github.com/s1s1ty/go@v0.0.0-20180207192209-104445e3140f/src/container/heap/heap.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package heap provides heap operations for any type that implements
     6  // heap.Interface. A heap is a tree with the property that each node is the
     7  // minimum-valued node in its subtree.
     8  //
     9  // The minimum element in the tree is the root, at index 0.
    10  //
    11  // A heap is a common way to implement a priority queue. To build a priority
    12  // queue, implement the Heap interface with the (negative) priority as the
    13  // ordering for the Less method, so Push adds items while Pop removes the
    14  // highest-priority item from the queue. The Examples include such an
    15  // implementation; the file example_pq_test.go has the complete source.
    16  //
    17  package heap
    18  
    19  import "sort"
    20  
    21  // Any type that implements heap.Interface may be used as a
    22  // min-heap with the following invariants (established after
    23  // Init has been called or if the data is empty or sorted):
    24  //
    25  //	!h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
    26  //
    27  // Note that Push and Pop in this interface are for package heap's
    28  // implementation to call. To add and remove things from the heap,
    29  // use heap.Push and heap.Pop.
    30  type Interface interface {
    31  	sort.Interface
    32  	Push(x interface{}) // add x as element Len()
    33  	Pop() interface{}   // remove and return element Len() - 1.
    34  }
    35  
    36  // A heap must be initialized before any of the heap operations
    37  // can be used. Init is idempotent with respect to the heap invariants
    38  // and may be called whenever the heap invariants may have been invalidated.
    39  // Its complexity is O(n) where n = h.Len().
    40  //
    41  func Init(h Interface) {
    42  	// heapify
    43  	n := h.Len()
    44  	for i := n/2 - 1; i >= 0; i-- {
    45  		down(h, i, n)
    46  	}
    47  }
    48  
    49  // Push pushes the element x onto the heap. The complexity is
    50  // O(log(n)) where n = h.Len().
    51  //
    52  func Push(h Interface, x interface{}) {
    53  	h.Push(x)
    54  	up(h, h.Len()-1)
    55  }
    56  
    57  // Pop removes the minimum element (according to Less) from the heap
    58  // and returns it. The complexity is O(log(n)) where n = h.Len().
    59  // It is equivalent to Remove(h, 0).
    60  //
    61  func Pop(h Interface) interface{} {
    62  	n := h.Len() - 1
    63  	h.Swap(0, n)
    64  	down(h, 0, n)
    65  	return h.Pop()
    66  }
    67  
    68  // Remove removes the element at index i from the heap.
    69  // The complexity is O(log(n)) where n = h.Len().
    70  //
    71  func Remove(h Interface, i int) interface{} {
    72  	n := h.Len() - 1
    73  	if n != i {
    74  		h.Swap(i, n)
    75  		if !down(h, i, n) {
    76  			up(h, i)
    77  		}
    78  	}
    79  	return h.Pop()
    80  }
    81  
    82  // Fix re-establishes the heap ordering after the element at index i has changed its value.
    83  // Changing the value of the element at index i and then calling Fix is equivalent to,
    84  // but less expensive than, calling Remove(h, i) followed by a Push of the new value.
    85  // The complexity is O(log(n)) where n = h.Len().
    86  func Fix(h Interface, i int) {
    87  	if !down(h, i, h.Len()) {
    88  		up(h, i)
    89  	}
    90  }
    91  
    92  func up(h Interface, j int) {
    93  	for {
    94  		i := (j - 1) / 2 // parent
    95  		if i == j || !h.Less(j, i) {
    96  			break
    97  		}
    98  		h.Swap(i, j)
    99  		j = i
   100  	}
   101  }
   102  
   103  func down(h Interface, i0, n int) bool {
   104  	i := i0
   105  	for {
   106  		j1 := 2*i + 1
   107  		if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
   108  			break
   109  		}
   110  		j := j1 // left child
   111  		if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
   112  			j = j2 // = 2*i + 2  // right child
   113  		}
   114  		if !h.Less(j, i) {
   115  			break
   116  		}
   117  		h.Swap(i, j)
   118  		i = j
   119  	}
   120  	return i > i0
   121  }