github.com/sanprasirt/go@v0.0.0-20170607001320-a027466e4b6d/src/cmd/compile/internal/ssa/gen/generic.rules (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Simplifications that apply to all backend architectures. As an example, this 6 // Go source code 7 // 8 // y := 0 * x 9 // 10 // can be translated into y := 0 without losing any information, which saves a 11 // pointless multiplication instruction. Other .rules files in this directory 12 // (for example AMD64.rules) contain rules specific to the architecture in the 13 // filename. The rules here apply to every architecture. 14 // 15 // The code for parsing this file lives in rulegen.go; this file generates 16 // ssa/rewritegeneric.go. 17 18 // values are specified using the following format: 19 // (op <type> [auxint] {aux} arg0 arg1 ...) 20 // the type, aux, and auxint fields are optional 21 // on the matching side 22 // - the type, aux, and auxint fields must match if they are specified. 23 // - the first occurrence of a variable defines that variable. Subsequent 24 // uses must match (be == to) the first use. 25 // - v is defined to be the value matched. 26 // - an additional conditional can be provided after the match pattern with "&&". 27 // on the generated side 28 // - the type of the top-level expression is the same as the one on the left-hand side. 29 // - the type of any subexpressions must be specified explicitly (or 30 // be specified in the op's type field). 31 // - auxint will be 0 if not specified. 32 // - aux will be nil if not specified. 33 34 // blocks are specified using the following format: 35 // (kind controlvalue succ0 succ1 ...) 36 // controlvalue must be "nil" or a value expression 37 // succ* fields must be variables 38 // For now, the generated successors must be a permutation of the matched successors. 39 40 // constant folding 41 (Trunc16to8 (Const16 [c])) -> (Const8 [int64(int8(c))]) 42 (Trunc32to8 (Const32 [c])) -> (Const8 [int64(int8(c))]) 43 (Trunc32to16 (Const32 [c])) -> (Const16 [int64(int16(c))]) 44 (Trunc64to8 (Const64 [c])) -> (Const8 [int64(int8(c))]) 45 (Trunc64to16 (Const64 [c])) -> (Const16 [int64(int16(c))]) 46 (Trunc64to32 (Const64 [c])) -> (Const32 [int64(int32(c))]) 47 (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))]) 48 (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float 49 (Round32F x:(Const32F)) -> x 50 (Round64F x:(Const64F)) -> x 51 52 (Trunc16to8 (ZeroExt8to16 x)) -> x 53 (Trunc32to8 (ZeroExt8to32 x)) -> x 54 (Trunc32to16 (ZeroExt8to32 x)) -> (ZeroExt8to16 x) 55 (Trunc32to16 (ZeroExt16to32 x)) -> x 56 (Trunc64to8 (ZeroExt8to64 x)) -> x 57 (Trunc64to16 (ZeroExt8to64 x)) -> (ZeroExt8to16 x) 58 (Trunc64to16 (ZeroExt16to64 x)) -> x 59 (Trunc64to32 (ZeroExt8to64 x)) -> (ZeroExt8to32 x) 60 (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x) 61 (Trunc64to32 (ZeroExt32to64 x)) -> x 62 (Trunc16to8 (SignExt8to16 x)) -> x 63 (Trunc32to8 (SignExt8to32 x)) -> x 64 (Trunc32to16 (SignExt8to32 x)) -> (SignExt8to16 x) 65 (Trunc32to16 (SignExt16to32 x)) -> x 66 (Trunc64to8 (SignExt8to64 x)) -> x 67 (Trunc64to16 (SignExt8to64 x)) -> (SignExt8to16 x) 68 (Trunc64to16 (SignExt16to64 x)) -> x 69 (Trunc64to32 (SignExt8to64 x)) -> (SignExt8to32 x) 70 (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x) 71 (Trunc64to32 (SignExt32to64 x)) -> x 72 73 (ZeroExt8to16 (Const8 [c])) -> (Const16 [int64( uint8(c))]) 74 (ZeroExt8to32 (Const8 [c])) -> (Const32 [int64( uint8(c))]) 75 (ZeroExt8to64 (Const8 [c])) -> (Const64 [int64( uint8(c))]) 76 (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))]) 77 (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))]) 78 (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))]) 79 (SignExt8to16 (Const8 [c])) -> (Const16 [int64( int8(c))]) 80 (SignExt8to32 (Const8 [c])) -> (Const32 [int64( int8(c))]) 81 (SignExt8to64 (Const8 [c])) -> (Const64 [int64( int8(c))]) 82 (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))]) 83 (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))]) 84 (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))]) 85 86 (Neg8 (Const8 [c])) -> (Const8 [int64( -int8(c))]) 87 (Neg16 (Const16 [c])) -> (Const16 [int64(-int16(c))]) 88 (Neg32 (Const32 [c])) -> (Const32 [int64(-int32(c))]) 89 (Neg64 (Const64 [c])) -> (Const64 [-c]) 90 (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))]) 91 (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))]) 92 93 (Add8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c+d))]) 94 (Add16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c+d))]) 95 (Add32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c+d))]) 96 (Add64 (Const64 [c]) (Const64 [d])) -> (Const64 [c+d]) 97 (Add32F (Const32F [c]) (Const32F [d])) -> 98 (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision 99 (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))]) 100 (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c]) 101 (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c]) 102 103 (Sub8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c-d))]) 104 (Sub16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c-d))]) 105 (Sub32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c-d))]) 106 (Sub64 (Const64 [c]) (Const64 [d])) -> (Const64 [c-d]) 107 (Sub32F (Const32F [c]) (Const32F [d])) -> 108 (Const32F [f2i(float64(i2f32(c) - i2f32(d)))]) 109 (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))]) 110 111 (Mul8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c*d))]) 112 (Mul16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c*d))]) 113 (Mul32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c*d))]) 114 (Mul64 (Const64 [c]) (Const64 [d])) -> (Const64 [c*d]) 115 (Mul32F (Const32F [c]) (Const32F [d])) -> 116 (Const32F [f2i(float64(i2f32(c) * i2f32(d)))]) 117 (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))]) 118 119 (And8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c&d))]) 120 (And16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c&d))]) 121 (And32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c&d))]) 122 (And64 (Const64 [c]) (Const64 [d])) -> (Const64 [c&d]) 123 124 (Or8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c|d))]) 125 (Or16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c|d))]) 126 (Or32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c|d))]) 127 (Or64 (Const64 [c]) (Const64 [d])) -> (Const64 [c|d]) 128 129 (Xor8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c^d))]) 130 (Xor16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c^d))]) 131 (Xor32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c^d))]) 132 (Xor64 (Const64 [c]) (Const64 [d])) -> (Const64 [c^d]) 133 134 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c)/int8(d))]) 135 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))]) 136 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))]) 137 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c/d]) 138 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(uint8(c)/uint8(d)))]) 139 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))]) 140 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))]) 141 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))]) 142 (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))]) 143 (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))]) 144 145 // Convert x * 1 to x. 146 (Mul8 (Const8 [1]) x) -> x 147 (Mul16 (Const16 [1]) x) -> x 148 (Mul32 (Const32 [1]) x) -> x 149 (Mul64 (Const64 [1]) x) -> x 150 151 // Convert x * -1 to -x. 152 (Mul8 (Const8 [-1]) x) -> (Neg8 x) 153 (Mul16 (Const16 [-1]) x) -> (Neg16 x) 154 (Mul32 (Const32 [-1]) x) -> (Neg32 x) 155 (Mul64 (Const64 [-1]) x) -> (Neg64 x) 156 157 // Convert multiplication by a power of two to a shift. 158 (Mul8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 159 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 160 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 161 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 162 (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 163 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 164 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 165 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 166 167 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c % d))]) 168 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))]) 169 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))]) 170 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d]) 171 172 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(uint8(c) % uint8(d))]) 173 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))]) 174 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))]) 175 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))]) 176 177 (Lsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)]) 178 (Rsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)]) 179 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))]) 180 (Lsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))]) 181 (Rsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))]) 182 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))]) 183 (Lsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))]) 184 (Rsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))]) 185 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))]) 186 (Lsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) << uint64(d))]) 187 (Rsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) >> uint64(d))]) 188 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(uint8(c) >> uint64(d)))]) 189 190 // Fold IsInBounds when the range of the index cannot exceed the limit. 191 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c -> (ConstBool [1]) 192 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c -> (ConstBool [1]) 193 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1]) 194 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1]) 195 (IsInBounds x x) -> (ConstBool [0]) 196 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d -> (ConstBool [1]) 197 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 198 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 199 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 200 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 201 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 202 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 203 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 204 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 205 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 206 (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 207 (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 208 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). 209 (IsInBounds (Mod32u _ y) y) -> (ConstBool [1]) 210 (IsInBounds (Mod64u _ y) y) -> (ConstBool [1]) 211 212 (IsSliceInBounds x x) -> (ConstBool [1]) 213 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 214 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 215 (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1]) 216 (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1]) 217 (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 218 (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 219 (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1]) 220 221 (Eq64 x x) -> (ConstBool [1]) 222 (Eq32 x x) -> (ConstBool [1]) 223 (Eq16 x x) -> (ConstBool [1]) 224 (Eq8 x x) -> (ConstBool [1]) 225 (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)]) 226 (EqB (ConstBool [0]) x) -> (Not x) 227 (EqB (ConstBool [1]) x) -> x 228 229 (Neq64 x x) -> (ConstBool [0]) 230 (Neq32 x x) -> (ConstBool [0]) 231 (Neq16 x x) -> (ConstBool [0]) 232 (Neq8 x x) -> (ConstBool [0]) 233 (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)]) 234 (NeqB (ConstBool [0]) x) -> x 235 (NeqB (ConstBool [1]) x) -> (Not x) 236 (NeqB (Not x) (Not y)) -> (NeqB x y) 237 238 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x) 239 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x) 240 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x) 241 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Eq8 (Const8 <t> [int64(int8(c-d))]) x) 242 243 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x) 244 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x) 245 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x) 246 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x) 247 248 // Canonicalize x-const to x+(-const) 249 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x) 250 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x) 251 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x) 252 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 -> (Add8 (Const8 <t> [int64(int8(-c))]) x) 253 254 // fold negation into comparison operators 255 (Not (Eq64 x y)) -> (Neq64 x y) 256 (Not (Eq32 x y)) -> (Neq32 x y) 257 (Not (Eq16 x y)) -> (Neq16 x y) 258 (Not (Eq8 x y)) -> (Neq8 x y) 259 (Not (EqB x y)) -> (NeqB x y) 260 261 (Not (Neq64 x y)) -> (Eq64 x y) 262 (Not (Neq32 x y)) -> (Eq32 x y) 263 (Not (Neq16 x y)) -> (Eq16 x y) 264 (Not (Neq8 x y)) -> (Eq8 x y) 265 (Not (NeqB x y)) -> (EqB x y) 266 267 (Not (Greater64 x y)) -> (Leq64 x y) 268 (Not (Greater32 x y)) -> (Leq32 x y) 269 (Not (Greater16 x y)) -> (Leq16 x y) 270 (Not (Greater8 x y)) -> (Leq8 x y) 271 272 (Not (Greater64U x y)) -> (Leq64U x y) 273 (Not (Greater32U x y)) -> (Leq32U x y) 274 (Not (Greater16U x y)) -> (Leq16U x y) 275 (Not (Greater8U x y)) -> (Leq8U x y) 276 277 (Not (Geq64 x y)) -> (Less64 x y) 278 (Not (Geq32 x y)) -> (Less32 x y) 279 (Not (Geq16 x y)) -> (Less16 x y) 280 (Not (Geq8 x y)) -> (Less8 x y) 281 282 (Not (Geq64U x y)) -> (Less64U x y) 283 (Not (Geq32U x y)) -> (Less32U x y) 284 (Not (Geq16U x y)) -> (Less16U x y) 285 (Not (Geq8U x y)) -> (Less8U x y) 286 287 (Not (Less64 x y)) -> (Geq64 x y) 288 (Not (Less32 x y)) -> (Geq32 x y) 289 (Not (Less16 x y)) -> (Geq16 x y) 290 (Not (Less8 x y)) -> (Geq8 x y) 291 292 (Not (Less64U x y)) -> (Geq64U x y) 293 (Not (Less32U x y)) -> (Geq32U x y) 294 (Not (Less16U x y)) -> (Geq16U x y) 295 (Not (Less8U x y)) -> (Geq8U x y) 296 297 (Not (Leq64 x y)) -> (Greater64 x y) 298 (Not (Leq32 x y)) -> (Greater32 x y) 299 (Not (Leq16 x y)) -> (Greater16 x y) 300 (Not (Leq8 x y)) -> (Greater8 x y) 301 302 (Not (Leq64U x y)) -> (Greater64U x y) 303 (Not (Leq32U x y)) -> (Greater32U x y) 304 (Not (Leq16U x y)) -> (Greater16U x y) 305 (Not (Leq8U x y)) -> (Greater8U x y) 306 307 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: 308 // a[i].b = ...; a[i+1].b = ... 309 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) -> 310 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) 311 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) -> 312 (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x)) 313 314 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce 315 // the number of the other rewrite rules for const shifts 316 (Lsh64x32 <t> x (Const32 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) 317 (Lsh64x16 <t> x (Const16 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) 318 (Lsh64x8 <t> x (Const8 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) 319 (Rsh64x32 <t> x (Const32 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) 320 (Rsh64x16 <t> x (Const16 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) 321 (Rsh64x8 <t> x (Const8 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) 322 (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) 323 (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) 324 (Rsh64Ux8 <t> x (Const8 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) 325 326 (Lsh32x32 <t> x (Const32 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) 327 (Lsh32x16 <t> x (Const16 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) 328 (Lsh32x8 <t> x (Const8 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) 329 (Rsh32x32 <t> x (Const32 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) 330 (Rsh32x16 <t> x (Const16 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) 331 (Rsh32x8 <t> x (Const8 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) 332 (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) 333 (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) 334 (Rsh32Ux8 <t> x (Const8 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) 335 336 (Lsh16x32 <t> x (Const32 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) 337 (Lsh16x16 <t> x (Const16 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) 338 (Lsh16x8 <t> x (Const8 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) 339 (Rsh16x32 <t> x (Const32 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) 340 (Rsh16x16 <t> x (Const16 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) 341 (Rsh16x8 <t> x (Const8 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) 342 (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) 343 (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) 344 (Rsh16Ux8 <t> x (Const8 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) 345 346 (Lsh8x32 <t> x (Const32 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) 347 (Lsh8x16 <t> x (Const16 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) 348 (Lsh8x8 <t> x (Const8 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) 349 (Rsh8x32 <t> x (Const32 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) 350 (Rsh8x16 <t> x (Const16 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) 351 (Rsh8x8 <t> x (Const8 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) 352 (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) 353 (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) 354 (Rsh8Ux8 <t> x (Const8 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) 355 356 // shifts by zero 357 (Lsh64x64 x (Const64 [0])) -> x 358 (Rsh64x64 x (Const64 [0])) -> x 359 (Rsh64Ux64 x (Const64 [0])) -> x 360 (Lsh32x64 x (Const64 [0])) -> x 361 (Rsh32x64 x (Const64 [0])) -> x 362 (Rsh32Ux64 x (Const64 [0])) -> x 363 (Lsh16x64 x (Const64 [0])) -> x 364 (Rsh16x64 x (Const64 [0])) -> x 365 (Rsh16Ux64 x (Const64 [0])) -> x 366 (Lsh8x64 x (Const64 [0])) -> x 367 (Rsh8x64 x (Const64 [0])) -> x 368 (Rsh8Ux64 x (Const64 [0])) -> x 369 370 // zero shifted. 371 (Lsh64x64 (Const64 [0]) _) -> (Const64 [0]) 372 (Lsh64x32 (Const64 [0]) _) -> (Const64 [0]) 373 (Lsh64x16 (Const64 [0]) _) -> (Const64 [0]) 374 (Lsh64x8 (Const64 [0]) _) -> (Const64 [0]) 375 (Rsh64x64 (Const64 [0]) _) -> (Const64 [0]) 376 (Rsh64x32 (Const64 [0]) _) -> (Const64 [0]) 377 (Rsh64x16 (Const64 [0]) _) -> (Const64 [0]) 378 (Rsh64x8 (Const64 [0]) _) -> (Const64 [0]) 379 (Rsh64Ux64 (Const64 [0]) _) -> (Const64 [0]) 380 (Rsh64Ux32 (Const64 [0]) _) -> (Const64 [0]) 381 (Rsh64Ux16 (Const64 [0]) _) -> (Const64 [0]) 382 (Rsh64Ux8 (Const64 [0]) _) -> (Const64 [0]) 383 (Lsh32x64 (Const32 [0]) _) -> (Const32 [0]) 384 (Lsh32x32 (Const32 [0]) _) -> (Const32 [0]) 385 (Lsh32x16 (Const32 [0]) _) -> (Const32 [0]) 386 (Lsh32x8 (Const32 [0]) _) -> (Const32 [0]) 387 (Rsh32x64 (Const32 [0]) _) -> (Const32 [0]) 388 (Rsh32x32 (Const32 [0]) _) -> (Const32 [0]) 389 (Rsh32x16 (Const32 [0]) _) -> (Const32 [0]) 390 (Rsh32x8 (Const32 [0]) _) -> (Const32 [0]) 391 (Rsh32Ux64 (Const32 [0]) _) -> (Const32 [0]) 392 (Rsh32Ux32 (Const32 [0]) _) -> (Const32 [0]) 393 (Rsh32Ux16 (Const32 [0]) _) -> (Const32 [0]) 394 (Rsh32Ux8 (Const32 [0]) _) -> (Const32 [0]) 395 (Lsh16x64 (Const16 [0]) _) -> (Const16 [0]) 396 (Lsh16x32 (Const16 [0]) _) -> (Const16 [0]) 397 (Lsh16x16 (Const16 [0]) _) -> (Const16 [0]) 398 (Lsh16x8 (Const16 [0]) _) -> (Const16 [0]) 399 (Rsh16x64 (Const16 [0]) _) -> (Const16 [0]) 400 (Rsh16x32 (Const16 [0]) _) -> (Const16 [0]) 401 (Rsh16x16 (Const16 [0]) _) -> (Const16 [0]) 402 (Rsh16x8 (Const16 [0]) _) -> (Const16 [0]) 403 (Rsh16Ux64 (Const16 [0]) _) -> (Const16 [0]) 404 (Rsh16Ux32 (Const16 [0]) _) -> (Const16 [0]) 405 (Rsh16Ux16 (Const16 [0]) _) -> (Const16 [0]) 406 (Rsh16Ux8 (Const16 [0]) _) -> (Const16 [0]) 407 (Lsh8x64 (Const8 [0]) _) -> (Const8 [0]) 408 (Lsh8x32 (Const8 [0]) _) -> (Const8 [0]) 409 (Lsh8x16 (Const8 [0]) _) -> (Const8 [0]) 410 (Lsh8x8 (Const8 [0]) _) -> (Const8 [0]) 411 (Rsh8x64 (Const8 [0]) _) -> (Const8 [0]) 412 (Rsh8x32 (Const8 [0]) _) -> (Const8 [0]) 413 (Rsh8x16 (Const8 [0]) _) -> (Const8 [0]) 414 (Rsh8x8 (Const8 [0]) _) -> (Const8 [0]) 415 (Rsh8Ux64 (Const8 [0]) _) -> (Const8 [0]) 416 (Rsh8Ux32 (Const8 [0]) _) -> (Const8 [0]) 417 (Rsh8Ux16 (Const8 [0]) _) -> (Const8 [0]) 418 (Rsh8Ux8 (Const8 [0]) _) -> (Const8 [0]) 419 420 // large left shifts of all values, and right shifts of unsigned values 421 (Lsh64x64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) 422 (Rsh64Ux64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) 423 (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 424 (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 425 (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 426 (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 427 (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 428 (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 429 430 // combine const shifts 431 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d])) 432 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d])) 433 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d])) 434 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64 x (Const64 <t> [c+d])) 435 436 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d])) 437 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d])) 438 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d])) 439 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64 x (Const64 <t> [c+d])) 440 441 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d])) 442 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d])) 443 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d])) 444 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64 x (Const64 <t> [c+d])) 445 446 // ((x >> c1) << c2) >> c3 447 (Rsh64Ux64 (Lsh64x64 (Rsh64Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 448 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 449 -> (Rsh64Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 450 (Rsh32Ux64 (Lsh32x64 (Rsh32Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 451 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 452 -> (Rsh32Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 453 (Rsh16Ux64 (Lsh16x64 (Rsh16Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 454 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 455 -> (Rsh16Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 456 (Rsh8Ux64 (Lsh8x64 (Rsh8Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 457 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 458 -> (Rsh8Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 459 460 // ((x << c1) >> c2) << c3 461 (Lsh64x64 (Rsh64Ux64 (Lsh64x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 462 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 463 -> (Lsh64x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 464 (Lsh32x64 (Rsh32Ux64 (Lsh32x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 465 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 466 -> (Lsh32x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 467 (Lsh16x64 (Rsh16Ux64 (Lsh16x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 468 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 469 -> (Lsh16x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 470 (Lsh8x64 (Rsh8Ux64 (Lsh8x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 471 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 472 -> (Lsh8x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 473 474 // replace shifts with zero extensions 475 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) 476 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) 477 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) 478 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) 479 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) 480 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) 481 482 // replace shifts with sign extensions 483 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (SignExt8to16 (Trunc16to8 <typ.Int8> x)) 484 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32 (Trunc32to8 <typ.Int8> x)) 485 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64 (Trunc64to8 <typ.Int8> x)) 486 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <typ.Int16> x)) 487 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <typ.Int16> x)) 488 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <typ.Int32> x)) 489 490 // constant comparisons 491 (Eq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c == d)]) 492 (Eq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c == d)]) 493 (Eq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c == d)]) 494 (Eq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c == d)]) 495 496 (Neq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c != d)]) 497 (Neq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c != d)]) 498 (Neq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c != d)]) 499 (Neq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c != d)]) 500 501 (Greater64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c > d)]) 502 (Greater32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c > d)]) 503 (Greater16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c > d)]) 504 (Greater8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c > d)]) 505 506 (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))]) 507 (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))]) 508 (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))]) 509 (Greater8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) > uint8(d))]) 510 511 (Geq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c >= d)]) 512 (Geq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c >= d)]) 513 (Geq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c >= d)]) 514 (Geq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c >= d)]) 515 516 (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))]) 517 (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))]) 518 (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))]) 519 (Geq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) >= uint8(d))]) 520 521 (Less64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c < d)]) 522 (Less32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c < d)]) 523 (Less16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c < d)]) 524 (Less8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c < d)]) 525 526 (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))]) 527 (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))]) 528 (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))]) 529 (Less8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) < uint8(d))]) 530 531 (Leq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c <= d)]) 532 (Leq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c <= d)]) 533 (Leq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c <= d)]) 534 (Leq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c <= d)]) 535 536 (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))]) 537 (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))]) 538 (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))]) 539 (Leq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) <= uint8(d))]) 540 541 // simplifications 542 (Or64 x x) -> x 543 (Or32 x x) -> x 544 (Or16 x x) -> x 545 (Or8 x x) -> x 546 (Or64 (Const64 [0]) x) -> x 547 (Or32 (Const32 [0]) x) -> x 548 (Or16 (Const16 [0]) x) -> x 549 (Or8 (Const8 [0]) x) -> x 550 (Or64 (Const64 [-1]) _) -> (Const64 [-1]) 551 (Or32 (Const32 [-1]) _) -> (Const32 [-1]) 552 (Or16 (Const16 [-1]) _) -> (Const16 [-1]) 553 (Or8 (Const8 [-1]) _) -> (Const8 [-1]) 554 (And64 x x) -> x 555 (And32 x x) -> x 556 (And16 x x) -> x 557 (And8 x x) -> x 558 (And64 (Const64 [-1]) x) -> x 559 (And32 (Const32 [-1]) x) -> x 560 (And16 (Const16 [-1]) x) -> x 561 (And8 (Const8 [-1]) x) -> x 562 (And64 (Const64 [0]) _) -> (Const64 [0]) 563 (And32 (Const32 [0]) _) -> (Const32 [0]) 564 (And16 (Const16 [0]) _) -> (Const16 [0]) 565 (And8 (Const8 [0]) _) -> (Const8 [0]) 566 (Xor64 x x) -> (Const64 [0]) 567 (Xor32 x x) -> (Const32 [0]) 568 (Xor16 x x) -> (Const16 [0]) 569 (Xor8 x x) -> (Const8 [0]) 570 (Xor64 (Const64 [0]) x) -> x 571 (Xor32 (Const32 [0]) x) -> x 572 (Xor16 (Const16 [0]) x) -> x 573 (Xor8 (Const8 [0]) x) -> x 574 (Add64 (Const64 [0]) x) -> x 575 (Add32 (Const32 [0]) x) -> x 576 (Add16 (Const16 [0]) x) -> x 577 (Add8 (Const8 [0]) x) -> x 578 (Sub64 x x) -> (Const64 [0]) 579 (Sub32 x x) -> (Const32 [0]) 580 (Sub16 x x) -> (Const16 [0]) 581 (Sub8 x x) -> (Const8 [0]) 582 (Mul64 (Const64 [0]) _) -> (Const64 [0]) 583 (Mul32 (Const32 [0]) _) -> (Const32 [0]) 584 (Mul16 (Const16 [0]) _) -> (Const16 [0]) 585 (Mul8 (Const8 [0]) _) -> (Const8 [0]) 586 (Com8 (Com8 x)) -> x 587 (Com16 (Com16 x)) -> x 588 (Com32 (Com32 x)) -> x 589 (Com64 (Com64 x)) -> x 590 (Com8 (Const8 [c])) -> (Const8 [^c]) 591 (Com16 (Const16 [c])) -> (Const16 [^c]) 592 (Com32 (Const32 [c])) -> (Const32 [^c]) 593 (Com64 (Const64 [c])) -> (Const64 [^c]) 594 (Neg8 (Sub8 x y)) -> (Sub8 y x) 595 (Neg16 (Sub16 x y)) -> (Sub16 y x) 596 (Neg32 (Sub32 x y)) -> (Sub32 y x) 597 (Neg64 (Sub64 x y)) -> (Sub64 y x) 598 (Add8 (Const8 [1]) (Com8 x)) -> (Neg8 x) 599 (Add16 (Const16 [1]) (Com16 x)) -> (Neg16 x) 600 (Add32 (Const32 [1]) (Com32 x)) -> (Neg32 x) 601 (Add64 (Const64 [1]) (Com64 x)) -> (Neg64 x) 602 603 (And64 x (And64 x y)) -> (And64 x y) 604 (And32 x (And32 x y)) -> (And32 x y) 605 (And16 x (And16 x y)) -> (And16 x y) 606 (And8 x (And8 x y)) -> (And8 x y) 607 (Or64 x (Or64 x y)) -> (Or64 x y) 608 (Or32 x (Or32 x y)) -> (Or32 x y) 609 (Or16 x (Or16 x y)) -> (Or16 x y) 610 (Or8 x (Or8 x y)) -> (Or8 x y) 611 (Xor64 x (Xor64 x y)) -> y 612 (Xor32 x (Xor32 x y)) -> y 613 (Xor16 x (Xor16 x y)) -> y 614 (Xor8 x (Xor8 x y)) -> y 615 616 // Ands clear bits. Ors set bits. 617 // If a subsequent Or will set all the bits 618 // that an And cleared, we can skip the And. 619 // This happens in bitmasking code like: 620 // x &^= 3 << shift // clear two old bits 621 // x |= v << shift // set two new bits 622 // when shift is a small constant and v ends up a constant 3. 623 (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 -> (Or8 (Const8 <t> [c1]) x) 624 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 <t> [c1]) x) 625 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 <t> [c1]) x) 626 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 <t> [c1]) x) 627 628 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x) 629 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x) 630 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x) 631 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x) 632 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x) 633 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x) 634 635 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x 636 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x 637 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x 638 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x 639 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x 640 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x 641 642 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x 643 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x 644 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x 645 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x 646 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x 647 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x 648 649 (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1]) 650 (Slicemask (Const32 [0])) -> (Const32 [0]) 651 (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1]) 652 (Slicemask (Const64 [0])) -> (Const64 [0]) 653 654 // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands 655 // leading zeros can be shifted left, then right 656 (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32 657 -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)])) 658 // trailing zeros can be shifted right, then left 659 (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32 660 -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)])) 661 662 // simplifications often used for lengths. e.g. len(s[i:i+5])==5 663 (Sub64 (Add64 x y) x) -> y 664 (Sub64 (Add64 x y) y) -> x 665 (Sub32 (Add32 x y) x) -> y 666 (Sub32 (Add32 x y) y) -> x 667 (Sub16 (Add16 x y) x) -> y 668 (Sub16 (Add16 x y) y) -> x 669 (Sub8 (Add8 x y) x) -> y 670 (Sub8 (Add8 x y) y) -> x 671 672 // basic phi simplifications 673 (Phi (Const8 [c]) (Const8 [c])) -> (Const8 [c]) 674 (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c]) 675 (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c]) 676 (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c]) 677 678 // user nil checks 679 (NeqPtr p (ConstNil)) -> (IsNonNil p) 680 (EqPtr p (ConstNil)) -> (Not (IsNonNil p)) 681 (IsNonNil (ConstNil)) -> (ConstBool [0]) 682 683 // slice and interface comparisons 684 // The frontend ensures that we can only compare against nil, 685 // so we need only compare the first word (interface type or slice ptr). 686 (EqInter x y) -> (EqPtr (ITab x) (ITab y)) 687 (NeqInter x y) -> (NeqPtr (ITab x) (ITab y)) 688 (EqSlice x y) -> (EqPtr (SlicePtr x) (SlicePtr y)) 689 (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y)) 690 691 // Load of store of same address, with compatibly typed value and same size 692 (Load <t1> p1 (Store {t2} p2 x _)) && isSamePtr(p1,p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.(*types.Type).Size() -> x 693 694 // Eliminate stores of values that have just been loaded from the same location. 695 // We also handle the common case where there are some intermediate stores to non-overlapping struct fields. 696 (Store {t1} p1 (Load <t2> p2 mem) mem) && 697 isSamePtr(p1, p2) && 698 t2.Size() == t1.(*types.Type).Size() -> mem 699 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ oldmem)) && 700 isSamePtr(p1, p2) && 701 isSamePtr(p1, p3) && 702 t2.Size() == t1.(*types.Type).Size() && 703 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) -> mem 704 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ oldmem))) && 705 isSamePtr(p1, p2) && 706 isSamePtr(p1, p3) && 707 isSamePtr(p1, p4) && 708 t2.Size() == t1.(*types.Type).Size() && 709 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && 710 !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) -> mem 711 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ (Store {t5} (OffPtr [o5] p5) _ oldmem)))) && 712 isSamePtr(p1, p2) && 713 isSamePtr(p1, p3) && 714 isSamePtr(p1, p4) && 715 isSamePtr(p1, p5) && 716 t2.Size() == t1.(*types.Type).Size() && 717 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && 718 !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) && 719 !overlap(o1, t2.Size(), o5, t5.(*types.Type).Size()) -> mem 720 721 // Collapse OffPtr 722 (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b]) 723 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p 724 725 // indexing operations 726 // Note: bounds check has already been done 727 (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [t.ElemType().Size()]))) 728 (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.ElemType().Size()]))) 729 730 // struct operations 731 (StructSelect (StructMake1 x)) -> x 732 (StructSelect [0] (StructMake2 x _)) -> x 733 (StructSelect [1] (StructMake2 _ x)) -> x 734 (StructSelect [0] (StructMake3 x _ _)) -> x 735 (StructSelect [1] (StructMake3 _ x _)) -> x 736 (StructSelect [2] (StructMake3 _ _ x)) -> x 737 (StructSelect [0] (StructMake4 x _ _ _)) -> x 738 (StructSelect [1] (StructMake4 _ x _ _)) -> x 739 (StructSelect [2] (StructMake4 _ _ x _)) -> x 740 (StructSelect [3] (StructMake4 _ _ _ x)) -> x 741 742 (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 743 (StructMake0) 744 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 745 (StructMake1 746 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) 747 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 748 (StructMake2 749 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 750 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) 751 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 752 (StructMake3 753 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 754 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 755 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) 756 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 757 (StructMake4 758 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 759 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 760 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) 761 (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) 762 763 (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) -> 764 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) 765 766 (Store _ (StructMake0) mem) -> mem 767 (Store dst (StructMake1 <t> f0) mem) -> 768 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) 769 (Store dst (StructMake2 <t> f0 f1) mem) -> 770 (Store {t.FieldType(1)} 771 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 772 f1 773 (Store {t.FieldType(0)} 774 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 775 f0 mem)) 776 (Store dst (StructMake3 <t> f0 f1 f2) mem) -> 777 (Store {t.FieldType(2)} 778 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 779 f2 780 (Store {t.FieldType(1)} 781 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 782 f1 783 (Store {t.FieldType(0)} 784 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 785 f0 mem))) 786 (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) -> 787 (Store {t.FieldType(3)} 788 (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) 789 f3 790 (Store {t.FieldType(2)} 791 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 792 f2 793 (Store {t.FieldType(1)} 794 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 795 f1 796 (Store {t.FieldType(0)} 797 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 798 f0 mem)))) 799 800 // Putting struct{*byte} and similar into direct interfaces. 801 (IMake typ (StructMake1 val)) -> (IMake typ val) 802 (StructSelect [0] x:(IData _)) -> x 803 804 // un-SSAable values use mem->mem copies 805 (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) -> 806 (Move {t} [t.(*types.Type).Size()] dst src mem) 807 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) -> 808 (Move {t} [t.(*types.Type).Size()] dst src (VarDef {x} mem)) 809 810 // array ops 811 (ArraySelect (ArrayMake1 x)) -> x 812 813 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 -> 814 (ArrayMake0) 815 816 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 817 (ArrayMake1 (Load <t.ElemType()> ptr mem)) 818 819 (Store _ (ArrayMake0) mem) -> mem 820 (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem) 821 822 (ArraySelect [0] (Load ptr mem)) -> (Load ptr mem) 823 824 // Putting [1]{*byte} and similar into direct interfaces. 825 (IMake typ (ArrayMake1 val)) -> (IMake typ val) 826 (ArraySelect [0] x:(IData _)) -> x 827 828 // string ops 829 // Decomposing StringMake and lowering of StringPtr and StringLen 830 // happens in a later pass, dec, so that these operations are available 831 // to other passes for optimizations. 832 (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 833 (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 834 (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" -> 835 (StringMake (ConstNil) (Const32 <typ.Int> [0])) 836 (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" -> 837 (StringMake (ConstNil) (Const64 <typ.Int> [0])) 838 (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" -> 839 (StringMake 840 (Addr <typ.BytePtr> {fe.StringData(s.(string))} 841 (SB)) 842 (Const32 <typ.Int> [int64(len(s.(string)))])) 843 (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" -> 844 (StringMake 845 (Addr <typ.BytePtr> {fe.StringData(s.(string))} 846 (SB)) 847 (Const64 <typ.Int> [int64(len(s.(string)))])) 848 849 // slice ops 850 // Only a few slice rules are provided here. See dec.rules for 851 // a more comprehensive set. 852 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 853 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 854 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c]) 855 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c]) 856 (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x) 857 (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x) 858 (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x) 859 (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x) 860 (ConstSlice) && config.PtrSize == 4 -> 861 (SliceMake 862 (ConstNil <v.Type.ElemType().PtrTo()>) 863 (Const32 <typ.Int> [0]) 864 (Const32 <typ.Int> [0])) 865 (ConstSlice) && config.PtrSize == 8 -> 866 (SliceMake 867 (ConstNil <v.Type.ElemType().PtrTo()>) 868 (Const64 <typ.Int> [0]) 869 (Const64 <typ.Int> [0])) 870 871 // interface ops 872 (ConstInterface) -> 873 (IMake 874 (ConstNil <typ.BytePtr>) 875 (ConstNil <typ.BytePtr>)) 876 877 (NilCheck (GetG mem) mem) -> mem 878 879 (If (Not cond) yes no) -> (If cond no yes) 880 (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no) 881 (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes) 882 883 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. 884 (Convert (Add64 (Convert ptr mem) off) mem) -> (Add64 ptr off) 885 (Convert (Convert ptr mem) mem) -> ptr 886 887 // Decompose compound argument values 888 (Arg {n} [off]) && v.Type.IsString() -> 889 (StringMake 890 (Arg <typ.BytePtr> {n} [off]) 891 (Arg <typ.Int> {n} [off+config.PtrSize])) 892 893 (Arg {n} [off]) && v.Type.IsSlice() -> 894 (SliceMake 895 (Arg <v.Type.ElemType().PtrTo()> {n} [off]) 896 (Arg <typ.Int> {n} [off+config.PtrSize]) 897 (Arg <typ.Int> {n} [off+2*config.PtrSize])) 898 899 (Arg {n} [off]) && v.Type.IsInterface() -> 900 (IMake 901 (Arg <typ.BytePtr> {n} [off]) 902 (Arg <typ.BytePtr> {n} [off+config.PtrSize])) 903 904 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 -> 905 (ComplexMake 906 (Arg <typ.Float64> {n} [off]) 907 (Arg <typ.Float64> {n} [off+8])) 908 909 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 -> 910 (ComplexMake 911 (Arg <typ.Float32> {n} [off]) 912 (Arg <typ.Float32> {n} [off+4])) 913 914 (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 915 (StructMake0) 916 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 917 (StructMake1 918 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])) 919 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 920 (StructMake2 921 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 922 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])) 923 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 924 (StructMake3 925 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 926 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 927 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])) 928 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 929 (StructMake4 930 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 931 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 932 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]) 933 (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)])) 934 935 (Arg <t>) && t.IsArray() && t.NumElem() == 0 -> 936 (ArrayMake0) 937 (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 938 (ArrayMake1 (Arg <t.ElemType()> {n} [off])) 939 940 // strength reduction of divide by a constant. 941 // See ../magic.go for a detailed description of these algorithms. 942 943 // Unsigned divide by power of 2. Strength reduce to a shift. 944 (Div8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) 945 (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) 946 (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) 947 (Div64u n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) 948 949 // Unsigned divide, not a power of 2. Strength reduce to a multiply. 950 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. 951 (Div8u x (Const8 [c])) && umagicOK(8, c) -> 952 (Trunc32to8 953 (Rsh32Ux64 <typ.UInt32> 954 (Mul32 <typ.UInt32> 955 (Const32 <typ.UInt32> [int64(1<<8+umagic(8,c).m)]) 956 (ZeroExt8to32 x)) 957 (Const64 <typ.UInt64> [8+umagic(8,c).s]))) 958 959 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. 960 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 -> 961 (Trunc64to16 962 (Rsh64Ux64 <typ.UInt64> 963 (Mul64 <typ.UInt64> 964 (Const64 <typ.UInt64> [int64(1<<16+umagic(16,c).m)]) 965 (ZeroExt16to64 x)) 966 (Const64 <typ.UInt64> [16+umagic(16,c).s]))) 967 968 // For 16-bit divides on 32-bit machines 969 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 -> 970 (Trunc32to16 971 (Rsh32Ux64 <typ.UInt32> 972 (Mul32 <typ.UInt32> 973 (Const32 <typ.UInt32> [int64(1<<15+umagic(16,c).m/2)]) 974 (ZeroExt16to32 x)) 975 (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) 976 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 -> 977 (Trunc32to16 978 (Rsh32Ux64 <typ.UInt32> 979 (Mul32 <typ.UInt32> 980 (Const32 <typ.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)]) 981 (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) 982 (Const64 <typ.UInt64> [16+umagic(16,c).s-2]))) 983 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 -> 984 (Trunc32to16 985 (Rsh32Ux64 <typ.UInt32> 986 (Avg32u 987 (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) 988 (Mul32 <typ.UInt32> 989 (Const32 <typ.UInt32> [int64(umagic(16,c).m)]) 990 (ZeroExt16to32 x))) 991 (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) 992 993 // For 32-bit divides on 32-bit machines 994 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 -> 995 (Rsh32Ux64 <typ.UInt32> 996 (Hmul32u <typ.UInt32> 997 (Const32 <typ.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))]) 998 x) 999 (Const64 <typ.UInt64> [umagic(32,c).s-1])) 1000 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 -> 1001 (Rsh32Ux64 <typ.UInt32> 1002 (Hmul32u <typ.UInt32> 1003 (Const32 <typ.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))]) 1004 (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) 1005 (Const64 <typ.UInt64> [umagic(32,c).s-2])) 1006 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 -> 1007 (Rsh32Ux64 <typ.UInt32> 1008 (Avg32u 1009 x 1010 (Hmul32u <typ.UInt32> 1011 (Const32 <typ.UInt32> [int64(int32(umagic(32,c).m))]) 1012 x)) 1013 (Const64 <typ.UInt64> [umagic(32,c).s-1])) 1014 1015 // For 32-bit divides on 64-bit machines 1016 // We'll use a regular (non-hi) multiply for this case. 1017 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 -> 1018 (Trunc64to32 1019 (Rsh64Ux64 <typ.UInt64> 1020 (Mul64 <typ.UInt64> 1021 (Const64 <typ.UInt64> [int64(1<<31+umagic(32,c).m/2)]) 1022 (ZeroExt32to64 x)) 1023 (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) 1024 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 -> 1025 (Trunc64to32 1026 (Rsh64Ux64 <typ.UInt64> 1027 (Mul64 <typ.UInt64> 1028 (Const64 <typ.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)]) 1029 (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) 1030 (Const64 <typ.UInt64> [32+umagic(32,c).s-2]))) 1031 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 -> 1032 (Trunc64to32 1033 (Rsh64Ux64 <typ.UInt64> 1034 (Avg64u 1035 (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) 1036 (Mul64 <typ.UInt64> 1037 (Const64 <typ.UInt32> [int64(umagic(32,c).m)]) 1038 (ZeroExt32to64 x))) 1039 (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) 1040 1041 // For 64-bit divides on 64-bit machines 1042 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) 1043 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 -> 1044 (Rsh64Ux64 <typ.UInt64> 1045 (Hmul64u <typ.UInt64> 1046 (Const64 <typ.UInt64> [int64(1<<63+umagic(64,c).m/2)]) 1047 x) 1048 (Const64 <typ.UInt64> [umagic(64,c).s-1])) 1049 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 -> 1050 (Rsh64Ux64 <typ.UInt64> 1051 (Hmul64u <typ.UInt64> 1052 (Const64 <typ.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)]) 1053 (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) 1054 (Const64 <typ.UInt64> [umagic(64,c).s-2])) 1055 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 -> 1056 (Rsh64Ux64 <typ.UInt64> 1057 (Avg64u 1058 x 1059 (Hmul64u <typ.UInt64> 1060 (Const64 <typ.UInt64> [int64(umagic(64,c).m)]) 1061 x)) 1062 (Const64 <typ.UInt64> [umagic(64,c).s-1])) 1063 1064 // Signed divide by a negative constant. Rewrite to divide by a positive constant. 1065 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Neg8 (Div8 <t> n (Const8 <t> [-c]))) 1066 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c]))) 1067 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c]))) 1068 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c]))) 1069 1070 // Dividing by the most-negative number. Result is always 0 except 1071 // if the input is also the most-negative number. 1072 // We can detect that using the sign bit of x & -x. 1073 (Div8 <t> x (Const8 [-1<<7 ])) -> (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) 1074 (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) 1075 (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) 1076 (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) 1077 1078 // Signed divide by power of 2. 1079 // n / c = n >> log(c) if n >= 0 1080 // = (n+c-1) >> log(c) if n < 0 1081 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). 1082 (Div8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> 1083 (Rsh8x64 1084 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [ 8-log2(c)]))) 1085 (Const64 <typ.UInt64> [log2(c)])) 1086 (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> 1087 (Rsh16x64 1088 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [16-log2(c)]))) 1089 (Const64 <typ.UInt64> [log2(c)])) 1090 (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> 1091 (Rsh32x64 1092 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [32-log2(c)]))) 1093 (Const64 <typ.UInt64> [log2(c)])) 1094 (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> 1095 (Rsh64x64 1096 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [64-log2(c)]))) 1097 (Const64 <typ.UInt64> [log2(c)])) 1098 1099 // Signed divide, not a power of 2. Strength reduce to a multiply. 1100 (Div8 <t> x (Const8 [c])) && smagicOK(8,c) -> 1101 (Sub8 <t> 1102 (Rsh32x64 <t> 1103 (Mul32 <typ.UInt32> 1104 (Const32 <typ.UInt32> [int64(smagic(8,c).m)]) 1105 (SignExt8to32 x)) 1106 (Const64 <typ.UInt64> [8+smagic(8,c).s])) 1107 (Rsh32x64 <t> 1108 (SignExt8to32 x) 1109 (Const64 <typ.UInt64> [31]))) 1110 (Div16 <t> x (Const16 [c])) && smagicOK(16,c) -> 1111 (Sub16 <t> 1112 (Rsh32x64 <t> 1113 (Mul32 <typ.UInt32> 1114 (Const32 <typ.UInt32> [int64(smagic(16,c).m)]) 1115 (SignExt16to32 x)) 1116 (Const64 <typ.UInt64> [16+smagic(16,c).s])) 1117 (Rsh32x64 <t> 1118 (SignExt16to32 x) 1119 (Const64 <typ.UInt64> [31]))) 1120 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 -> 1121 (Sub32 <t> 1122 (Rsh64x64 <t> 1123 (Mul64 <typ.UInt64> 1124 (Const64 <typ.UInt64> [int64(smagic(32,c).m)]) 1125 (SignExt32to64 x)) 1126 (Const64 <typ.UInt64> [32+smagic(32,c).s])) 1127 (Rsh64x64 <t> 1128 (SignExt32to64 x) 1129 (Const64 <typ.UInt64> [63]))) 1130 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 -> 1131 (Sub32 <t> 1132 (Rsh32x64 <t> 1133 (Hmul32 <t> 1134 (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m/2))]) 1135 x) 1136 (Const64 <typ.UInt64> [smagic(32,c).s-1])) 1137 (Rsh32x64 <t> 1138 x 1139 (Const64 <typ.UInt64> [31]))) 1140 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 -> 1141 (Sub32 <t> 1142 (Rsh32x64 <t> 1143 (Add32 <t> 1144 (Hmul32 <t> 1145 (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m))]) 1146 x) 1147 x) 1148 (Const64 <typ.UInt64> [smagic(32,c).s])) 1149 (Rsh32x64 <t> 1150 x 1151 (Const64 <typ.UInt64> [31]))) 1152 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 -> 1153 (Sub64 <t> 1154 (Rsh64x64 <t> 1155 (Hmul64 <t> 1156 (Const64 <typ.UInt64> [int64(smagic(64,c).m/2)]) 1157 x) 1158 (Const64 <typ.UInt64> [smagic(64,c).s-1])) 1159 (Rsh64x64 <t> 1160 x 1161 (Const64 <typ.UInt64> [63]))) 1162 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 -> 1163 (Sub64 <t> 1164 (Rsh64x64 <t> 1165 (Add64 <t> 1166 (Hmul64 <t> 1167 (Const64 <typ.UInt64> [int64(smagic(64,c).m)]) 1168 x) 1169 x) 1170 (Const64 <typ.UInt64> [smagic(64,c).s])) 1171 (Rsh64x64 <t> 1172 x 1173 (Const64 <typ.UInt64> [63]))) 1174 1175 // Unsigned mod by power of 2 constant. 1176 (Mod8u <t> n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) 1177 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) 1178 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) 1179 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) 1180 1181 // Signed mod by negative constant. 1182 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Mod8 <t> n (Const8 <t> [-c])) 1183 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c])) 1184 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c])) 1185 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c])) 1186 1187 // All other mods by constants, do A%B = A-(A/B*B). 1188 // This implements % with two * and a bunch of ancillary ops. 1189 // One of the * is free if the user's code also computes A/B. 1190 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) 1191 -> (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1192 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) 1193 -> (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1194 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) 1195 -> (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1196 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) 1197 -> (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1198 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK(8 ,c) 1199 -> (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1200 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c) 1201 -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1202 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c) 1203 -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1204 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c) 1205 -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1206 1207 // Reassociate expressions involving 1208 // constants such that constants come first, 1209 // exposing obvious constant-folding opportunities. 1210 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C 1211 // is constant, which pushes constants to the outside 1212 // of the expression. At that point, any constant-folding 1213 // opportunities should be obvious. 1214 1215 // x + (C + z) -> C + (x + z) 1216 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x)) 1217 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x)) 1218 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x)) 1219 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Add8 <t> z x)) 1220 1221 // x + (C - z) -> C + (x - z) 1222 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1223 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1224 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1225 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1226 (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1227 (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1228 (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1229 (Add8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1230 1231 // x + (z - C) -> (x + z) - C 1232 (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1233 (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1234 (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1235 (Add8 (Sub8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1236 (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1237 (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1238 (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1239 (Add8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1240 1241 // x - (C - z) -> x + (z - C) -> (x + z) - C 1242 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1243 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1244 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1245 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1246 1247 // x - (z - C) -> x + (C - z) -> (x - z) + C 1248 (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1249 (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1250 (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1251 (Sub8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1252 1253 // x & (C & z) -> C & (x & z) 1254 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x)) 1255 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x)) 1256 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x)) 1257 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (And8 i (And8 <t> z x)) 1258 1259 // x | (C | z) -> C | (x | z) 1260 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x)) 1261 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x)) 1262 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x)) 1263 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Or8 i (Or8 <t> z x)) 1264 1265 // x ^ (C ^ z) -> C ^ (x ^ z) 1266 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x)) 1267 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x)) 1268 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x)) 1269 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Xor8 i (Xor8 <t> z x)) 1270 1271 // C + (D + x) -> (C + D) + x 1272 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x) 1273 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x) 1274 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x) 1275 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c+d))]) x) 1276 1277 // C + (D - x) -> (C + D) - x 1278 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x) 1279 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1280 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1281 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1282 1283 // C + (x - D) -> (C - D) + x 1284 (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x) 1285 (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1286 (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1287 (Add8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1288 1289 // C - (x - D) -> (C + D) - x 1290 (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x) 1291 (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1292 (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1293 (Sub8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1294 1295 // C - (D - x) -> (C - D) + x 1296 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x) 1297 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1298 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1299 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1300 1301 // C & (D & x) -> (C & D) & x 1302 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x) 1303 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x) 1304 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x) 1305 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) -> (And8 (Const8 <t> [int64(int8(c&d))]) x) 1306 1307 // C | (D | x) -> (C | D) | x 1308 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x) 1309 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x) 1310 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x) 1311 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) -> (Or8 (Const8 <t> [int64(int8(c|d))]) x) 1312 1313 // C ^ (D ^ x) -> (C ^ D) ^ x 1314 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x) 1315 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x) 1316 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x) 1317 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) -> (Xor8 (Const8 <t> [int64(int8(c^d))]) x) 1318 1319 // C * (D * x) = (C * D) * x 1320 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x) 1321 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x) 1322 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x) 1323 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) -> (Mul8 (Const8 <t> [int64(int8(c*d))]) x) 1324 1325 // floating point optimizations 1326 (Add32F x (Const32F [0])) -> x 1327 (Add64F x (Const64F [0])) -> x 1328 (Sub32F x (Const32F [0])) -> x 1329 (Sub64F x (Const64F [0])) -> x 1330 (Mul32F x (Const32F [f2i(1)])) -> x 1331 (Mul64F x (Const64F [f2i(1)])) -> x 1332 (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x) 1333 (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x) 1334 (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x) 1335 (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x) 1336 (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))])) 1337 (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c)) -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))])) 1338 1339 (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))]) 1340 1341 // recognize runtime.newobject and don't Zero/Nilcheck it 1342 (Zero (Load (OffPtr [c] (SP)) mem) mem) 1343 && mem.Op == OpStaticCall 1344 && isSameSym(mem.Aux, "runtime.newobject") 1345 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1346 -> mem 1347 (Store (Load (OffPtr [c] (SP)) mem) x mem) 1348 && isConstZero(x) 1349 && mem.Op == OpStaticCall 1350 && isSameSym(mem.Aux, "runtime.newobject") 1351 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1352 -> mem 1353 (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) 1354 && isConstZero(x) 1355 && mem.Op == OpStaticCall 1356 && isSameSym(mem.Aux, "runtime.newobject") 1357 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1358 -> mem 1359 // nil checks just need to rewrite to something useless. 1360 // they will be deadcode eliminated soon afterwards. 1361 (NilCheck (Load (OffPtr [c] (SP)) mem) mem) 1362 && mem.Op == OpStaticCall 1363 && isSameSym(mem.Aux, "runtime.newobject") 1364 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1365 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1366 -> (Invalid) 1367 (NilCheck (OffPtr (Load (OffPtr [c] (SP)) mem)) mem) 1368 && mem.Op == OpStaticCall 1369 && isSameSym(mem.Aux, "runtime.newobject") 1370 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1371 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1372 -> (Invalid) 1373 1374 // Address comparison shows up in type assertions. 1375 (EqPtr x x) -> (ConstBool [1]) 1376 (EqPtr (Addr {a} x) (Addr {b} x)) -> (ConstBool [b2i(a == b)]) 1377 1378 // De-virtualize interface calls into static calls. 1379 // Note that (ITab (IMake)) doesn't get 1380 // rewritten until after the first opt pass, 1381 // so this rule should trigger reliably. 1382 (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil -> 1383 (StaticCall [argsize] {devirt(v, itab, off)} mem)