes]int) 811 f.step = (*decompressor).nextBlock 812 f.dict.init(maxMatchOffset, dict) 813 return &f 814 }