github.com/sanprasirt/go@v0.0.0-20170607001320-a027466e4b6d/src/cmd/compile/internal/gc/bimport.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Binary package import.
     6  // See bexport.go for the export data format and how
     7  // to make a format change.
     8  
     9  package gc
    10  
    11  import (
    12  	"bufio"
    13  	"cmd/compile/internal/types"
    14  	"cmd/internal/src"
    15  	"encoding/binary"
    16  	"fmt"
    17  	"math/big"
    18  	"strconv"
    19  	"strings"
    20  )
    21  
    22  // The overall structure of Import is symmetric to Export: For each
    23  // export method in bexport.go there is a matching and symmetric method
    24  // in bimport.go. Changing the export format requires making symmetric
    25  // changes to bimport.go and bexport.go.
    26  
    27  type importer struct {
    28  	in      *bufio.Reader
    29  	imp     *types.Pkg // imported package
    30  	buf     []byte     // reused for reading strings
    31  	version int        // export format version
    32  
    33  	// object lists, in order of deserialization
    34  	strList       []string
    35  	pathList      []string
    36  	pkgList       []*types.Pkg
    37  	typList       []*types.Type
    38  	funcList      []*Node // nil entry means already declared
    39  	trackAllTypes bool
    40  
    41  	// for delayed type verification
    42  	cmpList []struct{ pt, t *types.Type }
    43  
    44  	// position encoding
    45  	posInfoFormat bool
    46  	prevFile      string
    47  	prevLine      int
    48  	posBase       *src.PosBase
    49  
    50  	// debugging support
    51  	debugFormat bool
    52  	read        int // bytes read
    53  }
    54  
    55  // Import populates imp from the serialized package data read from in.
    56  func Import(imp *types.Pkg, in *bufio.Reader) {
    57  	inimport = true
    58  	defer func() { inimport = false }()
    59  
    60  	p := importer{
    61  		in:       in,
    62  		imp:      imp,
    63  		version:  -1,           // unknown version
    64  		strList:  []string{""}, // empty string is mapped to 0
    65  		pathList: []string{""}, // empty path is mapped to 0
    66  	}
    67  
    68  	// read version info
    69  	var versionstr string
    70  	if b := p.rawByte(); b == 'c' || b == 'd' {
    71  		// Go1.7 encoding; first byte encodes low-level
    72  		// encoding format (compact vs debug).
    73  		// For backward-compatibility only (avoid problems with
    74  		// old installed packages). Newly compiled packages use
    75  		// the extensible format string.
    76  		// TODO(gri) Remove this support eventually; after Go1.8.
    77  		if b == 'd' {
    78  			p.debugFormat = true
    79  		}
    80  		p.trackAllTypes = p.rawByte() == 'a'
    81  		p.posInfoFormat = p.bool()
    82  		versionstr = p.string()
    83  		if versionstr == "v1" {
    84  			p.version = 0
    85  		}
    86  	} else {
    87  		// Go1.8 extensible encoding
    88  		// read version string and extract version number (ignore anything after the version number)
    89  		versionstr = p.rawStringln(b)
    90  		if s := strings.SplitN(versionstr, " ", 3); len(s) >= 2 && s[0] == "version" {
    91  			if v, err := strconv.Atoi(s[1]); err == nil && v > 0 {
    92  				p.version = v
    93  			}
    94  		}
    95  	}
    96  
    97  	// read version specific flags - extend as necessary
    98  	switch p.version {
    99  	// case 6:
   100  	// 	...
   101  	//	fallthrough
   102  	case 5, 4, 3, 2, 1:
   103  		p.debugFormat = p.rawStringln(p.rawByte()) == "debug"
   104  		p.trackAllTypes = p.bool()
   105  		p.posInfoFormat = p.bool()
   106  	case 0:
   107  		// Go1.7 encoding format - nothing to do here
   108  	default:
   109  		p.formatErrorf("unknown export format version %d (%q)", p.version, versionstr)
   110  	}
   111  
   112  	// --- generic export data ---
   113  
   114  	// populate typList with predeclared "known" types
   115  	p.typList = append(p.typList, predeclared()...)
   116  
   117  	// read package data
   118  	p.pkg()
   119  
   120  	// defer some type-checking until all types are read in completely
   121  	tcok := typecheckok
   122  	typecheckok = true
   123  	defercheckwidth()
   124  
   125  	// read objects
   126  
   127  	// phase 1
   128  	objcount := 0
   129  	for {
   130  		tag := p.tagOrIndex()
   131  		if tag == endTag {
   132  			break
   133  		}
   134  		p.obj(tag)
   135  		objcount++
   136  	}
   137  
   138  	// self-verification
   139  	if count := p.int(); count != objcount {
   140  		p.formatErrorf("got %d objects; want %d", objcount, count)
   141  	}
   142  
   143  	// --- compiler-specific export data ---
   144  
   145  	// read compiler-specific flags
   146  
   147  	// phase 2
   148  	objcount = 0
   149  	for {
   150  		tag := p.tagOrIndex()
   151  		if tag == endTag {
   152  			break
   153  		}
   154  		p.obj(tag)
   155  		objcount++
   156  	}
   157  
   158  	// self-verification
   159  	if count := p.int(); count != objcount {
   160  		p.formatErrorf("got %d objects; want %d", objcount, count)
   161  	}
   162  
   163  	// read inlineable functions bodies
   164  	if dclcontext != PEXTERN {
   165  		p.formatErrorf("unexpected context %d", dclcontext)
   166  	}
   167  
   168  	objcount = 0
   169  	for i0 := -1; ; {
   170  		i := p.int() // index of function with inlineable body
   171  		if i < 0 {
   172  			break
   173  		}
   174  
   175  		// don't process the same function twice
   176  		if i <= i0 {
   177  			p.formatErrorf("index not increasing: %d <= %d", i, i0)
   178  		}
   179  		i0 = i
   180  
   181  		if funcdepth != 0 {
   182  			p.formatErrorf("unexpected Funcdepth %d", funcdepth)
   183  		}
   184  
   185  		// Note: In the original code, funchdr and funcbody are called for
   186  		// all functions (that were not yet imported). Now, we are calling
   187  		// them only for functions with inlineable bodies. funchdr does
   188  		// parameter renaming which doesn't matter if we don't have a body.
   189  
   190  		if f := p.funcList[i]; f != nil {
   191  			// function not yet imported - read body and set it
   192  			funchdr(f)
   193  			body := p.stmtList()
   194  			if body == nil {
   195  				// Make sure empty body is not interpreted as
   196  				// no inlineable body (see also parser.fnbody)
   197  				// (not doing so can cause significant performance
   198  				// degradation due to unnecessary calls to empty
   199  				// functions).
   200  				body = []*Node{nod(OEMPTY, nil, nil)}
   201  			}
   202  			f.Func.Inl.Set(body)
   203  			funcbody(f)
   204  		} else {
   205  			// function already imported - read body but discard declarations
   206  			dclcontext = PDISCARD // throw away any declarations
   207  			p.stmtList()
   208  			dclcontext = PEXTERN
   209  		}
   210  
   211  		objcount++
   212  	}
   213  
   214  	// self-verification
   215  	if count := p.int(); count != objcount {
   216  		p.formatErrorf("got %d functions; want %d", objcount, count)
   217  	}
   218  
   219  	if dclcontext != PEXTERN {
   220  		p.formatErrorf("unexpected context %d", dclcontext)
   221  	}
   222  
   223  	p.verifyTypes()
   224  
   225  	// --- end of export data ---
   226  
   227  	typecheckok = tcok
   228  	resumecheckwidth()
   229  
   230  	if debug_dclstack != 0 {
   231  		testdclstack()
   232  	}
   233  }
   234  
   235  func (p *importer) formatErrorf(format string, args ...interface{}) {
   236  	if debugFormat {
   237  		Fatalf(format, args...)
   238  	}
   239  
   240  	yyerror("cannot import %q due to version skew - reinstall package (%s)",
   241  		p.imp.Path, fmt.Sprintf(format, args...))
   242  	errorexit()
   243  }
   244  
   245  func (p *importer) verifyTypes() {
   246  	for _, pair := range p.cmpList {
   247  		pt := pair.pt
   248  		t := pair.t
   249  		if !eqtype(pt.Orig, t) {
   250  			p.formatErrorf("inconsistent definition for type %v during import\n\t%L (in %q)\n\t%L (in %q)", pt.Sym, pt, pt.Sym.Importdef.Path, t, p.imp.Path)
   251  		}
   252  	}
   253  }
   254  
   255  // numImport tracks how often a package with a given name is imported.
   256  // It is used to provide a better error message (by using the package
   257  // path to disambiguate) if a package that appears multiple times with
   258  // the same name appears in an error message.
   259  var numImport = make(map[string]int)
   260  
   261  func (p *importer) pkg() *types.Pkg {
   262  	// if the package was seen before, i is its index (>= 0)
   263  	i := p.tagOrIndex()
   264  	if i >= 0 {
   265  		return p.pkgList[i]
   266  	}
   267  
   268  	// otherwise, i is the package tag (< 0)
   269  	if i != packageTag {
   270  		p.formatErrorf("expected package tag, found tag = %d", i)
   271  	}
   272  
   273  	// read package data
   274  	name := p.string()
   275  	var path string
   276  	if p.version >= 5 {
   277  		path = p.path()
   278  	} else {
   279  		path = p.string()
   280  	}
   281  
   282  	// we should never see an empty package name
   283  	if name == "" {
   284  		p.formatErrorf("empty package name for path %q", path)
   285  	}
   286  
   287  	// we should never see a bad import path
   288  	if isbadimport(path) {
   289  		p.formatErrorf("bad package path %q for package %s", path, name)
   290  	}
   291  
   292  	// an empty path denotes the package we are currently importing;
   293  	// it must be the first package we see
   294  	if (path == "") != (len(p.pkgList) == 0) {
   295  		p.formatErrorf("package path %q for pkg index %d", path, len(p.pkgList))
   296  	}
   297  
   298  	// add package to pkgList
   299  	pkg := p.imp
   300  	if path != "" {
   301  		pkg = types.NewPkg(path, "")
   302  	}
   303  	if pkg.Name == "" {
   304  		pkg.Name = name
   305  		numImport[name]++
   306  	} else if pkg.Name != name {
   307  		yyerror("conflicting package names %s and %s for path %q", pkg.Name, name, path)
   308  	}
   309  	if myimportpath != "" && path == myimportpath {
   310  		yyerror("import %q: package depends on %q (import cycle)", p.imp.Path, path)
   311  		errorexit()
   312  	}
   313  	p.pkgList = append(p.pkgList, pkg)
   314  
   315  	return pkg
   316  }
   317  
   318  func idealType(typ *types.Type) *types.Type {
   319  	if typ.IsUntyped() {
   320  		// canonicalize ideal types
   321  		typ = types.Types[TIDEAL]
   322  	}
   323  	return typ
   324  }
   325  
   326  func (p *importer) obj(tag int) {
   327  	switch tag {
   328  	case constTag:
   329  		p.pos()
   330  		sym := p.qualifiedName()
   331  		typ := p.typ()
   332  		val := p.value(typ)
   333  		importconst(p.imp, sym, idealType(typ), nodlit(val))
   334  
   335  	case aliasTag:
   336  		p.pos()
   337  		sym := p.qualifiedName()
   338  		typ := p.typ()
   339  		importalias(p.imp, sym, typ)
   340  
   341  	case typeTag:
   342  		p.typ()
   343  
   344  	case varTag:
   345  		p.pos()
   346  		sym := p.qualifiedName()
   347  		typ := p.typ()
   348  		importvar(p.imp, sym, typ)
   349  
   350  	case funcTag:
   351  		p.pos()
   352  		sym := p.qualifiedName()
   353  		params := p.paramList()
   354  		result := p.paramList()
   355  
   356  		sig := functypefield(nil, params, result)
   357  		importsym(p.imp, sym, ONAME)
   358  		if asNode(sym.Def) != nil && asNode(sym.Def).Op == ONAME {
   359  			// function was imported before (via another import)
   360  			if !eqtype(sig, asNode(sym.Def).Type) {
   361  				p.formatErrorf("inconsistent definition for func %v during import\n\t%v\n\t%v", sym, asNode(sym.Def).Type, sig)
   362  			}
   363  			p.funcList = append(p.funcList, nil)
   364  			break
   365  		}
   366  
   367  		n := newfuncname(sym)
   368  		n.Type = sig
   369  		declare(n, PFUNC)
   370  		p.funcList = append(p.funcList, n)
   371  		importlist = append(importlist, n)
   372  
   373  		if Debug['E'] > 0 {
   374  			fmt.Printf("import [%q] func %v \n", p.imp.Path, n)
   375  			if Debug['m'] > 2 && n.Func.Inl.Len() != 0 {
   376  				fmt.Printf("inl body: %v\n", n.Func.Inl)
   377  			}
   378  		}
   379  
   380  	default:
   381  		p.formatErrorf("unexpected object (tag = %d)", tag)
   382  	}
   383  }
   384  
   385  func (p *importer) pos() src.XPos {
   386  	if !p.posInfoFormat {
   387  		return src.NoXPos
   388  	}
   389  
   390  	file := p.prevFile
   391  	line := p.prevLine
   392  	delta := p.int()
   393  	line += delta
   394  	if p.version >= 5 {
   395  		if delta == deltaNewFile {
   396  			if n := p.int(); n >= 0 {
   397  				// file changed
   398  				file = p.path()
   399  				line = n
   400  			}
   401  		}
   402  	} else {
   403  		if delta == 0 {
   404  			if n := p.int(); n >= 0 {
   405  				// file changed
   406  				file = p.prevFile[:n] + p.string()
   407  				line = p.int()
   408  			}
   409  		}
   410  	}
   411  	if file != p.prevFile {
   412  		p.prevFile = file
   413  		p.posBase = src.NewFileBase(file, file)
   414  	}
   415  	p.prevLine = line
   416  
   417  	pos := src.MakePos(p.posBase, uint(line), 0)
   418  	xpos := Ctxt.PosTable.XPos(pos)
   419  	return xpos
   420  }
   421  
   422  func (p *importer) path() string {
   423  	if p.debugFormat {
   424  		p.marker('p')
   425  	}
   426  	// if the path was seen before, i is its index (>= 0)
   427  	// (the empty string is at index 0)
   428  	i := p.rawInt64()
   429  	if i >= 0 {
   430  		return p.pathList[i]
   431  	}
   432  	// otherwise, i is the negative path length (< 0)
   433  	a := make([]string, -i)
   434  	for n := range a {
   435  		a[n] = p.string()
   436  	}
   437  	s := strings.Join(a, "/")
   438  	p.pathList = append(p.pathList, s)
   439  	return s
   440  }
   441  
   442  func (p *importer) newtyp(etype types.EType) *types.Type {
   443  	t := types.New(etype)
   444  	if p.trackAllTypes {
   445  		p.typList = append(p.typList, t)
   446  	}
   447  	return t
   448  }
   449  
   450  // importtype declares that pt, an imported named type, has underlying type t.
   451  func (p *importer) importtype(pt, t *types.Type) {
   452  	if pt.Etype == TFORW {
   453  		copytype(asNode(pt.Nod), t)
   454  		pt.Sym.Importdef = p.imp
   455  		pt.Sym.Lastlineno = lineno
   456  		declare(asNode(pt.Nod), PEXTERN)
   457  		checkwidth(pt)
   458  	} else {
   459  		// pt.Orig and t must be identical.
   460  		if p.trackAllTypes {
   461  			// If we track all types, t may not be fully set up yet.
   462  			// Collect the types and verify identity later.
   463  			p.cmpList = append(p.cmpList, struct{ pt, t *types.Type }{pt, t})
   464  		} else if !eqtype(pt.Orig, t) {
   465  			yyerror("inconsistent definition for type %v during import\n\t%L (in %q)\n\t%L (in %q)", pt.Sym, pt, pt.Sym.Importdef.Path, t, p.imp.Path)
   466  		}
   467  	}
   468  
   469  	if Debug['E'] != 0 {
   470  		fmt.Printf("import type %v %L\n", pt, t)
   471  	}
   472  }
   473  
   474  func (p *importer) typ() *types.Type {
   475  	// if the type was seen before, i is its index (>= 0)
   476  	i := p.tagOrIndex()
   477  	if i >= 0 {
   478  		return p.typList[i]
   479  	}
   480  
   481  	// otherwise, i is the type tag (< 0)
   482  	var t *types.Type
   483  	switch i {
   484  	case namedTag:
   485  		p.pos()
   486  		tsym := p.qualifiedName()
   487  
   488  		t = pkgtype(p.imp, tsym)
   489  		p.typList = append(p.typList, t)
   490  
   491  		// read underlying type
   492  		t0 := p.typ()
   493  		p.importtype(t, t0)
   494  
   495  		// interfaces don't have associated methods
   496  		if t0.IsInterface() {
   497  			break
   498  		}
   499  
   500  		// set correct import context (since p.typ() may be called
   501  		// while importing the body of an inlined function)
   502  		savedContext := dclcontext
   503  		dclcontext = PEXTERN
   504  
   505  		// read associated methods
   506  		for i := p.int(); i > 0; i-- {
   507  			p.pos()
   508  			sym := p.fieldSym()
   509  
   510  			// during import unexported method names should be in the type's package
   511  			if !exportname(sym.Name) && sym.Pkg != tsym.Pkg {
   512  				Fatalf("imported method name %+v in wrong package %s\n", sym, tsym.Pkg.Name)
   513  			}
   514  
   515  			recv := p.paramList() // TODO(gri) do we need a full param list for the receiver?
   516  			params := p.paramList()
   517  			result := p.paramList()
   518  			nointerface := p.bool()
   519  
   520  			n := newfuncname(methodname(sym, recv[0].Type))
   521  			n.Type = functypefield(recv[0], params, result)
   522  			checkwidth(n.Type)
   523  			addmethod(sym, n.Type, false, nointerface)
   524  			p.funcList = append(p.funcList, n)
   525  			importlist = append(importlist, n)
   526  
   527  			// (comment from parser.go)
   528  			// inl.C's inlnode in on a dotmeth node expects to find the inlineable body as
   529  			// (dotmeth's type).Nname.Inl, and dotmeth's type has been pulled
   530  			// out by typecheck's lookdot as this $$.ttype. So by providing
   531  			// this back link here we avoid special casing there.
   532  			n.Type.FuncType().Nname = asTypesNode(n)
   533  
   534  			if Debug['E'] > 0 {
   535  				fmt.Printf("import [%q] meth %v \n", p.imp.Path, n)
   536  				if Debug['m'] > 2 && n.Func.Inl.Len() != 0 {
   537  					fmt.Printf("inl body: %v\n", n.Func.Inl)
   538  				}
   539  			}
   540  		}
   541  
   542  		dclcontext = savedContext
   543  
   544  	case arrayTag:
   545  		t = p.newtyp(TARRAY)
   546  		bound := p.int64()
   547  		elem := p.typ()
   548  		t.Extra = &types.Array{Elem: elem, Bound: bound}
   549  
   550  	case sliceTag:
   551  		t = p.newtyp(TSLICE)
   552  		elem := p.typ()
   553  		t.Extra = types.Slice{Elem: elem}
   554  
   555  	case dddTag:
   556  		t = p.newtyp(TDDDFIELD)
   557  		t.Extra = types.DDDField{T: p.typ()}
   558  
   559  	case structTag:
   560  		t = p.newtyp(TSTRUCT)
   561  		t.SetFields(p.fieldList())
   562  		checkwidth(t)
   563  
   564  	case pointerTag:
   565  		t = p.newtyp(types.Tptr)
   566  		t.Extra = types.Ptr{Elem: p.typ()}
   567  
   568  	case signatureTag:
   569  		t = p.newtyp(TFUNC)
   570  		params := p.paramList()
   571  		result := p.paramList()
   572  		functypefield0(t, nil, params, result)
   573  
   574  	case interfaceTag:
   575  		if ml := p.methodList(); len(ml) == 0 {
   576  			t = types.Types[TINTER]
   577  		} else {
   578  			t = p.newtyp(TINTER)
   579  			t.SetInterface(ml)
   580  		}
   581  
   582  	case mapTag:
   583  		t = p.newtyp(TMAP)
   584  		mt := t.MapType()
   585  		mt.Key = p.typ()
   586  		mt.Val = p.typ()
   587  
   588  	case chanTag:
   589  		t = p.newtyp(TCHAN)
   590  		ct := t.ChanType()
   591  		ct.Dir = types.ChanDir(p.int())
   592  		ct.Elem = p.typ()
   593  
   594  	default:
   595  		p.formatErrorf("unexpected type (tag = %d)", i)
   596  	}
   597  
   598  	if t == nil {
   599  		p.formatErrorf("nil type (type tag = %d)", i)
   600  	}
   601  
   602  	return t
   603  }
   604  
   605  func (p *importer) qualifiedName() *types.Sym {
   606  	name := p.string()
   607  	pkg := p.pkg()
   608  	return pkg.Lookup(name)
   609  }
   610  
   611  func (p *importer) fieldList() (fields []*types.Field) {
   612  	if n := p.int(); n > 0 {
   613  		fields = make([]*types.Field, n)
   614  		for i := range fields {
   615  			fields[i] = p.field()
   616  		}
   617  	}
   618  	return
   619  }
   620  
   621  func (p *importer) field() *types.Field {
   622  	p.pos()
   623  	sym, alias := p.fieldName()
   624  	typ := p.typ()
   625  	note := p.string()
   626  
   627  	f := types.NewField()
   628  	if sym.Name == "" {
   629  		// anonymous field: typ must be T or *T and T must be a type name
   630  		s := typ.Sym
   631  		if s == nil && typ.IsPtr() {
   632  			s = typ.Elem().Sym // deref
   633  		}
   634  		sym = sym.Pkg.Lookup(s.Name)
   635  		f.Embedded = 1
   636  	} else if alias {
   637  		// anonymous field: we have an explicit name because it's a type alias
   638  		f.Embedded = 1
   639  	}
   640  
   641  	f.Sym = sym
   642  	f.Nname = asTypesNode(newname(sym))
   643  	f.Type = typ
   644  	f.Note = note
   645  
   646  	return f
   647  }
   648  
   649  func (p *importer) methodList() (methods []*types.Field) {
   650  	for n := p.int(); n > 0; n-- {
   651  		f := types.NewField()
   652  		f.Nname = asTypesNode(newname(nblank.Sym))
   653  		asNode(f.Nname).Pos = p.pos()
   654  		f.Type = p.typ()
   655  		methods = append(methods, f)
   656  	}
   657  
   658  	for n := p.int(); n > 0; n-- {
   659  		methods = append(methods, p.method())
   660  	}
   661  
   662  	return
   663  }
   664  
   665  func (p *importer) method() *types.Field {
   666  	p.pos()
   667  	sym := p.methodName()
   668  	params := p.paramList()
   669  	result := p.paramList()
   670  
   671  	f := types.NewField()
   672  	f.Sym = sym
   673  	f.Nname = asTypesNode(newname(sym))
   674  	f.Type = functypefield(fakeRecvField(), params, result)
   675  	return f
   676  }
   677  
   678  func (p *importer) fieldName() (*types.Sym, bool) {
   679  	name := p.string()
   680  	if p.version == 0 && name == "_" {
   681  		// version 0 didn't export a package for _ field names
   682  		// but used the builtin package instead
   683  		return builtinpkg.Lookup(name), false
   684  	}
   685  	pkg := localpkg
   686  	alias := false
   687  	switch name {
   688  	case "":
   689  		// 1) field name matches base type name and is exported: nothing to do
   690  	case "?":
   691  		// 2) field name matches base type name and is not exported: need package
   692  		name = ""
   693  		pkg = p.pkg()
   694  	case "@":
   695  		// 3) field name doesn't match base type name (alias name): need name and possibly package
   696  		name = p.string()
   697  		alias = true
   698  		fallthrough
   699  	default:
   700  		if !exportname(name) {
   701  			pkg = p.pkg()
   702  		}
   703  	}
   704  	return pkg.Lookup(name), alias
   705  }
   706  
   707  func (p *importer) methodName() *types.Sym {
   708  	name := p.string()
   709  	if p.version == 0 && name == "_" {
   710  		// version 0 didn't export a package for _ method names
   711  		// but used the builtin package instead
   712  		return builtinpkg.Lookup(name)
   713  	}
   714  	pkg := localpkg
   715  	if !exportname(name) {
   716  		pkg = p.pkg()
   717  	}
   718  	return pkg.Lookup(name)
   719  }
   720  
   721  func (p *importer) paramList() []*types.Field {
   722  	i := p.int()
   723  	if i == 0 {
   724  		return nil
   725  	}
   726  	// negative length indicates unnamed parameters
   727  	named := true
   728  	if i < 0 {
   729  		i = -i
   730  		named = false
   731  	}
   732  	// i > 0
   733  	fs := make([]*types.Field, i)
   734  	for i := range fs {
   735  		fs[i] = p.param(named)
   736  	}
   737  	return fs
   738  }
   739  
   740  func (p *importer) param(named bool) *types.Field {
   741  	f := types.NewField()
   742  	f.Type = p.typ()
   743  	if f.Type.Etype == TDDDFIELD {
   744  		// TDDDFIELD indicates wrapped ... slice type
   745  		f.Type = types.NewSlice(f.Type.DDDField())
   746  		f.SetIsddd(true)
   747  	}
   748  
   749  	if named {
   750  		name := p.string()
   751  		if name == "" {
   752  			p.formatErrorf("expected named parameter")
   753  		}
   754  		// TODO(gri) Supply function/method package rather than
   755  		// encoding the package for each parameter repeatedly.
   756  		pkg := localpkg
   757  		if name != "_" {
   758  			pkg = p.pkg()
   759  		}
   760  		f.Sym = pkg.Lookup(name)
   761  		f.Nname = asTypesNode(newname(f.Sym))
   762  	}
   763  
   764  	// TODO(gri) This is compiler-specific (escape info).
   765  	// Move into compiler-specific section eventually?
   766  	f.Note = p.string()
   767  
   768  	return f
   769  }
   770  
   771  func (p *importer) value(typ *types.Type) (x Val) {
   772  	switch tag := p.tagOrIndex(); tag {
   773  	case falseTag:
   774  		x.U = false
   775  
   776  	case trueTag:
   777  		x.U = true
   778  
   779  	case int64Tag:
   780  		u := new(Mpint)
   781  		u.SetInt64(p.int64())
   782  		u.Rune = typ == types.Idealrune
   783  		x.U = u
   784  
   785  	case floatTag:
   786  		f := newMpflt()
   787  		p.float(f)
   788  		if typ == types.Idealint || typ.IsInteger() {
   789  			// uncommon case: large int encoded as float
   790  			u := new(Mpint)
   791  			u.SetFloat(f)
   792  			x.U = u
   793  			break
   794  		}
   795  		x.U = f
   796  
   797  	case complexTag:
   798  		u := new(Mpcplx)
   799  		p.float(&u.Real)
   800  		p.float(&u.Imag)
   801  		x.U = u
   802  
   803  	case stringTag:
   804  		x.U = p.string()
   805  
   806  	case unknownTag:
   807  		p.formatErrorf("unknown constant (importing package with errors)")
   808  
   809  	case nilTag:
   810  		x.U = new(NilVal)
   811  
   812  	default:
   813  		p.formatErrorf("unexpected value tag %d", tag)
   814  	}
   815  
   816  	// verify ideal type
   817  	if typ.IsUntyped() && untype(x.Ctype()) != typ {
   818  		p.formatErrorf("value %v and type %v don't match", x, typ)
   819  	}
   820  
   821  	return
   822  }
   823  
   824  func (p *importer) float(x *Mpflt) {
   825  	sign := p.int()
   826  	if sign == 0 {
   827  		x.SetFloat64(0)
   828  		return
   829  	}
   830  
   831  	exp := p.int()
   832  	mant := new(big.Int).SetBytes([]byte(p.string()))
   833  
   834  	m := x.Val.SetInt(mant)
   835  	m.SetMantExp(m, exp-mant.BitLen())
   836  	if sign < 0 {
   837  		m.Neg(m)
   838  	}
   839  }
   840  
   841  // ----------------------------------------------------------------------------
   842  // Inlined function bodies
   843  
   844  // Approach: Read nodes and use them to create/declare the same data structures
   845  // as done originally by the (hidden) parser by closely following the parser's
   846  // original code. In other words, "parsing" the import data (which happens to
   847  // be encoded in binary rather textual form) is the best way at the moment to
   848  // re-establish the syntax tree's invariants. At some future point we might be
   849  // able to avoid this round-about way and create the rewritten nodes directly,
   850  // possibly avoiding a lot of duplicate work (name resolution, type checking).
   851  //
   852  // Refined nodes (e.g., ODOTPTR as a refinement of OXDOT) are exported as their
   853  // unrefined nodes (since this is what the importer uses). The respective case
   854  // entries are unreachable in the importer.
   855  
   856  func (p *importer) stmtList() []*Node {
   857  	var list []*Node
   858  	for {
   859  		n := p.node()
   860  		if n == nil {
   861  			break
   862  		}
   863  		// OBLOCK nodes may be created when importing ODCL nodes - unpack them
   864  		if n.Op == OBLOCK {
   865  			list = append(list, n.List.Slice()...)
   866  		} else {
   867  			list = append(list, n)
   868  		}
   869  	}
   870  	return list
   871  }
   872  
   873  func (p *importer) exprList() []*Node {
   874  	var list []*Node
   875  	for {
   876  		n := p.expr()
   877  		if n == nil {
   878  			break
   879  		}
   880  		list = append(list, n)
   881  	}
   882  	return list
   883  }
   884  
   885  func (p *importer) elemList() []*Node {
   886  	c := p.int()
   887  	list := make([]*Node, c)
   888  	for i := range list {
   889  		s := p.fieldSym()
   890  		list[i] = nodSym(OSTRUCTKEY, p.expr(), s)
   891  	}
   892  	return list
   893  }
   894  
   895  func (p *importer) expr() *Node {
   896  	n := p.node()
   897  	if n != nil && n.Op == OBLOCK {
   898  		Fatalf("unexpected block node: %v", n)
   899  	}
   900  	return n
   901  }
   902  
   903  func npos(pos src.XPos, n *Node) *Node {
   904  	n.Pos = pos
   905  	return n
   906  }
   907  
   908  // TODO(gri) split into expr and stmt
   909  func (p *importer) node() *Node {
   910  	switch op := p.op(); op {
   911  	// expressions
   912  	// case OPAREN:
   913  	// 	unreachable - unpacked by exporter
   914  
   915  	// case ODDDARG:
   916  	//	unimplemented
   917  
   918  	case OLITERAL:
   919  		pos := p.pos()
   920  		typ := p.typ()
   921  		n := npos(pos, nodlit(p.value(typ)))
   922  		if !typ.IsUntyped() {
   923  			// Type-checking simplifies unsafe.Pointer(uintptr(c))
   924  			// to unsafe.Pointer(c) which then cannot type-checked
   925  			// again. Re-introduce explicit uintptr(c) conversion.
   926  			// (issue 16317).
   927  			if typ.IsUnsafePtr() {
   928  				n = nod(OCONV, n, nil)
   929  				n.Type = types.Types[TUINTPTR]
   930  			}
   931  			n = nod(OCONV, n, nil)
   932  			n.Type = typ
   933  		}
   934  		return n
   935  
   936  	case ONAME:
   937  		return npos(p.pos(), mkname(p.sym()))
   938  
   939  	// case OPACK, ONONAME:
   940  	// 	unreachable - should have been resolved by typechecking
   941  
   942  	case OTYPE:
   943  		pos := p.pos()
   944  		if p.bool() {
   945  			return npos(pos, mkname(p.sym()))
   946  		}
   947  		return npos(pos, typenod(p.typ()))
   948  
   949  	// case OTARRAY, OTMAP, OTCHAN, OTSTRUCT, OTINTER, OTFUNC:
   950  	//      unreachable - should have been resolved by typechecking
   951  
   952  	// case OCLOSURE:
   953  	//	unimplemented
   954  
   955  	case OPTRLIT:
   956  		n := npos(p.pos(), p.expr())
   957  		if !p.bool() /* !implicit, i.e. '&' operator */ {
   958  			if n.Op == OCOMPLIT {
   959  				// Special case for &T{...}: turn into (*T){...}.
   960  				n.Right = nod(OIND, n.Right, nil)
   961  				n.Right.SetImplicit(true)
   962  			} else {
   963  				n = nod(OADDR, n, nil)
   964  			}
   965  		}
   966  		return n
   967  
   968  	case OSTRUCTLIT:
   969  		n := nodl(p.pos(), OCOMPLIT, nil, typenod(p.typ()))
   970  		n.List.Set(p.elemList()) // special handling of field names
   971  		return n
   972  
   973  	// case OARRAYLIT, OSLICELIT, OMAPLIT:
   974  	// 	unreachable - mapped to case OCOMPLIT below by exporter
   975  
   976  	case OCOMPLIT:
   977  		n := nodl(p.pos(), OCOMPLIT, nil, typenod(p.typ()))
   978  		n.List.Set(p.exprList())
   979  		return n
   980  
   981  	case OKEY:
   982  		pos := p.pos()
   983  		left, right := p.exprsOrNil()
   984  		return nodl(pos, OKEY, left, right)
   985  
   986  	// case OSTRUCTKEY:
   987  	//	unreachable - handled in case OSTRUCTLIT by elemList
   988  
   989  	// case OCALLPART:
   990  	//	unimplemented
   991  
   992  	// case OXDOT, ODOT, ODOTPTR, ODOTINTER, ODOTMETH:
   993  	// 	unreachable - mapped to case OXDOT below by exporter
   994  
   995  	case OXDOT:
   996  		// see parser.new_dotname
   997  		return npos(p.pos(), nodSym(OXDOT, p.expr(), p.fieldSym()))
   998  
   999  	// case ODOTTYPE, ODOTTYPE2:
  1000  	// 	unreachable - mapped to case ODOTTYPE below by exporter
  1001  
  1002  	case ODOTTYPE:
  1003  		n := nodl(p.pos(), ODOTTYPE, p.expr(), nil)
  1004  		n.Type = p.typ()
  1005  		return n
  1006  
  1007  	// case OINDEX, OINDEXMAP, OSLICE, OSLICESTR, OSLICEARR, OSLICE3, OSLICE3ARR:
  1008  	// 	unreachable - mapped to cases below by exporter
  1009  
  1010  	case OINDEX:
  1011  		return nodl(p.pos(), op, p.expr(), p.expr())
  1012  
  1013  	case OSLICE, OSLICE3:
  1014  		n := nodl(p.pos(), op, p.expr(), nil)
  1015  		low, high := p.exprsOrNil()
  1016  		var max *Node
  1017  		if n.Op.IsSlice3() {
  1018  			max = p.expr()
  1019  		}
  1020  		n.SetSliceBounds(low, high, max)
  1021  		return n
  1022  
  1023  	// case OCONV, OCONVIFACE, OCONVNOP, OARRAYBYTESTR, OARRAYRUNESTR, OSTRARRAYBYTE, OSTRARRAYRUNE, ORUNESTR:
  1024  	// 	unreachable - mapped to OCONV case below by exporter
  1025  
  1026  	case OCONV:
  1027  		n := nodl(p.pos(), OCONV, p.expr(), nil)
  1028  		n.Type = p.typ()
  1029  		return n
  1030  
  1031  	case OCOPY, OCOMPLEX, OREAL, OIMAG, OAPPEND, OCAP, OCLOSE, ODELETE, OLEN, OMAKE, ONEW, OPANIC, ORECOVER, OPRINT, OPRINTN:
  1032  		n := npos(p.pos(), builtinCall(op))
  1033  		n.List.Set(p.exprList())
  1034  		if op == OAPPEND {
  1035  			n.SetIsddd(p.bool())
  1036  		}
  1037  		return n
  1038  
  1039  	// case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OGETG:
  1040  	// 	unreachable - mapped to OCALL case below by exporter
  1041  
  1042  	case OCALL:
  1043  		n := nodl(p.pos(), OCALL, p.expr(), nil)
  1044  		n.List.Set(p.exprList())
  1045  		n.SetIsddd(p.bool())
  1046  		return n
  1047  
  1048  	case OMAKEMAP, OMAKECHAN, OMAKESLICE:
  1049  		n := npos(p.pos(), builtinCall(OMAKE))
  1050  		n.List.Append(typenod(p.typ()))
  1051  		n.List.Append(p.exprList()...)
  1052  		return n
  1053  
  1054  	// unary expressions
  1055  	case OPLUS, OMINUS, OADDR, OCOM, OIND, ONOT, ORECV:
  1056  		return nodl(p.pos(), op, p.expr(), nil)
  1057  
  1058  	// binary expressions
  1059  	case OADD, OAND, OANDAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE, OLT,
  1060  		OLSH, OMOD, OMUL, ONE, OOR, OOROR, ORSH, OSEND, OSUB, OXOR:
  1061  		return nodl(p.pos(), op, p.expr(), p.expr())
  1062  
  1063  	case OADDSTR:
  1064  		pos := p.pos()
  1065  		list := p.exprList()
  1066  		x := npos(pos, list[0])
  1067  		for _, y := range list[1:] {
  1068  			x = nodl(pos, OADD, x, y)
  1069  		}
  1070  		return x
  1071  
  1072  	// case OCMPSTR, OCMPIFACE:
  1073  	// 	unreachable - mapped to std comparison operators by exporter
  1074  
  1075  	case ODCLCONST:
  1076  		// TODO(gri) these should not be exported in the first place
  1077  		return nodl(p.pos(), OEMPTY, nil, nil)
  1078  
  1079  	// --------------------------------------------------------------------
  1080  	// statements
  1081  	case ODCL:
  1082  		if p.version < 2 {
  1083  			// versions 0 and 1 exported a bool here but it
  1084  			// was always false - simply ignore in this case
  1085  			p.bool()
  1086  		}
  1087  		pos := p.pos()
  1088  		lhs := dclname(p.sym())
  1089  		typ := typenod(p.typ())
  1090  		return npos(pos, liststmt(variter([]*Node{lhs}, typ, nil))) // TODO(gri) avoid list creation
  1091  
  1092  	// case ODCLFIELD:
  1093  	//	unimplemented
  1094  
  1095  	// case OAS, OASWB:
  1096  	// 	unreachable - mapped to OAS case below by exporter
  1097  
  1098  	case OAS:
  1099  		return nodl(p.pos(), OAS, p.expr(), p.expr())
  1100  
  1101  	case OASOP:
  1102  		n := nodl(p.pos(), OASOP, nil, nil)
  1103  		n.Etype = types.EType(p.int())
  1104  		n.Left = p.expr()
  1105  		if !p.bool() {
  1106  			n.Right = nodintconst(1)
  1107  			n.SetImplicit(true)
  1108  		} else {
  1109  			n.Right = p.expr()
  1110  		}
  1111  		return n
  1112  
  1113  	// case OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
  1114  	// 	unreachable - mapped to OAS2 case below by exporter
  1115  
  1116  	case OAS2:
  1117  		n := nodl(p.pos(), OAS2, nil, nil)
  1118  		n.List.Set(p.exprList())
  1119  		n.Rlist.Set(p.exprList())
  1120  		return n
  1121  
  1122  	case ORETURN:
  1123  		n := nodl(p.pos(), ORETURN, nil, nil)
  1124  		n.List.Set(p.exprList())
  1125  		return n
  1126  
  1127  	// case ORETJMP:
  1128  	// 	unreachable - generated by compiler for trampolin routines (not exported)
  1129  
  1130  	case OPROC, ODEFER:
  1131  		return nodl(p.pos(), op, p.expr(), nil)
  1132  
  1133  	case OIF:
  1134  		types.Markdcl()
  1135  		n := nodl(p.pos(), OIF, nil, nil)
  1136  		n.Ninit.Set(p.stmtList())
  1137  		n.Left = p.expr()
  1138  		n.Nbody.Set(p.stmtList())
  1139  		n.Rlist.Set(p.stmtList())
  1140  		types.Popdcl()
  1141  		return n
  1142  
  1143  	case OFOR:
  1144  		types.Markdcl()
  1145  		n := nodl(p.pos(), OFOR, nil, nil)
  1146  		n.Ninit.Set(p.stmtList())
  1147  		n.Left, n.Right = p.exprsOrNil()
  1148  		n.Nbody.Set(p.stmtList())
  1149  		types.Popdcl()
  1150  		return n
  1151  
  1152  	case ORANGE:
  1153  		types.Markdcl()
  1154  		n := nodl(p.pos(), ORANGE, nil, nil)
  1155  		n.List.Set(p.stmtList())
  1156  		n.Right = p.expr()
  1157  		n.Nbody.Set(p.stmtList())
  1158  		types.Popdcl()
  1159  		return n
  1160  
  1161  	case OSELECT, OSWITCH:
  1162  		types.Markdcl()
  1163  		n := nodl(p.pos(), op, nil, nil)
  1164  		n.Ninit.Set(p.stmtList())
  1165  		n.Left, _ = p.exprsOrNil()
  1166  		n.List.Set(p.stmtList())
  1167  		types.Popdcl()
  1168  		return n
  1169  
  1170  	// case OCASE, OXCASE:
  1171  	// 	unreachable - mapped to OXCASE case below by exporter
  1172  
  1173  	case OXCASE:
  1174  		types.Markdcl()
  1175  		n := nodl(p.pos(), OXCASE, nil, nil)
  1176  		n.Xoffset = int64(types.Block)
  1177  		n.List.Set(p.exprList())
  1178  		// TODO(gri) eventually we must declare variables for type switch
  1179  		// statements (type switch statements are not yet exported)
  1180  		n.Nbody.Set(p.stmtList())
  1181  		types.Popdcl()
  1182  		return n
  1183  
  1184  	// case OFALL:
  1185  	// 	unreachable - mapped to OXFALL case below by exporter
  1186  
  1187  	case OXFALL:
  1188  		n := nodl(p.pos(), OXFALL, nil, nil)
  1189  		n.Xoffset = int64(types.Block)
  1190  		return n
  1191  
  1192  	case OBREAK, OCONTINUE:
  1193  		pos := p.pos()
  1194  		left, _ := p.exprsOrNil()
  1195  		if left != nil {
  1196  			left = newname(left.Sym)
  1197  		}
  1198  		return nodl(pos, op, left, nil)
  1199  
  1200  	// case OEMPTY:
  1201  	// 	unreachable - not emitted by exporter
  1202  
  1203  	case OGOTO, OLABEL:
  1204  		return nodl(p.pos(), op, newname(p.expr().Sym), nil)
  1205  
  1206  	case OEND:
  1207  		return nil
  1208  
  1209  	default:
  1210  		Fatalf("cannot import %v (%d) node\n"+
  1211  			"==> please file an issue and assign to gri@\n", op, int(op))
  1212  		panic("unreachable") // satisfy compiler
  1213  	}
  1214  }
  1215  
  1216  func builtinCall(op Op) *Node {
  1217  	return nod(OCALL, mkname(builtinpkg.Lookup(goopnames[op])), nil)
  1218  }
  1219  
  1220  func (p *importer) exprsOrNil() (a, b *Node) {
  1221  	ab := p.int()
  1222  	if ab&1 != 0 {
  1223  		a = p.expr()
  1224  	}
  1225  	if ab&2 != 0 {
  1226  		b = p.expr()
  1227  	}
  1228  	return
  1229  }
  1230  
  1231  func (p *importer) fieldSym() *types.Sym {
  1232  	name := p.string()
  1233  	pkg := localpkg
  1234  	if !exportname(name) {
  1235  		pkg = p.pkg()
  1236  	}
  1237  	return pkg.Lookup(name)
  1238  }
  1239  
  1240  func (p *importer) sym() *types.Sym {
  1241  	name := p.string()
  1242  	pkg := localpkg
  1243  	if name != "_" {
  1244  		pkg = p.pkg()
  1245  	}
  1246  	linkname := p.string()
  1247  	sym := pkg.Lookup(name)
  1248  	sym.Linkname = linkname
  1249  	return sym
  1250  }
  1251  
  1252  func (p *importer) bool() bool {
  1253  	return p.int() != 0
  1254  }
  1255  
  1256  func (p *importer) op() Op {
  1257  	return Op(p.int())
  1258  }
  1259  
  1260  // ----------------------------------------------------------------------------
  1261  // Low-level decoders
  1262  
  1263  func (p *importer) tagOrIndex() int {
  1264  	if p.debugFormat {
  1265  		p.marker('t')
  1266  	}
  1267  
  1268  	return int(p.rawInt64())
  1269  }
  1270  
  1271  func (p *importer) int() int {
  1272  	x := p.int64()
  1273  	if int64(int(x)) != x {
  1274  		p.formatErrorf("exported integer too large")
  1275  	}
  1276  	return int(x)
  1277  }
  1278  
  1279  func (p *importer) int64() int64 {
  1280  	if p.debugFormat {
  1281  		p.marker('i')
  1282  	}
  1283  
  1284  	return p.rawInt64()
  1285  }
  1286  
  1287  func (p *importer) string() string {
  1288  	if p.debugFormat {
  1289  		p.marker('s')
  1290  	}
  1291  	// if the string was seen before, i is its index (>= 0)
  1292  	// (the empty string is at index 0)
  1293  	i := p.rawInt64()
  1294  	if i >= 0 {
  1295  		return p.strList[i]
  1296  	}
  1297  	// otherwise, i is the negative string length (< 0)
  1298  	if n := int(-i); n <= cap(p.buf) {
  1299  		p.buf = p.buf[:n]
  1300  	} else {
  1301  		p.buf = make([]byte, n)
  1302  	}
  1303  	for i := range p.buf {
  1304  		p.buf[i] = p.rawByte()
  1305  	}
  1306  	s := string(p.buf)
  1307  	p.strList = append(p.strList, s)
  1308  	return s
  1309  }
  1310  
  1311  func (p *importer) marker(want byte) {
  1312  	if got := p.rawByte(); got != want {
  1313  		p.formatErrorf("incorrect marker: got %c; want %c (pos = %d)", got, want, p.read)
  1314  	}
  1315  
  1316  	pos := p.read
  1317  	if n := int(p.rawInt64()); n != pos {
  1318  		p.formatErrorf("incorrect position: got %d; want %d", n, pos)
  1319  	}
  1320  }
  1321  
  1322  // rawInt64 should only be used by low-level decoders.
  1323  func (p *importer) rawInt64() int64 {
  1324  	i, err := binary.ReadVarint(p)
  1325  	if err != nil {
  1326  		p.formatErrorf("read error: %v", err)
  1327  	}
  1328  	return i
  1329  }
  1330  
  1331  // rawStringln should only be used to read the initial version string.
  1332  func (p *importer) rawStringln(b byte) string {
  1333  	p.buf = p.buf[:0]
  1334  	for b != '\n' {
  1335  		p.buf = append(p.buf, b)
  1336  		b = p.rawByte()
  1337  	}
  1338  	return string(p.buf)
  1339  }
  1340  
  1341  // needed for binary.ReadVarint in rawInt64
  1342  func (p *importer) ReadByte() (byte, error) {
  1343  	return p.rawByte(), nil
  1344  }
  1345  
  1346  // rawByte is the bottleneck interface for reading from p.in.
  1347  // It unescapes '|' 'S' to '$' and '|' '|' to '|'.
  1348  // rawByte should only be used by low-level decoders.
  1349  func (p *importer) rawByte() byte {
  1350  	c, err := p.in.ReadByte()
  1351  	p.read++
  1352  	if err != nil {
  1353  		p.formatErrorf("read error: %v", err)
  1354  	}
  1355  	if c == '|' {
  1356  		c, err = p.in.ReadByte()
  1357  		p.read++
  1358  		if err != nil {
  1359  			p.formatErrorf("read error: %v", err)
  1360  		}
  1361  		switch c {
  1362  		case 'S':
  1363  			c = '$'
  1364  		case '|':
  1365  			// nothing to do
  1366  		default:
  1367  			p.formatErrorf("unexpected escape sequence in export data")
  1368  		}
  1369  	}
  1370  	return c
  1371  }