github.com/s1s1ty/go@v0.0.0-20180207192209-104445e3140f/src/runtime/mwbbuf.go (about)

     1  // Copyright 2017 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This implements the write barrier buffer. The write barrier itself
     6  // is gcWriteBarrier and is implemented in assembly.
     7  //
     8  // The write barrier has a fast path and a slow path. The fast path
     9  // simply enqueues to a per-P write barrier buffer. It's written in
    10  // assembly and doesn't clobber any general purpose registers, so it
    11  // doesn't have the usual overheads of a Go call.
    12  //
    13  // When the buffer fills up, the write barrier invokes the slow path
    14  // (wbBufFlush) to flush the buffer to the GC work queues. In this
    15  // path, since the compiler didn't spill registers, we spill *all*
    16  // registers and disallow any GC safe points that could observe the
    17  // stack frame (since we don't know the types of the spilled
    18  // registers).
    19  
    20  package runtime
    21  
    22  import (
    23  	"runtime/internal/sys"
    24  	"unsafe"
    25  )
    26  
    27  // testSmallBuf forces a small write barrier buffer to stress write
    28  // barrier flushing.
    29  const testSmallBuf = false
    30  
    31  // wbBuf is a per-P buffer of pointers queued by the write barrier.
    32  // This buffer is flushed to the GC workbufs when it fills up and on
    33  // various GC transitions.
    34  //
    35  // This is closely related to a "sequential store buffer" (SSB),
    36  // except that SSBs are usually used for maintaining remembered sets,
    37  // while this is used for marking.
    38  type wbBuf struct {
    39  	// next points to the next slot in buf. It must not be a
    40  	// pointer type because it can point past the end of buf and
    41  	// must be updated without write barriers.
    42  	//
    43  	// This is a pointer rather than an index to optimize the
    44  	// write barrier assembly.
    45  	next uintptr
    46  
    47  	// end points to just past the end of buf. It must not be a
    48  	// pointer type because it points past the end of buf and must
    49  	// be updated without write barriers.
    50  	end uintptr
    51  
    52  	// buf stores a series of pointers to execute write barriers
    53  	// on. This must be a multiple of wbBufEntryPointers because
    54  	// the write barrier only checks for overflow once per entry.
    55  	buf [wbBufEntryPointers * wbBufEntries]uintptr
    56  }
    57  
    58  const (
    59  	// wbBufEntries is the number of write barriers between
    60  	// flushes of the write barrier buffer.
    61  	//
    62  	// This trades latency for throughput amortization. Higher
    63  	// values amortize flushing overhead more, but increase the
    64  	// latency of flushing. Higher values also increase the cache
    65  	// footprint of the buffer.
    66  	//
    67  	// TODO: What is the latency cost of this? Tune this value.
    68  	wbBufEntries = 256
    69  
    70  	// wbBufEntryPointers is the number of pointers added to the
    71  	// buffer by each write barrier.
    72  	wbBufEntryPointers = 2
    73  )
    74  
    75  // reset empties b by resetting its next and end pointers.
    76  func (b *wbBuf) reset() {
    77  	start := uintptr(unsafe.Pointer(&b.buf[0]))
    78  	b.next = start
    79  	if gcBlackenPromptly || writeBarrier.cgo {
    80  		// Effectively disable the buffer by forcing a flush
    81  		// on every barrier.
    82  		b.end = uintptr(unsafe.Pointer(&b.buf[wbBufEntryPointers]))
    83  	} else if testSmallBuf {
    84  		// For testing, allow two barriers in the buffer. If
    85  		// we only did one, then barriers of non-heap pointers
    86  		// would be no-ops. This lets us combine a buffered
    87  		// barrier with a flush at a later time.
    88  		b.end = uintptr(unsafe.Pointer(&b.buf[2*wbBufEntryPointers]))
    89  	} else {
    90  		b.end = start + uintptr(len(b.buf))*unsafe.Sizeof(b.buf[0])
    91  	}
    92  
    93  	if (b.end-b.next)%(wbBufEntryPointers*unsafe.Sizeof(b.buf[0])) != 0 {
    94  		throw("bad write barrier buffer bounds")
    95  	}
    96  }
    97  
    98  // discard resets b's next pointer, but not its end pointer.
    99  //
   100  // This must be nosplit because it's called by wbBufFlush.
   101  //
   102  //go:nosplit
   103  func (b *wbBuf) discard() {
   104  	b.next = uintptr(unsafe.Pointer(&b.buf[0]))
   105  }
   106  
   107  // putFast adds old and new to the write barrier buffer and returns
   108  // false if a flush is necessary. Callers should use this as:
   109  //
   110  //     buf := &getg().m.p.ptr().wbBuf
   111  //     if !buf.putFast(old, new) {
   112  //         wbBufFlush(...)
   113  //     }
   114  //
   115  // The arguments to wbBufFlush depend on whether the caller is doing
   116  // its own cgo pointer checks. If it is, then this can be
   117  // wbBufFlush(nil, 0). Otherwise, it must pass the slot address and
   118  // new.
   119  //
   120  // Since buf is a per-P resource, the caller must ensure there are no
   121  // preemption points while buf is in use.
   122  //
   123  // It must be nowritebarrierrec to because write barriers here would
   124  // corrupt the write barrier buffer. It (and everything it calls, if
   125  // it called anything) has to be nosplit to avoid scheduling on to a
   126  // different P and a different buffer.
   127  //
   128  //go:nowritebarrierrec
   129  //go:nosplit
   130  func (b *wbBuf) putFast(old, new uintptr) bool {
   131  	p := (*[2]uintptr)(unsafe.Pointer(b.next))
   132  	p[0] = old
   133  	p[1] = new
   134  	b.next += 2 * sys.PtrSize
   135  	return b.next != b.end
   136  }
   137  
   138  // wbBufFlush flushes the current P's write barrier buffer to the GC
   139  // workbufs. It is passed the slot and value of the write barrier that
   140  // caused the flush so that it can implement cgocheck.
   141  //
   142  // This must not have write barriers because it is part of the write
   143  // barrier implementation.
   144  //
   145  // This and everything it calls must be nosplit because 1) the stack
   146  // contains untyped slots from gcWriteBarrier and 2) there must not be
   147  // a GC safe point between the write barrier test in the caller and
   148  // flushing the buffer.
   149  //
   150  // TODO: A "go:nosplitrec" annotation would be perfect for this.
   151  //
   152  //go:nowritebarrierrec
   153  //go:nosplit
   154  func wbBufFlush(dst *uintptr, src uintptr) {
   155  	// Note: Every possible return from this function must reset
   156  	// the buffer's next pointer to prevent buffer overflow.
   157  
   158  	if getg().m.dying > 0 {
   159  		// We're going down. Not much point in write barriers
   160  		// and this way we can allow write barriers in the
   161  		// panic path.
   162  		getg().m.p.ptr().wbBuf.discard()
   163  		return
   164  	}
   165  
   166  	if writeBarrier.cgo && dst != nil {
   167  		// This must be called from the stack that did the
   168  		// write. It's nosplit all the way down.
   169  		cgoCheckWriteBarrier(dst, src)
   170  		if !writeBarrier.needed {
   171  			// We were only called for cgocheck.
   172  			getg().m.p.ptr().wbBuf.discard()
   173  			return
   174  		}
   175  	}
   176  
   177  	// Switch to the system stack so we don't have to worry about
   178  	// the untyped stack slots or safe points.
   179  	systemstack(func() {
   180  		wbBufFlush1(getg().m.p.ptr())
   181  	})
   182  }
   183  
   184  // wbBufFlush1 flushes p's write barrier buffer to the GC work queue.
   185  //
   186  // This must not have write barriers because it is part of the write
   187  // barrier implementation, so this may lead to infinite loops or
   188  // buffer corruption.
   189  //
   190  // This must be non-preemptible because it uses the P's workbuf.
   191  //
   192  //go:nowritebarrierrec
   193  //go:systemstack
   194  func wbBufFlush1(_p_ *p) {
   195  	// Get the buffered pointers.
   196  	start := uintptr(unsafe.Pointer(&_p_.wbBuf.buf[0]))
   197  	n := (_p_.wbBuf.next - start) / unsafe.Sizeof(_p_.wbBuf.buf[0])
   198  	ptrs := _p_.wbBuf.buf[:n]
   199  
   200  	// Reset the buffer.
   201  	_p_.wbBuf.reset()
   202  
   203  	if useCheckmark {
   204  		// Slow path for checkmark mode.
   205  		for _, ptr := range ptrs {
   206  			shade(ptr)
   207  		}
   208  		return
   209  	}
   210  
   211  	// Mark all of the pointers in the buffer and record only the
   212  	// pointers we greyed. We use the buffer itself to temporarily
   213  	// record greyed pointers.
   214  	//
   215  	// TODO: Should scanobject/scanblock just stuff pointers into
   216  	// the wbBuf? Then this would become the sole greying path.
   217  	gcw := &_p_.gcw
   218  	pos := 0
   219  	arenaStart := mheap_.arena_start
   220  	for _, ptr := range ptrs {
   221  		if ptr < arenaStart {
   222  			// nil pointers are very common, especially
   223  			// for the "old" values. Filter out these and
   224  			// other "obvious" non-heap pointers ASAP.
   225  			//
   226  			// TODO: Should we filter out nils in the fast
   227  			// path to reduce the rate of flushes?
   228  			continue
   229  		}
   230  		// TODO: This doesn't use hbits, so calling
   231  		// heapBitsForObject seems a little silly. We could
   232  		// easily separate this out since heapBitsForObject
   233  		// just calls heapBitsForAddr(obj) to get hbits.
   234  		obj, _, span, objIndex := heapBitsForObject(ptr, 0, 0)
   235  		if obj == 0 {
   236  			continue
   237  		}
   238  		// TODO: Consider making two passes where the first
   239  		// just prefetches the mark bits.
   240  		mbits := span.markBitsForIndex(objIndex)
   241  		if mbits.isMarked() {
   242  			continue
   243  		}
   244  		mbits.setMarked()
   245  		if span.spanclass.noscan() {
   246  			gcw.bytesMarked += uint64(span.elemsize)
   247  			continue
   248  		}
   249  		ptrs[pos] = obj
   250  		pos++
   251  	}
   252  
   253  	// Enqueue the greyed objects.
   254  	gcw.putBatch(ptrs[:pos])
   255  	if gcphase == _GCmarktermination || gcBlackenPromptly {
   256  		// Ps aren't allowed to cache work during mark
   257  		// termination.
   258  		gcw.dispose()
   259  	}
   260  }