github.com/sanprasirt/go@v0.0.0-20170607001320-a027466e4b6d/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"cmd/internal/objabi"
    35  	"log"
    36  	"math"
    37  	"sort"
    38  )
    39  
    40  // ctxtz holds state while assembling a single function.
    41  // Each function gets a fresh ctxtz.
    42  // This allows for multiple functions to be safely concurrently assembled.
    43  type ctxtz struct {
    44  	ctxt       *obj.Link
    45  	newprog    obj.ProgAlloc
    46  	cursym     *obj.LSym
    47  	autosize   int32
    48  	instoffset int64
    49  	pc         int64
    50  }
    51  
    52  // instruction layout.
    53  const (
    54  	funcAlign = 16
    55  )
    56  
    57  type Optab struct {
    58  	as    obj.As // opcode
    59  	a1    uint8  // From
    60  	a2    uint8  // Reg
    61  	a3    uint8  // From3
    62  	a4    uint8  // To
    63  	type_ int8
    64  	param int16 // REGSP for auto variables
    65  }
    66  
    67  var optab = []Optab{
    68  	// instruction,  From,   Reg,    From3,  To, type, param
    69  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    70  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    71  
    72  	// move register
    73  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    74  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    75  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    76  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    77  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    78  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    79  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    80  
    81  	// load constant
    82  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    83  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    84  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    85  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    86  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    87  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    88  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    89  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    90  
    91  	// store constant
    92  	Optab{AMOVD, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    93  	Optab{AMOVD, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    94  	Optab{AMOVW, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    95  	Optab{AMOVW, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    96  	Optab{AMOVWZ, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    97  	Optab{AMOVWZ, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    98  	Optab{AMOVB, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    99  	Optab{AMOVB, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   100  	Optab{AMOVBZ, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   101  	Optab{AMOVBZ, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   102  	Optab{AMOVD, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   103  	Optab{AMOVD, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   104  	Optab{AMOVW, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   105  	Optab{AMOVW, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   106  	Optab{AMOVWZ, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   107  	Optab{AMOVWZ, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   108  	Optab{AMOVB, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   109  	Optab{AMOVB, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   110  	Optab{AMOVBZ, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   111  	Optab{AMOVBZ, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   112  
   113  	// store
   114  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   115  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   116  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   117  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   118  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   119  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   120  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   121  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   122  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   123  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   124  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   125  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   126  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   127  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   128  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   129  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   130  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   131  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   132  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   133  
   134  	// load
   135  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   136  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   137  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   138  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   139  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   140  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   141  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   142  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   143  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   144  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   145  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   146  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   147  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   148  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   149  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   150  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   151  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   152  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   153  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   154  
   155  	// interlocked load and op
   156  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   157  
   158  	// integer arithmetic
   159  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   160  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   161  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   162  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   163  	Optab{AADD, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   164  	Optab{AADD, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   165  	Optab{ASUB, C_LCON, C_REG, C_NONE, C_REG, 21, 0},
   166  	Optab{ASUB, C_LCON, C_NONE, C_NONE, C_REG, 21, 0},
   167  	Optab{ASUB, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   168  	Optab{ASUB, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   169  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   170  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   171  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   172  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   173  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   174  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   175  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   176  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   177  
   178  	// integer logical
   179  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   180  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   181  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   182  	Optab{AAND, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   183  	Optab{AAND, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   184  	Optab{AANDW, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   185  	Optab{AANDW, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   186  	Optab{AANDW, C_LCON, C_NONE, C_NONE, C_REG, 24, 0},
   187  	Optab{AANDW, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   188  	Optab{AANDW, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   189  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   190  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   191  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   192  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   193  
   194  	// compare and swap
   195  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   196  
   197  	// floating point
   198  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   199  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   200  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   201  	Optab{AFMADD, C_FREG, C_FREG, C_NONE, C_FREG, 34, 0},
   202  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   203  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   204  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   205  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   206  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   207  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   208  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   209  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   210  	Optab{ALDGR, C_REG, C_NONE, C_NONE, C_FREG, 81, 0},
   211  	Optab{ALGDR, C_FREG, C_NONE, C_NONE, C_REG, 81, 0},
   212  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   213  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   214  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   215  
   216  	// load symbol address (plus offset)
   217  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   218  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   219  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   220  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   221  
   222  	// system call
   223  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   224  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   225  
   226  	// branch
   227  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   228  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   229  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   230  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   231  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   232  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   233  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   234  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   235  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   236  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   237  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   238  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   239  
   240  	// move on condition
   241  	Optab{AMOVDEQ, C_REG, C_NONE, C_NONE, C_REG, 17, 0},
   242  
   243  	// find leftmost one
   244  	Optab{AFLOGR, C_REG, C_NONE, C_NONE, C_REG, 8, 0},
   245  
   246  	// compare
   247  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   248  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   249  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   250  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   251  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   252  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   253  
   254  	// 32-bit access registers
   255  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   256  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   257  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   258  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   259  
   260  	// macros
   261  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   262  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   263  
   264  	// load/store multiple
   265  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   266  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   267  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   268  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   269  
   270  	// bytes
   271  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   272  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   273  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   274  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   275  
   276  	// fast synchronization
   277  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 80, 0},
   278  
   279  	// store clock
   280  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   281  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   282  
   283  	// storage and storage
   284  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LOREG, 84, 0},
   285  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LAUTO, 84, REGSP},
   286  	Optab{AMVC, C_SCON, C_NONE, C_LAUTO, C_LAUTO, 84, REGSP},
   287  
   288  	// address
   289  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   290  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   291  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   292  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   293  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   294  
   295  	// misc
   296  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   297  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   298  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   299  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   300  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   301  
   302  	// vector instructions
   303  
   304  	// VRX store
   305  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   306  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   307  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SOREG, 100, 0},
   308  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 100, REGSP},
   309  
   310  	// VRX load
   311  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   312  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   313  	Optab{AVLEG, C_SCON, C_NONE, C_SOREG, C_VREG, 101, 0},
   314  	Optab{AVLEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 101, REGSP},
   315  
   316  	// VRV scatter
   317  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SOREG, 102, 0},
   318  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 102, REGSP},
   319  
   320  	// VRV gather
   321  	Optab{AVGEG, C_SCON, C_NONE, C_SOREG, C_VREG, 103, 0},
   322  	Optab{AVGEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 103, REGSP},
   323  
   324  	// VRS element shift/rotate and load gr to/from vr element
   325  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   326  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   327  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   328  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   329  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   330  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   331  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   332  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   333  
   334  	// VRS store multiple
   335  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   336  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   337  
   338  	// VRS load multiple
   339  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   340  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   341  
   342  	// VRS store with length
   343  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SOREG, 107, 0},
   344  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SAUTO, 107, REGSP},
   345  
   346  	// VRS load with length
   347  	Optab{AVLL, C_REG, C_NONE, C_SOREG, C_VREG, 108, 0},
   348  	Optab{AVLL, C_REG, C_NONE, C_SAUTO, C_VREG, 108, REGSP},
   349  
   350  	// VRI-a
   351  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   352  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   353  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   354  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   355  	Optab{AVLEIG, C_SCON, C_NONE, C_ADDCON, C_VREG, 109, 0},
   356  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   357  
   358  	// VRI-b generate mask
   359  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   360  
   361  	// VRI-c replicate
   362  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   363  
   364  	// VRI-d element rotate and insert under mask and
   365  	// shift left double by byte
   366  	Optab{AVERIMG, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   367  	Optab{AVSLDB, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   368  
   369  	// VRI-d fp test data class immediate
   370  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   371  
   372  	// VRR-a load reg
   373  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   374  
   375  	// VRR-a compare
   376  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   377  
   378  	// VRR-b
   379  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   380  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   381  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   382  
   383  	// VRR-c
   384  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   385  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   386  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   387  	Optab{AVPDI, C_SCON, C_VREG, C_VREG, C_VREG, 123, 0},
   388  
   389  	// VRR-c shifts
   390  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   391  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   392  
   393  	// VRR-d
   394  	//             2       3       1       4
   395  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   396  
   397  	// VRR-e
   398  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   399  
   400  	// VRR-f
   401  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   402  }
   403  
   404  var oprange [ALAST & obj.AMask][]Optab
   405  
   406  var xcmp [C_NCLASS][C_NCLASS]bool
   407  
   408  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   409  	p := cursym.Func.Text
   410  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   411  		return
   412  	}
   413  
   414  	if oprange[AORW&obj.AMask] == nil {
   415  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   416  	}
   417  
   418  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   419  
   420  	buffer := make([]byte, 0)
   421  	changed := true
   422  	loop := 0
   423  	for changed {
   424  		if loop > 10 {
   425  			c.ctxt.Diag("stuck in spanz loop")
   426  			break
   427  		}
   428  		changed = false
   429  		buffer = buffer[:0]
   430  		c.cursym.R = make([]obj.Reloc, 0)
   431  		for p := c.cursym.Func.Text; p != nil; p = p.Link {
   432  			pc := int64(len(buffer))
   433  			if pc != p.Pc {
   434  				changed = true
   435  			}
   436  			p.Pc = pc
   437  			c.pc = p.Pc
   438  			c.asmout(p, &buffer)
   439  			if pc == int64(len(buffer)) {
   440  				switch p.As {
   441  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   442  					// ok
   443  				default:
   444  					c.ctxt.Diag("zero-width instruction\n%v", p)
   445  				}
   446  			}
   447  		}
   448  		loop++
   449  	}
   450  
   451  	c.cursym.Size = int64(len(buffer))
   452  	if c.cursym.Size%funcAlign != 0 {
   453  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   454  	}
   455  	c.cursym.Grow(c.cursym.Size)
   456  	copy(c.cursym.P, buffer)
   457  }
   458  
   459  func isint32(v int64) bool {
   460  	return int64(int32(v)) == v
   461  }
   462  
   463  func isuint32(v uint64) bool {
   464  	return uint64(uint32(v)) == v
   465  }
   466  
   467  func (c *ctxtz) aclass(a *obj.Addr) int {
   468  	switch a.Type {
   469  	case obj.TYPE_NONE:
   470  		return C_NONE
   471  
   472  	case obj.TYPE_REG:
   473  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   474  			return C_REG
   475  		}
   476  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   477  			return C_FREG
   478  		}
   479  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   480  			return C_AREG
   481  		}
   482  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   483  			return C_VREG
   484  		}
   485  		return C_GOK
   486  
   487  	case obj.TYPE_MEM:
   488  		switch a.Name {
   489  		case obj.NAME_EXTERN,
   490  			obj.NAME_STATIC:
   491  			if a.Sym == nil {
   492  				// must have a symbol
   493  				break
   494  			}
   495  			c.instoffset = a.Offset
   496  			if a.Sym.Type == objabi.STLSBSS {
   497  				if c.ctxt.Flag_shared {
   498  					return C_TLS_IE // initial exec model
   499  				}
   500  				return C_TLS_LE // local exec model
   501  			}
   502  			return C_ADDR
   503  
   504  		case obj.NAME_GOTREF:
   505  			return C_GOTADDR
   506  
   507  		case obj.NAME_AUTO:
   508  			c.instoffset = int64(c.autosize) + a.Offset
   509  			if c.instoffset >= -BIG && c.instoffset < BIG {
   510  				return C_SAUTO
   511  			}
   512  			return C_LAUTO
   513  
   514  		case obj.NAME_PARAM:
   515  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   516  			if c.instoffset >= -BIG && c.instoffset < BIG {
   517  				return C_SAUTO
   518  			}
   519  			return C_LAUTO
   520  
   521  		case obj.NAME_NONE:
   522  			c.instoffset = a.Offset
   523  			if c.instoffset == 0 {
   524  				return C_ZOREG
   525  			}
   526  			if c.instoffset >= -BIG && c.instoffset < BIG {
   527  				return C_SOREG
   528  			}
   529  			return C_LOREG
   530  		}
   531  
   532  		return C_GOK
   533  
   534  	case obj.TYPE_TEXTSIZE:
   535  		return C_TEXTSIZE
   536  
   537  	case obj.TYPE_FCONST:
   538  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   539  			return C_ZCON
   540  		}
   541  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   542  
   543  	case obj.TYPE_CONST,
   544  		obj.TYPE_ADDR:
   545  		switch a.Name {
   546  		case obj.NAME_NONE:
   547  			c.instoffset = a.Offset
   548  			if a.Reg != 0 {
   549  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   550  					return C_SACON
   551  				}
   552  				if isint32(c.instoffset) {
   553  					return C_LACON
   554  				}
   555  				return C_DACON
   556  			}
   557  			goto consize
   558  
   559  		case obj.NAME_EXTERN,
   560  			obj.NAME_STATIC:
   561  			s := a.Sym
   562  			if s == nil {
   563  				break
   564  			}
   565  			c.instoffset = a.Offset
   566  
   567  			return C_SYMADDR
   568  
   569  		case obj.NAME_AUTO:
   570  			c.instoffset = int64(c.autosize) + a.Offset
   571  			if c.instoffset >= -BIG && c.instoffset < BIG {
   572  				return C_SACON
   573  			}
   574  			return C_LACON
   575  
   576  		case obj.NAME_PARAM:
   577  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   578  			if c.instoffset >= -BIG && c.instoffset < BIG {
   579  				return C_SACON
   580  			}
   581  			return C_LACON
   582  		}
   583  
   584  		return C_GOK
   585  
   586  	consize:
   587  		if c.instoffset == 0 {
   588  			return C_ZCON
   589  		}
   590  		if c.instoffset >= 0 {
   591  			if c.instoffset <= 0x7fff {
   592  				return C_SCON
   593  			}
   594  			if c.instoffset <= 0xffff {
   595  				return C_ANDCON
   596  			}
   597  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   598  				return C_UCON
   599  			}
   600  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   601  				return C_LCON
   602  			}
   603  			return C_DCON
   604  		}
   605  
   606  		if c.instoffset >= -0x8000 {
   607  			return C_ADDCON
   608  		}
   609  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   610  			return C_UCON
   611  		}
   612  		if isint32(c.instoffset) {
   613  			return C_LCON
   614  		}
   615  		return C_DCON
   616  
   617  	case obj.TYPE_BRANCH:
   618  		return C_SBRA
   619  	}
   620  
   621  	return C_GOK
   622  }
   623  
   624  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   625  	a1 := int(p.Optab)
   626  	if a1 != 0 {
   627  		return &optab[a1-1]
   628  	}
   629  	a1 = int(p.From.Class)
   630  	if a1 == 0 {
   631  		a1 = c.aclass(&p.From) + 1
   632  		p.From.Class = int8(a1)
   633  	}
   634  
   635  	a1--
   636  	a3 := C_NONE + 1
   637  	if p.From3 != nil {
   638  		a3 = int(p.From3.Class)
   639  		if a3 == 0 {
   640  			a3 = c.aclass(p.From3) + 1
   641  			p.From3.Class = int8(a3)
   642  		}
   643  	}
   644  
   645  	a3--
   646  	a4 := int(p.To.Class)
   647  	if a4 == 0 {
   648  		a4 = c.aclass(&p.To) + 1
   649  		p.To.Class = int8(a4)
   650  	}
   651  
   652  	a4--
   653  	a2 := C_NONE
   654  	if p.Reg != 0 {
   655  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   656  			a2 = C_REG
   657  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   658  			a2 = C_VREG
   659  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   660  			a2 = C_FREG
   661  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   662  			a2 = C_AREG
   663  		}
   664  	}
   665  
   666  	ops := oprange[p.As&obj.AMask]
   667  	c1 := &xcmp[a1]
   668  	c2 := &xcmp[a2]
   669  	c3 := &xcmp[a3]
   670  	c4 := &xcmp[a4]
   671  	for i := range ops {
   672  		op := &ops[i]
   673  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   674  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   675  			return op
   676  		}
   677  	}
   678  
   679  	// cannot find a case; abort
   680  	c.ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   681  	c.ctxt.Diag("prog: %v\n", p)
   682  	return nil
   683  }
   684  
   685  func cmp(a int, b int) bool {
   686  	if a == b {
   687  		return true
   688  	}
   689  	switch a {
   690  	case C_DCON:
   691  		if b == C_LCON {
   692  			return true
   693  		}
   694  		fallthrough
   695  	case C_LCON:
   696  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   697  			return true
   698  		}
   699  
   700  	case C_ADDCON:
   701  		if b == C_ZCON || b == C_SCON {
   702  			return true
   703  		}
   704  
   705  	case C_ANDCON:
   706  		if b == C_ZCON || b == C_SCON {
   707  			return true
   708  		}
   709  
   710  	case C_UCON:
   711  		if b == C_ZCON || b == C_SCON {
   712  			return true
   713  		}
   714  
   715  	case C_SCON:
   716  		if b == C_ZCON {
   717  			return true
   718  		}
   719  
   720  	case C_LACON:
   721  		if b == C_SACON {
   722  			return true
   723  		}
   724  
   725  	case C_LBRA:
   726  		if b == C_SBRA {
   727  			return true
   728  		}
   729  
   730  	case C_LAUTO:
   731  		if b == C_SAUTO {
   732  			return true
   733  		}
   734  
   735  	case C_LOREG:
   736  		if b == C_ZOREG || b == C_SOREG {
   737  			return true
   738  		}
   739  
   740  	case C_SOREG:
   741  		if b == C_ZOREG {
   742  			return true
   743  		}
   744  
   745  	case C_ANY:
   746  		return true
   747  	}
   748  
   749  	return false
   750  }
   751  
   752  type ocmp []Optab
   753  
   754  func (x ocmp) Len() int {
   755  	return len(x)
   756  }
   757  
   758  func (x ocmp) Swap(i, j int) {
   759  	x[i], x[j] = x[j], x[i]
   760  }
   761  
   762  func (x ocmp) Less(i, j int) bool {
   763  	p1 := &x[i]
   764  	p2 := &x[j]
   765  	n := int(p1.as) - int(p2.as)
   766  	if n != 0 {
   767  		return n < 0
   768  	}
   769  	n = int(p1.a1) - int(p2.a1)
   770  	if n != 0 {
   771  		return n < 0
   772  	}
   773  	n = int(p1.a2) - int(p2.a2)
   774  	if n != 0 {
   775  		return n < 0
   776  	}
   777  	n = int(p1.a3) - int(p2.a3)
   778  	if n != 0 {
   779  		return n < 0
   780  	}
   781  	n = int(p1.a4) - int(p2.a4)
   782  	if n != 0 {
   783  		return n < 0
   784  	}
   785  	return false
   786  }
   787  func opset(a, b obj.As) {
   788  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   789  }
   790  
   791  func buildop(ctxt *obj.Link) {
   792  	if oprange[AORW&obj.AMask] != nil {
   793  		// Already initialized; stop now.
   794  		// This happens in the cmd/asm tests,
   795  		// each of which re-initializes the arch.
   796  		return
   797  	}
   798  
   799  	for i := 0; i < C_NCLASS; i++ {
   800  		for n := 0; n < C_NCLASS; n++ {
   801  			if cmp(n, i) {
   802  				xcmp[i][n] = true
   803  			}
   804  		}
   805  	}
   806  	sort.Sort(ocmp(optab))
   807  	for i := 0; i < len(optab); i++ {
   808  		r := optab[i].as
   809  		start := i
   810  		for ; i+1 < len(optab); i++ {
   811  			if optab[i+1].as != r {
   812  				break
   813  			}
   814  		}
   815  		oprange[r&obj.AMask] = optab[start : i+1]
   816  
   817  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   818  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   819  		switch r {
   820  		case AADD:
   821  			opset(AADDC, r)
   822  			opset(AADDW, r)
   823  			opset(AMULLD, r)
   824  			opset(AMULLW, r)
   825  		case ADIVW:
   826  			opset(AADDE, r)
   827  			opset(ADIVD, r)
   828  			opset(ADIVDU, r)
   829  			opset(ADIVWU, r)
   830  			opset(AMODD, r)
   831  			opset(AMODDU, r)
   832  			opset(AMODW, r)
   833  			opset(AMODWU, r)
   834  		case AMULHD:
   835  			opset(AMULHDU, r)
   836  		case AMOVBZ:
   837  			opset(AMOVH, r)
   838  			opset(AMOVHZ, r)
   839  		case ALA:
   840  			opset(ALAY, r)
   841  		case AMVC:
   842  			opset(ACLC, r)
   843  			opset(AXC, r)
   844  			opset(AOC, r)
   845  			opset(ANC, r)
   846  		case ASTCK:
   847  			opset(ASTCKC, r)
   848  			opset(ASTCKE, r)
   849  			opset(ASTCKF, r)
   850  		case ALAAG:
   851  			opset(ALAA, r)
   852  			opset(ALAAL, r)
   853  			opset(ALAALG, r)
   854  			opset(ALAN, r)
   855  			opset(ALANG, r)
   856  			opset(ALAX, r)
   857  			opset(ALAXG, r)
   858  			opset(ALAO, r)
   859  			opset(ALAOG, r)
   860  		case ASTMG:
   861  			opset(ASTMY, r)
   862  		case ALMG:
   863  			opset(ALMY, r)
   864  		case ABEQ:
   865  			opset(ABGE, r)
   866  			opset(ABGT, r)
   867  			opset(ABLE, r)
   868  			opset(ABLT, r)
   869  			opset(ABNE, r)
   870  			opset(ABVC, r)
   871  			opset(ABVS, r)
   872  			opset(ABLEU, r)
   873  			opset(ABLTU, r)
   874  		case ABR:
   875  			opset(ABL, r)
   876  		case ABC:
   877  			opset(ABCL, r)
   878  		case AFABS:
   879  			opset(AFNABS, r)
   880  			opset(AFNEG, r)
   881  			opset(AFNEGS, r)
   882  			opset(ALEDBR, r)
   883  			opset(ALDEBR, r)
   884  			opset(AFSQRT, r)
   885  			opset(AFSQRTS, r)
   886  		case AFADD:
   887  			opset(AFADDS, r)
   888  			opset(AFDIV, r)
   889  			opset(AFDIVS, r)
   890  			opset(AFSUB, r)
   891  			opset(AFSUBS, r)
   892  		case AFMADD:
   893  			opset(AFMADDS, r)
   894  			opset(AFMSUB, r)
   895  			opset(AFMSUBS, r)
   896  		case AFMUL:
   897  			opset(AFMULS, r)
   898  		case AFCMPO:
   899  			opset(AFCMPU, r)
   900  			opset(ACEBR, r)
   901  		case AAND:
   902  			opset(AOR, r)
   903  			opset(AXOR, r)
   904  		case AANDW:
   905  			opset(AORW, r)
   906  			opset(AXORW, r)
   907  		case ASLD:
   908  			opset(ASRD, r)
   909  			opset(ASLW, r)
   910  			opset(ASRW, r)
   911  			opset(ASRAD, r)
   912  			opset(ASRAW, r)
   913  			opset(ARLL, r)
   914  			opset(ARLLG, r)
   915  		case ACSG:
   916  			opset(ACS, r)
   917  		case ASUB:
   918  			opset(ASUBC, r)
   919  			opset(ASUBE, r)
   920  			opset(ASUBW, r)
   921  		case ANEG:
   922  			opset(ANEGW, r)
   923  		case AFMOVD:
   924  			opset(AFMOVS, r)
   925  		case AMOVDBR:
   926  			opset(AMOVWBR, r)
   927  		case ACMP:
   928  			opset(ACMPW, r)
   929  		case ACMPU:
   930  			opset(ACMPWU, r)
   931  		case ACEFBRA:
   932  			opset(ACDFBRA, r)
   933  			opset(ACEGBRA, r)
   934  			opset(ACDGBRA, r)
   935  			opset(ACELFBR, r)
   936  			opset(ACDLFBR, r)
   937  			opset(ACELGBR, r)
   938  			opset(ACDLGBR, r)
   939  		case ACFEBRA:
   940  			opset(ACFDBRA, r)
   941  			opset(ACGEBRA, r)
   942  			opset(ACGDBRA, r)
   943  			opset(ACLFEBR, r)
   944  			opset(ACLFDBR, r)
   945  			opset(ACLGEBR, r)
   946  			opset(ACLGDBR, r)
   947  		case AFIEBR:
   948  			opset(AFIDBR, r)
   949  		case ACMPBEQ:
   950  			opset(ACMPBGE, r)
   951  			opset(ACMPBGT, r)
   952  			opset(ACMPBLE, r)
   953  			opset(ACMPBLT, r)
   954  			opset(ACMPBNE, r)
   955  		case ACMPUBEQ:
   956  			opset(ACMPUBGE, r)
   957  			opset(ACMPUBGT, r)
   958  			opset(ACMPUBLE, r)
   959  			opset(ACMPUBLT, r)
   960  			opset(ACMPUBNE, r)
   961  		case AMOVDEQ:
   962  			opset(AMOVDGE, r)
   963  			opset(AMOVDGT, r)
   964  			opset(AMOVDLE, r)
   965  			opset(AMOVDLT, r)
   966  			opset(AMOVDNE, r)
   967  		case AVL:
   968  			opset(AVLLEZB, r)
   969  			opset(AVLLEZH, r)
   970  			opset(AVLLEZF, r)
   971  			opset(AVLLEZG, r)
   972  			opset(AVLREPB, r)
   973  			opset(AVLREPH, r)
   974  			opset(AVLREPF, r)
   975  			opset(AVLREPG, r)
   976  		case AVLEG:
   977  			opset(AVLBB, r)
   978  			opset(AVLEB, r)
   979  			opset(AVLEH, r)
   980  			opset(AVLEF, r)
   981  			opset(AVLEG, r)
   982  			opset(AVLREP, r)
   983  		case AVSTEG:
   984  			opset(AVSTEB, r)
   985  			opset(AVSTEH, r)
   986  			opset(AVSTEF, r)
   987  		case AVSCEG:
   988  			opset(AVSCEF, r)
   989  		case AVGEG:
   990  			opset(AVGEF, r)
   991  		case AVESLG:
   992  			opset(AVESLB, r)
   993  			opset(AVESLH, r)
   994  			opset(AVESLF, r)
   995  			opset(AVERLLB, r)
   996  			opset(AVERLLH, r)
   997  			opset(AVERLLF, r)
   998  			opset(AVERLLG, r)
   999  			opset(AVESRAB, r)
  1000  			opset(AVESRAH, r)
  1001  			opset(AVESRAF, r)
  1002  			opset(AVESRAG, r)
  1003  			opset(AVESRLB, r)
  1004  			opset(AVESRLH, r)
  1005  			opset(AVESRLF, r)
  1006  			opset(AVESRLG, r)
  1007  		case AVLGVG:
  1008  			opset(AVLGVB, r)
  1009  			opset(AVLGVH, r)
  1010  			opset(AVLGVF, r)
  1011  		case AVLVGG:
  1012  			opset(AVLVGB, r)
  1013  			opset(AVLVGH, r)
  1014  			opset(AVLVGF, r)
  1015  		case AVZERO:
  1016  			opset(AVONE, r)
  1017  		case AVREPIG:
  1018  			opset(AVREPIB, r)
  1019  			opset(AVREPIH, r)
  1020  			opset(AVREPIF, r)
  1021  		case AVLEIG:
  1022  			opset(AVLEIB, r)
  1023  			opset(AVLEIH, r)
  1024  			opset(AVLEIF, r)
  1025  		case AVGMG:
  1026  			opset(AVGMB, r)
  1027  			opset(AVGMH, r)
  1028  			opset(AVGMF, r)
  1029  		case AVREPG:
  1030  			opset(AVREPB, r)
  1031  			opset(AVREPH, r)
  1032  			opset(AVREPF, r)
  1033  		case AVERIMG:
  1034  			opset(AVERIMB, r)
  1035  			opset(AVERIMH, r)
  1036  			opset(AVERIMF, r)
  1037  		case AVFTCIDB:
  1038  			opset(AWFTCIDB, r)
  1039  		case AVLR:
  1040  			opset(AVUPHB, r)
  1041  			opset(AVUPHH, r)
  1042  			opset(AVUPHF, r)
  1043  			opset(AVUPLHB, r)
  1044  			opset(AVUPLHH, r)
  1045  			opset(AVUPLHF, r)
  1046  			opset(AVUPLB, r)
  1047  			opset(AVUPLHW, r)
  1048  			opset(AVUPLF, r)
  1049  			opset(AVUPLLB, r)
  1050  			opset(AVUPLLH, r)
  1051  			opset(AVUPLLF, r)
  1052  			opset(AVCLZB, r)
  1053  			opset(AVCLZH, r)
  1054  			opset(AVCLZF, r)
  1055  			opset(AVCLZG, r)
  1056  			opset(AVCTZB, r)
  1057  			opset(AVCTZH, r)
  1058  			opset(AVCTZF, r)
  1059  			opset(AVCTZG, r)
  1060  			opset(AVLDEB, r)
  1061  			opset(AWLDEB, r)
  1062  			opset(AVFLCDB, r)
  1063  			opset(AWFLCDB, r)
  1064  			opset(AVFLNDB, r)
  1065  			opset(AWFLNDB, r)
  1066  			opset(AVFLPDB, r)
  1067  			opset(AWFLPDB, r)
  1068  			opset(AVFSQDB, r)
  1069  			opset(AWFSQDB, r)
  1070  			opset(AVISTRB, r)
  1071  			opset(AVISTRH, r)
  1072  			opset(AVISTRF, r)
  1073  			opset(AVISTRBS, r)
  1074  			opset(AVISTRHS, r)
  1075  			opset(AVISTRFS, r)
  1076  			opset(AVLCB, r)
  1077  			opset(AVLCH, r)
  1078  			opset(AVLCF, r)
  1079  			opset(AVLCG, r)
  1080  			opset(AVLPB, r)
  1081  			opset(AVLPH, r)
  1082  			opset(AVLPF, r)
  1083  			opset(AVLPG, r)
  1084  			opset(AVPOPCT, r)
  1085  			opset(AVSEGB, r)
  1086  			opset(AVSEGH, r)
  1087  			opset(AVSEGF, r)
  1088  		case AVECG:
  1089  			opset(AVECB, r)
  1090  			opset(AVECH, r)
  1091  			opset(AVECF, r)
  1092  			opset(AVECLB, r)
  1093  			opset(AVECLH, r)
  1094  			opset(AVECLF, r)
  1095  			opset(AVECLG, r)
  1096  			opset(AWFCDB, r)
  1097  			opset(AWFKDB, r)
  1098  		case AVCEQG:
  1099  			opset(AVCEQB, r)
  1100  			opset(AVCEQH, r)
  1101  			opset(AVCEQF, r)
  1102  			opset(AVCEQBS, r)
  1103  			opset(AVCEQHS, r)
  1104  			opset(AVCEQFS, r)
  1105  			opset(AVCEQGS, r)
  1106  			opset(AVCHB, r)
  1107  			opset(AVCHH, r)
  1108  			opset(AVCHF, r)
  1109  			opset(AVCHG, r)
  1110  			opset(AVCHBS, r)
  1111  			opset(AVCHHS, r)
  1112  			opset(AVCHFS, r)
  1113  			opset(AVCHGS, r)
  1114  			opset(AVCHLB, r)
  1115  			opset(AVCHLH, r)
  1116  			opset(AVCHLF, r)
  1117  			opset(AVCHLG, r)
  1118  			opset(AVCHLBS, r)
  1119  			opset(AVCHLHS, r)
  1120  			opset(AVCHLFS, r)
  1121  			opset(AVCHLGS, r)
  1122  		case AVFAEF:
  1123  			opset(AVFAEB, r)
  1124  			opset(AVFAEH, r)
  1125  			opset(AVFAEBS, r)
  1126  			opset(AVFAEHS, r)
  1127  			opset(AVFAEFS, r)
  1128  			opset(AVFAEZB, r)
  1129  			opset(AVFAEZH, r)
  1130  			opset(AVFAEZF, r)
  1131  			opset(AVFAEZBS, r)
  1132  			opset(AVFAEZHS, r)
  1133  			opset(AVFAEZFS, r)
  1134  			opset(AVFEEB, r)
  1135  			opset(AVFEEH, r)
  1136  			opset(AVFEEF, r)
  1137  			opset(AVFEEBS, r)
  1138  			opset(AVFEEHS, r)
  1139  			opset(AVFEEFS, r)
  1140  			opset(AVFEEZB, r)
  1141  			opset(AVFEEZH, r)
  1142  			opset(AVFEEZF, r)
  1143  			opset(AVFEEZBS, r)
  1144  			opset(AVFEEZHS, r)
  1145  			opset(AVFEEZFS, r)
  1146  			opset(AVFENEB, r)
  1147  			opset(AVFENEH, r)
  1148  			opset(AVFENEF, r)
  1149  			opset(AVFENEBS, r)
  1150  			opset(AVFENEHS, r)
  1151  			opset(AVFENEFS, r)
  1152  			opset(AVFENEZB, r)
  1153  			opset(AVFENEZH, r)
  1154  			opset(AVFENEZF, r)
  1155  			opset(AVFENEZBS, r)
  1156  			opset(AVFENEZHS, r)
  1157  			opset(AVFENEZFS, r)
  1158  		case AVPKSG:
  1159  			opset(AVPKSH, r)
  1160  			opset(AVPKSF, r)
  1161  			opset(AVPKSHS, r)
  1162  			opset(AVPKSFS, r)
  1163  			opset(AVPKSGS, r)
  1164  			opset(AVPKLSH, r)
  1165  			opset(AVPKLSF, r)
  1166  			opset(AVPKLSG, r)
  1167  			opset(AVPKLSHS, r)
  1168  			opset(AVPKLSFS, r)
  1169  			opset(AVPKLSGS, r)
  1170  		case AVAQ:
  1171  			opset(AVAB, r)
  1172  			opset(AVAH, r)
  1173  			opset(AVAF, r)
  1174  			opset(AVAG, r)
  1175  			opset(AVACCB, r)
  1176  			opset(AVACCH, r)
  1177  			opset(AVACCF, r)
  1178  			opset(AVACCG, r)
  1179  			opset(AVACCQ, r)
  1180  			opset(AVN, r)
  1181  			opset(AVNC, r)
  1182  			opset(AVAVGB, r)
  1183  			opset(AVAVGH, r)
  1184  			opset(AVAVGF, r)
  1185  			opset(AVAVGG, r)
  1186  			opset(AVAVGLB, r)
  1187  			opset(AVAVGLH, r)
  1188  			opset(AVAVGLF, r)
  1189  			opset(AVAVGLG, r)
  1190  			opset(AVCKSM, r)
  1191  			opset(AVX, r)
  1192  			opset(AVFADB, r)
  1193  			opset(AWFADB, r)
  1194  			opset(AVFCEDB, r)
  1195  			opset(AVFCEDBS, r)
  1196  			opset(AWFCEDB, r)
  1197  			opset(AWFCEDBS, r)
  1198  			opset(AVFCHDB, r)
  1199  			opset(AVFCHDBS, r)
  1200  			opset(AWFCHDB, r)
  1201  			opset(AWFCHDBS, r)
  1202  			opset(AVFCHEDB, r)
  1203  			opset(AVFCHEDBS, r)
  1204  			opset(AWFCHEDB, r)
  1205  			opset(AWFCHEDBS, r)
  1206  			opset(AVFMDB, r)
  1207  			opset(AWFMDB, r)
  1208  			opset(AVGFMB, r)
  1209  			opset(AVGFMH, r)
  1210  			opset(AVGFMF, r)
  1211  			opset(AVGFMG, r)
  1212  			opset(AVMXB, r)
  1213  			opset(AVMXH, r)
  1214  			opset(AVMXF, r)
  1215  			opset(AVMXG, r)
  1216  			opset(AVMXLB, r)
  1217  			opset(AVMXLH, r)
  1218  			opset(AVMXLF, r)
  1219  			opset(AVMXLG, r)
  1220  			opset(AVMNB, r)
  1221  			opset(AVMNH, r)
  1222  			opset(AVMNF, r)
  1223  			opset(AVMNG, r)
  1224  			opset(AVMNLB, r)
  1225  			opset(AVMNLH, r)
  1226  			opset(AVMNLF, r)
  1227  			opset(AVMNLG, r)
  1228  			opset(AVMRHB, r)
  1229  			opset(AVMRHH, r)
  1230  			opset(AVMRHF, r)
  1231  			opset(AVMRHG, r)
  1232  			opset(AVMRLB, r)
  1233  			opset(AVMRLH, r)
  1234  			opset(AVMRLF, r)
  1235  			opset(AVMRLG, r)
  1236  			opset(AVMEB, r)
  1237  			opset(AVMEH, r)
  1238  			opset(AVMEF, r)
  1239  			opset(AVMLEB, r)
  1240  			opset(AVMLEH, r)
  1241  			opset(AVMLEF, r)
  1242  			opset(AVMOB, r)
  1243  			opset(AVMOH, r)
  1244  			opset(AVMOF, r)
  1245  			opset(AVMLOB, r)
  1246  			opset(AVMLOH, r)
  1247  			opset(AVMLOF, r)
  1248  			opset(AVMHB, r)
  1249  			opset(AVMHH, r)
  1250  			opset(AVMHF, r)
  1251  			opset(AVMLHB, r)
  1252  			opset(AVMLHH, r)
  1253  			opset(AVMLHF, r)
  1254  			opset(AVMLH, r)
  1255  			opset(AVMLHW, r)
  1256  			opset(AVMLF, r)
  1257  			opset(AVNO, r)
  1258  			opset(AVO, r)
  1259  			opset(AVPKH, r)
  1260  			opset(AVPKF, r)
  1261  			opset(AVPKG, r)
  1262  			opset(AVSUMGH, r)
  1263  			opset(AVSUMGF, r)
  1264  			opset(AVSUMQF, r)
  1265  			opset(AVSUMQG, r)
  1266  			opset(AVSUMB, r)
  1267  			opset(AVSUMH, r)
  1268  		case AVERLLVG:
  1269  			opset(AVERLLVB, r)
  1270  			opset(AVERLLVH, r)
  1271  			opset(AVERLLVF, r)
  1272  			opset(AVESLVB, r)
  1273  			opset(AVESLVH, r)
  1274  			opset(AVESLVF, r)
  1275  			opset(AVESLVG, r)
  1276  			opset(AVESRAVB, r)
  1277  			opset(AVESRAVH, r)
  1278  			opset(AVESRAVF, r)
  1279  			opset(AVESRAVG, r)
  1280  			opset(AVESRLVB, r)
  1281  			opset(AVESRLVH, r)
  1282  			opset(AVESRLVF, r)
  1283  			opset(AVESRLVG, r)
  1284  			opset(AVFDDB, r)
  1285  			opset(AWFDDB, r)
  1286  			opset(AVFSDB, r)
  1287  			opset(AWFSDB, r)
  1288  			opset(AVSL, r)
  1289  			opset(AVSLB, r)
  1290  			opset(AVSRA, r)
  1291  			opset(AVSRAB, r)
  1292  			opset(AVSRL, r)
  1293  			opset(AVSRLB, r)
  1294  			opset(AVSF, r)
  1295  			opset(AVSG, r)
  1296  			opset(AVSQ, r)
  1297  			opset(AVSCBIB, r)
  1298  			opset(AVSCBIH, r)
  1299  			opset(AVSCBIF, r)
  1300  			opset(AVSCBIG, r)
  1301  			opset(AVSCBIQ, r)
  1302  		case AVACQ:
  1303  			opset(AVACCCQ, r)
  1304  			opset(AVGFMAB, r)
  1305  			opset(AVGFMAH, r)
  1306  			opset(AVGFMAF, r)
  1307  			opset(AVGFMAG, r)
  1308  			opset(AVMALB, r)
  1309  			opset(AVMALHW, r)
  1310  			opset(AVMALF, r)
  1311  			opset(AVMAHB, r)
  1312  			opset(AVMAHH, r)
  1313  			opset(AVMAHF, r)
  1314  			opset(AVMALHB, r)
  1315  			opset(AVMALHH, r)
  1316  			opset(AVMALHF, r)
  1317  			opset(AVMAEB, r)
  1318  			opset(AVMAEH, r)
  1319  			opset(AVMAEF, r)
  1320  			opset(AVMALEB, r)
  1321  			opset(AVMALEH, r)
  1322  			opset(AVMALEF, r)
  1323  			opset(AVMAOB, r)
  1324  			opset(AVMAOH, r)
  1325  			opset(AVMAOF, r)
  1326  			opset(AVMALOB, r)
  1327  			opset(AVMALOH, r)
  1328  			opset(AVMALOF, r)
  1329  			opset(AVSTRCB, r)
  1330  			opset(AVSTRCH, r)
  1331  			opset(AVSTRCF, r)
  1332  			opset(AVSTRCBS, r)
  1333  			opset(AVSTRCHS, r)
  1334  			opset(AVSTRCFS, r)
  1335  			opset(AVSTRCZB, r)
  1336  			opset(AVSTRCZH, r)
  1337  			opset(AVSTRCZF, r)
  1338  			opset(AVSTRCZBS, r)
  1339  			opset(AVSTRCZHS, r)
  1340  			opset(AVSTRCZFS, r)
  1341  			opset(AVSBCBIQ, r)
  1342  			opset(AVSBIQ, r)
  1343  		case AVSEL:
  1344  			opset(AVFMADB, r)
  1345  			opset(AWFMADB, r)
  1346  			opset(AVFMSDB, r)
  1347  			opset(AWFMSDB, r)
  1348  			opset(AVPERM, r)
  1349  		}
  1350  	}
  1351  }
  1352  
  1353  const (
  1354  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1355  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1356  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1357  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1358  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1359  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1360  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1361  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1362  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1363  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1364  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1365  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1366  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1367  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1368  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1369  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1370  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1371  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1372  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1373  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1374  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1375  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1376  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1377  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1378  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1379  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1380  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1381  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1382  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1383  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1384  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1385  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1386  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1387  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1388  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1389  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1390  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1391  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1392  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1393  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1394  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1395  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1396  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1397  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1398  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1399  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1400  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1401  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1402  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1403  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1404  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1405  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1406  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1407  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1408  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1409  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1410  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1411  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1412  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1413  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1414  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1415  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1416  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1417  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1418  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1419  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1420  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1421  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1422  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1423  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1424  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1425  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1426  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1427  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1428  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1429  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1430  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1431  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1432  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1433  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1434  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1435  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1436  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1437  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1438  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1439  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1440  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1441  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1442  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1443  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1444  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1445  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1446  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1447  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1448  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1449  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1450  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1451  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1452  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1453  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1454  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1455  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1456  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1457  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1458  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1459  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1460  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1461  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1462  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1463  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1464  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1465  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1466  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1467  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1468  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1469  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1470  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1471  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1472  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1473  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1474  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1475  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1476  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1477  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1478  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1479  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1480  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1481  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1482  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1483  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1484  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1485  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1486  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1487  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1488  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1489  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1490  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1491  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1492  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1493  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1494  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1495  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1496  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1497  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1498  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1499  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1500  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1501  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1502  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1503  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1504  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1505  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1506  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1507  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1508  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1509  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1510  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1511  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1512  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1513  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1514  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1515  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1516  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1517  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1518  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1519  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1520  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1521  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1522  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1523  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1524  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1525  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1526  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1527  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1528  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1529  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1530  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1531  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1532  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1533  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1534  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1535  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1536  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1537  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1538  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1539  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1540  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1541  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1542  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1543  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1544  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1545  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1546  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1547  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1548  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1549  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1550  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1551  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1552  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1553  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1554  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1555  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1556  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1557  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1558  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1559  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1560  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1561  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1562  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1563  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1564  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1565  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1566  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1567  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1568  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1569  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1570  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1571  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1572  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1573  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1574  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1575  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1576  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1577  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1578  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1579  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1580  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1581  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1582  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1583  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1584  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1585  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1586  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1587  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1588  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1589  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1590  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1591  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1592  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1593  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1594  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1595  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1596  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1597  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1598  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1599  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1600  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1601  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1602  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1603  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1604  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1605  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1606  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1607  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1608  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1609  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1610  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1611  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1612  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1613  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1614  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1615  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1616  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1617  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1618  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1619  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1620  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1621  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1622  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1623  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1624  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1625  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1626  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1627  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1628  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1629  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1630  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1631  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1632  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1633  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1634  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1635  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1636  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1637  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1638  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1639  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1640  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1641  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1642  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1643  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1644  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1645  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1646  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1647  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1648  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1649  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1650  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1651  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1652  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1653  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1654  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1655  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1656  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1657  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1658  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1659  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1660  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1661  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1662  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1663  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1664  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1665  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1666  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1667  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1668  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1669  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1670  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1671  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1672  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1673  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1674  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1675  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1676  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1677  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1678  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1679  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1680  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1681  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1682  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1683  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1684  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1685  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1686  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1687  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1688  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1689  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1690  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1691  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1692  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1693  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1694  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1695  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1696  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1697  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1698  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1699  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1700  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1701  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1702  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1703  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1704  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1705  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1706  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1707  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1708  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1709  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1710  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1711  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1712  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1713  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1714  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1715  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1716  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1717  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1718  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1719  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1720  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1721  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1722  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1723  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1724  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1725  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1726  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1727  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1728  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1729  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1730  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1731  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1732  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1733  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1734  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1735  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1736  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1737  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1738  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1739  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1740  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1741  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1742  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1743  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1744  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1745  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1746  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1747  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1748  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1749  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1750  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1751  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1752  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1753  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1754  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1755  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1756  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1757  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1758  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1759  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1760  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1761  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1762  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1763  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1764  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1765  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1766  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1767  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1768  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1769  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1770  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1771  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1772  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1773  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1774  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1775  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1776  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1777  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1778  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1779  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1780  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1781  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1782  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1783  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1784  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1785  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1786  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1787  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1788  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1789  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1790  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1791  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1792  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1793  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1794  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1795  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1796  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1797  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1798  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1799  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1800  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1801  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1802  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1803  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1804  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1805  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1806  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1807  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1808  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1809  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1810  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1811  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1812  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1813  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1814  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1815  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1816  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1817  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1818  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1819  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1820  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1821  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1822  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1823  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1824  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1825  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1826  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1827  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1828  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1829  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1830  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1831  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1832  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1833  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1834  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1835  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1836  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1837  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1838  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1839  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1840  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1841  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1842  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1843  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1844  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1845  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1846  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1847  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1848  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1849  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1850  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1851  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1852  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1853  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1854  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1855  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1856  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1857  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1858  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1859  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1860  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1861  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1862  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1863  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1864  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1865  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1866  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1867  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1868  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1869  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1870  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1871  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1872  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1873  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1874  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1875  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1876  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1877  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1878  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1879  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1880  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1881  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1882  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1883  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1884  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1885  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1886  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1887  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1888  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1889  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1890  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1891  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1892  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1893  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1894  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1895  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1896  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1897  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1898  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1899  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1900  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1901  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1902  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1903  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1904  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1905  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1906  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1907  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1908  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1909  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1910  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1911  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1912  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1913  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1914  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1915  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1916  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1917  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1918  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1919  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1920  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1921  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1922  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1923  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1924  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1925  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1926  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1927  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1928  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1929  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1930  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1931  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1932  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1933  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1934  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1935  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1936  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1937  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1938  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1939  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1940  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1941  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1942  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1943  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1944  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1945  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1946  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1947  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1948  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1949  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1950  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1951  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1952  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1953  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1954  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1955  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1956  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1957  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1958  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1959  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1960  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1961  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1962  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1963  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1964  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1965  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1966  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1967  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1968  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1969  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1970  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1971  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1972  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1973  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1974  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1975  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1976  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1977  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1978  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1979  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  1980  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  1981  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  1982  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  1983  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  1984  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  1985  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  1986  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  1987  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  1988  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  1989  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  1990  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  1991  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  1992  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  1993  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  1994  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  1995  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  1996  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  1997  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  1998  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  1999  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  2000  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  2001  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2002  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2003  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2004  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2005  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2006  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2007  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2008  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2009  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2010  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2011  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2012  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2013  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2014  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2015  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2016  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2017  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2018  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2019  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2020  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2021  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2022  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2023  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2024  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2025  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2026  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2027  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2028  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2029  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2030  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2031  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2032  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2033  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2034  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2035  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2036  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2037  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2038  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2039  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2040  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2041  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2042  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2043  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2044  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2045  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2046  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2047  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2048  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2049  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2050  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2051  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2052  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2053  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2054  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2055  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2056  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2057  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2058  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2059  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2060  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2061  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2062  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2063  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2064  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2065  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2066  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2067  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2068  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2069  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2070  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2071  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2072  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2073  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2074  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2075  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2076  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2077  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2078  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2079  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2080  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2081  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2082  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2083  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2084  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2085  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2086  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2087  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2088  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2089  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2090  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2091  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2092  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2093  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2094  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2095  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2096  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2097  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2098  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2099  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2100  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2101  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2102  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2103  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2104  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2105  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2106  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2107  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2108  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2109  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2110  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2111  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2112  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2113  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2114  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2115  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2116  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2117  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2118  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2119  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2120  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2121  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2122  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2123  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2124  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2125  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2126  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2127  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2128  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2129  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2130  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2131  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2132  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2133  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2134  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2135  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2136  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2137  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2138  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2139  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2140  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2141  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2142  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2143  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2144  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2145  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2146  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2147  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2148  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2149  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2150  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2151  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2152  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2153  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2154  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2155  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2156  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2157  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2158  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2159  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2160  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2161  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2162  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2163  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2164  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2165  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2166  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2167  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2168  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2169  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2170  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2171  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2172  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2173  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2174  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2175  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2176  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2177  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2178  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2179  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2180  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2181  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2182  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2183  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2184  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2185  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2186  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2187  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2188  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2189  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2190  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2191  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2192  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2193  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2194  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2195  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2196  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2197  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2198  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2199  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2200  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2201  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2202  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2203  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2204  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2205  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2206  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2207  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2208  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2209  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2210  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2211  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2212  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2213  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2214  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2215  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2216  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2217  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2218  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2219  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2220  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2221  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2222  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2223  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2224  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2225  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2226  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2227  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2228  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2229  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2230  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2231  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2232  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2233  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2234  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2235  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2236  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2237  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2238  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2239  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2240  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2241  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2242  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2243  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2244  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2245  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2246  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2247  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2248  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2249  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2250  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2251  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2252  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2253  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2254  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2255  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2256  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2257  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2258  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2259  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2260  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2261  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2262  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2263  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2264  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2265  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2266  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2267  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2268  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2269  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2270  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2271  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2272  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2273  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2274  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2275  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2276  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2277  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2278  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2279  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2280  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2281  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2282  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2283  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2284  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2285  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2286  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2287  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2288  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2289  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2290  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2291  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2292  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2293  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2294  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2295  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2296  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2297  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2298  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2299  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2300  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2301  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2302  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2303  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2304  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2305  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2306  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2307  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2308  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2309  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2310  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2311  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2312  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2313  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2314  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2315  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2316  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2317  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2318  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2319  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2320  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2321  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2322  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2323  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2324  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2325  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2326  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2327  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2328  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2329  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2330  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2331  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2332  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2333  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2334  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2335  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2336  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2337  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2338  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2339  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2340  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2341  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2342  
  2343  	// added in z13
  2344  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2345  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2346  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2347  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2348  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2349  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2350  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2351  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2352  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2353  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2354  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2355  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2356  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2357  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2358  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2359  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2360  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2361  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2362  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2363  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2364  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2365  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2366  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2367  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2368  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2369  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2370  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2371  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2372  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2373  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2374  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2375  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2376  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2377  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2378  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2379  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2380  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2381  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2382  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2383  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2384  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2385  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2386  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2387  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2388  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2389  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2390  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2391  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2392  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2393  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2394  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2395  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2396  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2397  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2398  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2399  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2400  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2401  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2402  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2403  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2404  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2405  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2406  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2407  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2408  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2409  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2410  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2411  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2412  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2413  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2414  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2415  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2416  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2417  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2418  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2419  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2420  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2421  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2422  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2423  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2424  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2425  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2426  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2427  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2428  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2429  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2430  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2431  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2432  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2433  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2434  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2435  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2436  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2437  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2438  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2439  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2440  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2441  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2442  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2443  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2444  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2445  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2446  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2447  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2448  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2449  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2450  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2451  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2452  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2453  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2454  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2455  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2456  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2457  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2458  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2459  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2460  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2461  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2462  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2463  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2464  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2465  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2466  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2467  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2468  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2469  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2470  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2471  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2472  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2473  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2474  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2475  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2476  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2477  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2478  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2479  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2480  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2481  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2482  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2483  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2484  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2485  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2486  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2487  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2488  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2489  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2490  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2491  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2492  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2493  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2494  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2495  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2496  )
  2497  
  2498  func oclass(a *obj.Addr) int {
  2499  	return int(a.Class) - 1
  2500  }
  2501  
  2502  // Add a relocation for the immediate in a RIL style instruction.
  2503  // The addend will be adjusted as required.
  2504  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2505  	if sym == nil {
  2506  		c.ctxt.Diag("require symbol to apply relocation")
  2507  	}
  2508  	offset := int64(2) // relocation offset from start of instruction
  2509  	rel := obj.Addrel(c.cursym)
  2510  	rel.Off = int32(c.pc + offset)
  2511  	rel.Siz = 4
  2512  	rel.Sym = sym
  2513  	rel.Add = add + offset + int64(rel.Siz)
  2514  	rel.Type = objabi.R_PCRELDBL
  2515  	return rel
  2516  }
  2517  
  2518  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
  2519  	if sym == nil {
  2520  		c.ctxt.Diag("require symbol to apply relocation")
  2521  	}
  2522  	offset += int64(2) // relocation offset from start of instruction
  2523  	rel := obj.Addrel(c.cursym)
  2524  	rel.Off = int32(c.pc + offset)
  2525  	rel.Siz = 4
  2526  	rel.Sym = sym
  2527  	rel.Add = add + offset + int64(rel.Siz)
  2528  	rel.Type = objabi.R_PCRELDBL
  2529  	return rel
  2530  }
  2531  
  2532  // Add a CALL relocation for the immediate in a RIL style instruction.
  2533  // The addend will be adjusted as required.
  2534  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2535  	if sym == nil {
  2536  		c.ctxt.Diag("require symbol to apply relocation")
  2537  	}
  2538  	offset := int64(2) // relocation offset from start of instruction
  2539  	rel := obj.Addrel(c.cursym)
  2540  	rel.Off = int32(c.pc + offset)
  2541  	rel.Siz = 4
  2542  	rel.Sym = sym
  2543  	rel.Add = add + offset + int64(rel.Siz)
  2544  	rel.Type = objabi.R_CALL
  2545  	return rel
  2546  }
  2547  
  2548  func (c *ctxtz) branchMask(p *obj.Prog) uint32 {
  2549  	switch p.As {
  2550  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2551  		return 0x8
  2552  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2553  		return 0xA
  2554  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2555  		return 0x2
  2556  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2557  		return 0xC
  2558  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2559  		return 0x4
  2560  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2561  		return 0x7
  2562  	case ABLEU: // LE or unordered
  2563  		return 0xD
  2564  	case ABLTU: // LT or unordered
  2565  		return 0x5
  2566  	case ABVC:
  2567  		return 0x0 // needs extra instruction
  2568  	case ABVS:
  2569  		return 0x1 // unordered
  2570  	}
  2571  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2572  	return 0xF
  2573  }
  2574  
  2575  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2576  	o := c.oplook(p)
  2577  
  2578  	switch o.type_ {
  2579  	default:
  2580  		c.ctxt.Diag("unknown type %d", o.type_)
  2581  
  2582  	case 0: // PSEUDO OPS
  2583  		break
  2584  
  2585  	case 1: // mov reg reg
  2586  		switch p.As {
  2587  		default:
  2588  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2589  		case AMOVD:
  2590  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2591  		// sign extend
  2592  		case AMOVW:
  2593  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2594  		case AMOVH:
  2595  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2596  		case AMOVB:
  2597  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2598  		// zero extend
  2599  		case AMOVWZ:
  2600  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2601  		case AMOVHZ:
  2602  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2603  		case AMOVBZ:
  2604  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2605  		// reverse bytes
  2606  		case AMOVDBR:
  2607  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2608  		case AMOVWBR:
  2609  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2610  		// floating point
  2611  		case AFMOVD, AFMOVS:
  2612  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2613  		}
  2614  
  2615  	case 2: // arithmetic op reg [reg] reg
  2616  		r := p.Reg
  2617  		if r == 0 {
  2618  			r = p.To.Reg
  2619  		}
  2620  
  2621  		var opcode uint32
  2622  
  2623  		switch p.As {
  2624  		default:
  2625  			c.ctxt.Diag("invalid opcode")
  2626  		case AADD:
  2627  			opcode = op_AGRK
  2628  		case AADDC:
  2629  			opcode = op_ALGRK
  2630  		case AADDE:
  2631  			opcode = op_ALCGR
  2632  		case AADDW:
  2633  			opcode = op_ARK
  2634  		case AMULLW:
  2635  			opcode = op_MSGFR
  2636  		case AMULLD:
  2637  			opcode = op_MSGR
  2638  		case ADIVW, AMODW:
  2639  			opcode = op_DSGFR
  2640  		case ADIVWU, AMODWU:
  2641  			opcode = op_DLR
  2642  		case ADIVD, AMODD:
  2643  			opcode = op_DSGR
  2644  		case ADIVDU, AMODDU:
  2645  			opcode = op_DLGR
  2646  		}
  2647  
  2648  		switch p.As {
  2649  		default:
  2650  
  2651  		case AADD, AADDC, AADDW:
  2652  			if p.As == AADDW && r == p.To.Reg {
  2653  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2654  			} else {
  2655  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2656  			}
  2657  
  2658  		case AADDE, AMULLW, AMULLD:
  2659  			if r == p.To.Reg {
  2660  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2661  			} else if p.From.Reg == p.To.Reg {
  2662  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2663  			} else {
  2664  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2665  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2666  			}
  2667  
  2668  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2669  			if p.As == ADIVWU || p.As == ADIVDU {
  2670  				zRI(op_LGHI, REGTMP, 0, asm)
  2671  			}
  2672  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2673  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2674  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2675  
  2676  		case AMODW, AMODWU, AMODD, AMODDU:
  2677  			if p.As == AMODWU || p.As == AMODDU {
  2678  				zRI(op_LGHI, REGTMP, 0, asm)
  2679  			}
  2680  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2681  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2682  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2683  
  2684  		}
  2685  
  2686  	case 3: // mov $constant reg
  2687  		v := c.vregoff(&p.From)
  2688  		switch p.As {
  2689  		case AMOVBZ:
  2690  			v = int64(uint8(v))
  2691  		case AMOVHZ:
  2692  			v = int64(uint16(v))
  2693  		case AMOVWZ:
  2694  			v = int64(uint32(v))
  2695  		case AMOVB:
  2696  			v = int64(int8(v))
  2697  		case AMOVH:
  2698  			v = int64(int16(v))
  2699  		case AMOVW:
  2700  			v = int64(int32(v))
  2701  		}
  2702  		if int64(int16(v)) == v {
  2703  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2704  		} else if v&0xffff0000 == v {
  2705  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2706  		} else if v&0xffff00000000 == v {
  2707  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2708  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2709  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2710  		} else if int64(int32(v)) == v {
  2711  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2712  		} else if int64(uint32(v)) == v {
  2713  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2714  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2715  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2716  		} else {
  2717  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2718  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2719  		}
  2720  
  2721  	case 4: // multiply high (a*b)>>64
  2722  		r := p.Reg
  2723  		if r == 0 {
  2724  			r = p.To.Reg
  2725  		}
  2726  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2727  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2728  		switch p.As {
  2729  		case AMULHDU:
  2730  			// Unsigned: move result into correct register.
  2731  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2732  		case AMULHD:
  2733  			// Signed: need to convert result.
  2734  			// See Hacker's Delight 8-3.
  2735  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2736  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2737  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2738  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2739  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2740  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2741  		}
  2742  
  2743  	case 5: // syscall
  2744  		zI(op_SVC, 0, asm)
  2745  
  2746  	case 6: // logical op reg [reg] reg
  2747  		var oprr, oprre, oprrf uint32
  2748  		switch p.As {
  2749  		case AAND:
  2750  			oprre = op_NGR
  2751  			oprrf = op_NGRK
  2752  		case AANDW:
  2753  			oprr = op_NR
  2754  			oprrf = op_NRK
  2755  		case AOR:
  2756  			oprre = op_OGR
  2757  			oprrf = op_OGRK
  2758  		case AORW:
  2759  			oprr = op_OR
  2760  			oprrf = op_ORK
  2761  		case AXOR:
  2762  			oprre = op_XGR
  2763  			oprrf = op_XGRK
  2764  		case AXORW:
  2765  			oprr = op_XR
  2766  			oprrf = op_XRK
  2767  		}
  2768  		if p.Reg == 0 {
  2769  			if oprr != 0 {
  2770  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2771  			} else {
  2772  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2773  			}
  2774  		} else {
  2775  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2776  		}
  2777  
  2778  	case 7: // shift/rotate reg [reg] reg
  2779  		d2 := c.vregoff(&p.From)
  2780  		b2 := p.From.Reg
  2781  		r3 := p.Reg
  2782  		if r3 == 0 {
  2783  			r3 = p.To.Reg
  2784  		}
  2785  		r1 := p.To.Reg
  2786  		var opcode uint32
  2787  		switch p.As {
  2788  		default:
  2789  		case ASLD:
  2790  			opcode = op_SLLG
  2791  		case ASRD:
  2792  			opcode = op_SRLG
  2793  		case ASLW:
  2794  			opcode = op_SLLK
  2795  		case ASRW:
  2796  			opcode = op_SRLK
  2797  		case ARLL:
  2798  			opcode = op_RLL
  2799  		case ARLLG:
  2800  			opcode = op_RLLG
  2801  		case ASRAW:
  2802  			opcode = op_SRAK
  2803  		case ASRAD:
  2804  			opcode = op_SRAG
  2805  		}
  2806  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2807  
  2808  	case 8: // find leftmost one
  2809  		if p.To.Reg&1 != 0 {
  2810  			c.ctxt.Diag("target must be an even-numbered register")
  2811  		}
  2812  		// FLOGR also writes a mask to p.To.Reg+1.
  2813  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2814  
  2815  	case 10: // subtract reg [reg] reg
  2816  		r := int(p.Reg)
  2817  
  2818  		switch p.As {
  2819  		default:
  2820  		case ASUB:
  2821  			if r == 0 {
  2822  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2823  			} else {
  2824  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2825  			}
  2826  		case ASUBC:
  2827  			if r == 0 {
  2828  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2829  			} else {
  2830  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2831  			}
  2832  		case ASUBE:
  2833  			if r == 0 {
  2834  				r = int(p.To.Reg)
  2835  			}
  2836  			if r == int(p.To.Reg) {
  2837  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2838  			} else if p.From.Reg == p.To.Reg {
  2839  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2840  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2841  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2842  			} else {
  2843  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2844  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2845  			}
  2846  		case ASUBW:
  2847  			if r == 0 {
  2848  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2849  			} else {
  2850  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2851  			}
  2852  		}
  2853  
  2854  	case 11: // br/bl
  2855  		v := int32(0)
  2856  
  2857  		if p.Pcond != nil {
  2858  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2859  		}
  2860  
  2861  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2862  			zRI(op_BRC, 0xF, uint32(v), asm)
  2863  		} else {
  2864  			if p.As == ABL {
  2865  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2866  			} else {
  2867  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2868  			}
  2869  			if p.To.Sym != nil {
  2870  				c.addcallreloc(p.To.Sym, p.To.Offset)
  2871  			}
  2872  		}
  2873  
  2874  	case 12:
  2875  		r1 := p.To.Reg
  2876  		d2 := c.vregoff(&p.From)
  2877  		b2 := p.From.Reg
  2878  		if b2 == 0 {
  2879  			b2 = o.param
  2880  		}
  2881  		x2 := p.From.Index
  2882  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  2883  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  2884  			if x2 != 0 {
  2885  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  2886  			}
  2887  			x2 = REGTMP
  2888  			d2 = 0
  2889  		}
  2890  		var opx, opxy uint32
  2891  		switch p.As {
  2892  		case AADD:
  2893  			opxy = op_AG
  2894  		case AADDC:
  2895  			opxy = op_ALG
  2896  		case AADDW:
  2897  			opx = op_A
  2898  			opxy = op_AY
  2899  		case AMULLW:
  2900  			opx = op_MS
  2901  			opxy = op_MSY
  2902  		case AMULLD:
  2903  			opxy = op_MSG
  2904  		case ASUB:
  2905  			opxy = op_SG
  2906  		case ASUBC:
  2907  			opxy = op_SLG
  2908  		case ASUBE:
  2909  			opxy = op_SLBG
  2910  		case ASUBW:
  2911  			opx = op_S
  2912  			opxy = op_SY
  2913  		case AAND:
  2914  			opxy = op_NG
  2915  		case AANDW:
  2916  			opx = op_N
  2917  			opxy = op_NY
  2918  		case AOR:
  2919  			opxy = op_OG
  2920  		case AORW:
  2921  			opx = op_O
  2922  			opxy = op_OY
  2923  		case AXOR:
  2924  			opxy = op_XG
  2925  		case AXORW:
  2926  			opx = op_X
  2927  			opxy = op_XY
  2928  		}
  2929  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  2930  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2931  		} else {
  2932  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2933  		}
  2934  
  2935  	case 15: // br/bl (reg)
  2936  		r := p.To.Reg
  2937  		if p.As == ABCL || p.As == ABL {
  2938  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2939  		} else {
  2940  			zRR(op_BCR, 0xF, uint32(r), asm)
  2941  		}
  2942  
  2943  	case 16: // conditional branch
  2944  		v := int32(0)
  2945  		if p.Pcond != nil {
  2946  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2947  		}
  2948  		mask := c.branchMask(p)
  2949  		if p.To.Sym == nil && int32(int16(v)) == v {
  2950  			zRI(op_BRC, mask, uint32(v), asm)
  2951  		} else {
  2952  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2953  		}
  2954  		if p.To.Sym != nil {
  2955  			c.addrilreloc(p.To.Sym, p.To.Offset)
  2956  		}
  2957  
  2958  	case 17: // move on condition
  2959  		m3 := c.branchMask(p)
  2960  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2961  
  2962  	case 18: // br/bl reg
  2963  		if p.As == ABL {
  2964  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2965  		} else {
  2966  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2967  		}
  2968  
  2969  	case 19: // mov $sym+n(SB) reg
  2970  		d := c.vregoff(&p.From)
  2971  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2972  		if d&1 != 0 {
  2973  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2974  			d -= 1
  2975  		}
  2976  		c.addrilreloc(p.From.Sym, d)
  2977  
  2978  	case 21: // subtract $constant [reg] reg
  2979  		v := c.vregoff(&p.From)
  2980  		r := p.Reg
  2981  		if r == 0 {
  2982  			r = p.To.Reg
  2983  		}
  2984  		switch p.As {
  2985  		case ASUB:
  2986  			zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm)
  2987  			zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm)
  2988  		case ASUBC:
  2989  			if r != p.To.Reg {
  2990  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2991  			}
  2992  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  2993  		case ASUBW:
  2994  			if r != p.To.Reg {
  2995  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  2996  			}
  2997  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  2998  		}
  2999  
  3000  	case 22: // add/multiply $constant [reg] reg
  3001  		v := c.vregoff(&p.From)
  3002  		r := p.Reg
  3003  		if r == 0 {
  3004  			r = p.To.Reg
  3005  		}
  3006  		var opri, opril, oprie uint32
  3007  		switch p.As {
  3008  		case AADD:
  3009  			opri = op_AGHI
  3010  			opril = op_AGFI
  3011  			oprie = op_AGHIK
  3012  		case AADDC:
  3013  			opril = op_ALGFI
  3014  			oprie = op_ALGHSIK
  3015  		case AADDW:
  3016  			opri = op_AHI
  3017  			opril = op_AFI
  3018  			oprie = op_AHIK
  3019  		case AMULLW:
  3020  			opri = op_MHI
  3021  			opril = op_MSFI
  3022  		case AMULLD:
  3023  			opri = op_MGHI
  3024  			opril = op_MSGFI
  3025  		}
  3026  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3027  			switch p.As {
  3028  			case AADD, AADDC, AMULLD:
  3029  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3030  			case AADDW, AMULLW:
  3031  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3032  			}
  3033  			r = p.To.Reg
  3034  		}
  3035  		if r == p.To.Reg {
  3036  			if opri != 0 && int64(int16(v)) == v {
  3037  				zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3038  			} else {
  3039  				zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3040  			}
  3041  		} else {
  3042  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3043  		}
  3044  
  3045  	case 23: // 64-bit logical op $constant reg
  3046  		// TODO(mundaym): merge with case 24.
  3047  		v := c.vregoff(&p.From)
  3048  		switch p.As {
  3049  		default:
  3050  			c.ctxt.Diag("%v is not supported", p)
  3051  		case AAND:
  3052  			if v >= 0 { // needs zero extend
  3053  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3054  				zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  3055  			} else if int64(int16(v)) == v {
  3056  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3057  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3058  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3059  			}
  3060  		case AOR:
  3061  			if int64(uint32(v)) != v { // needs sign extend
  3062  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3063  				zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  3064  			} else if int64(uint16(v)) == v {
  3065  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3066  			} else {
  3067  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3068  			}
  3069  		case AXOR:
  3070  			if int64(uint32(v)) != v { // needs sign extend
  3071  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3072  				zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  3073  			} else {
  3074  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3075  			}
  3076  		}
  3077  
  3078  	case 24: // 32-bit logical op $constant reg
  3079  		v := c.vregoff(&p.From)
  3080  		switch p.As {
  3081  		case AANDW:
  3082  			if uint32(v&0xffff0000) == 0xffff0000 {
  3083  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3084  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3085  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3086  			} else {
  3087  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3088  			}
  3089  		case AORW:
  3090  			if uint32(v&0xffff0000) == 0 {
  3091  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3092  			} else if uint32(v&0x0000ffff) == 0 {
  3093  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3094  			} else {
  3095  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3096  			}
  3097  		case AXORW:
  3098  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3099  		}
  3100  
  3101  	case 26: // MOVD $offset(base)(index), reg
  3102  		v := c.regoff(&p.From)
  3103  		r := p.From.Reg
  3104  		if r == 0 {
  3105  			r = o.param
  3106  		}
  3107  		i := p.From.Index
  3108  		if v >= 0 && v < DISP12 {
  3109  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3110  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3111  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3112  		} else {
  3113  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3114  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm)
  3115  		}
  3116  
  3117  	case 31: // dword
  3118  		wd := uint64(c.vregoff(&p.From))
  3119  		*asm = append(*asm,
  3120  			uint8(wd>>56),
  3121  			uint8(wd>>48),
  3122  			uint8(wd>>40),
  3123  			uint8(wd>>32),
  3124  			uint8(wd>>24),
  3125  			uint8(wd>>16),
  3126  			uint8(wd>>8),
  3127  			uint8(wd))
  3128  
  3129  	case 32: // float op freg freg
  3130  		var opcode uint32
  3131  		switch p.As {
  3132  		default:
  3133  			c.ctxt.Diag("invalid opcode")
  3134  		case AFADD:
  3135  			opcode = op_ADBR
  3136  		case AFADDS:
  3137  			opcode = op_AEBR
  3138  		case AFDIV:
  3139  			opcode = op_DDBR
  3140  		case AFDIVS:
  3141  			opcode = op_DEBR
  3142  		case AFMUL:
  3143  			opcode = op_MDBR
  3144  		case AFMULS:
  3145  			opcode = op_MEEBR
  3146  		case AFSUB:
  3147  			opcode = op_SDBR
  3148  		case AFSUBS:
  3149  			opcode = op_SEBR
  3150  		}
  3151  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3152  
  3153  	case 33: // float op [freg] freg
  3154  		r := p.From.Reg
  3155  		if oclass(&p.From) == C_NONE {
  3156  			r = p.To.Reg
  3157  		}
  3158  		var opcode uint32
  3159  		switch p.As {
  3160  		default:
  3161  		case AFABS:
  3162  			opcode = op_LPDBR
  3163  		case AFNABS:
  3164  			opcode = op_LNDBR
  3165  		case AFNEG:
  3166  			opcode = op_LCDFR
  3167  		case AFNEGS:
  3168  			opcode = op_LCEBR
  3169  		case ALEDBR:
  3170  			opcode = op_LEDBR
  3171  		case ALDEBR:
  3172  			opcode = op_LDEBR
  3173  		case AFSQRT:
  3174  			opcode = op_SQDBR
  3175  		case AFSQRTS:
  3176  			opcode = op_SQEBR
  3177  		}
  3178  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3179  
  3180  	case 34: // float multiply-add freg freg freg
  3181  		var opcode uint32
  3182  		switch p.As {
  3183  		default:
  3184  			c.ctxt.Diag("invalid opcode")
  3185  		case AFMADD:
  3186  			opcode = op_MADBR
  3187  		case AFMADDS:
  3188  			opcode = op_MAEBR
  3189  		case AFMSUB:
  3190  			opcode = op_MSDBR
  3191  		case AFMSUBS:
  3192  			opcode = op_MSEBR
  3193  		}
  3194  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3195  
  3196  	case 35: // mov reg mem (no relocation)
  3197  		d2 := c.regoff(&p.To)
  3198  		b2 := p.To.Reg
  3199  		if b2 == 0 {
  3200  			b2 = o.param
  3201  		}
  3202  		x2 := p.To.Index
  3203  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3204  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3205  			if x2 != 0 {
  3206  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3207  			}
  3208  			x2 = REGTMP
  3209  			d2 = 0
  3210  		}
  3211  		zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3212  
  3213  	case 36: // mov mem reg (no relocation)
  3214  		d2 := c.regoff(&p.From)
  3215  		b2 := p.From.Reg
  3216  		if b2 == 0 {
  3217  			b2 = o.param
  3218  		}
  3219  		x2 := p.From.Index
  3220  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3221  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3222  			if x2 != 0 {
  3223  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3224  			}
  3225  			x2 = REGTMP
  3226  			d2 = 0
  3227  		}
  3228  		zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3229  
  3230  	case 40: // word/byte
  3231  		wd := uint32(c.regoff(&p.From))
  3232  		if p.As == AWORD { //WORD
  3233  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3234  		} else { //BYTE
  3235  			*asm = append(*asm, uint8(wd))
  3236  		}
  3237  
  3238  	case 47: // negate [reg] reg
  3239  		r := p.From.Reg
  3240  		if r == 0 {
  3241  			r = p.To.Reg
  3242  		}
  3243  		switch p.As {
  3244  		case ANEG:
  3245  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3246  		case ANEGW:
  3247  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3248  		}
  3249  
  3250  	case 48: // floating-point round to integer
  3251  		m3 := c.vregoff(&p.From)
  3252  		if 0 > m3 || m3 > 7 {
  3253  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3254  		}
  3255  		var opcode uint32
  3256  		switch p.As {
  3257  		case AFIEBR:
  3258  			opcode = op_FIEBR
  3259  		case AFIDBR:
  3260  			opcode = op_FIDBR
  3261  		}
  3262  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3263  
  3264  	case 67: // fmov $0 freg
  3265  		var opcode uint32
  3266  		switch p.As {
  3267  		case AFMOVS:
  3268  			opcode = op_LZER
  3269  		case AFMOVD:
  3270  			opcode = op_LZDR
  3271  		}
  3272  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3273  
  3274  	case 68: // movw areg reg
  3275  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3276  
  3277  	case 69: // movw reg areg
  3278  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3279  
  3280  	case 70: // cmp reg reg
  3281  		if p.As == ACMPW || p.As == ACMPWU {
  3282  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3283  		} else {
  3284  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3285  		}
  3286  
  3287  	case 71: // cmp reg $constant
  3288  		v := c.vregoff(&p.To)
  3289  		switch p.As {
  3290  		case ACMP, ACMPW:
  3291  			if int64(int32(v)) != v {
  3292  				c.ctxt.Diag("%v overflows an int32", v)
  3293  			}
  3294  		case ACMPU, ACMPWU:
  3295  			if int64(uint32(v)) != v {
  3296  				c.ctxt.Diag("%v overflows a uint32", v)
  3297  			}
  3298  		}
  3299  		if p.As == ACMP && int64(int16(v)) == v {
  3300  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3301  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3302  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3303  		} else {
  3304  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3305  		}
  3306  
  3307  	case 72: // mov $constant mem
  3308  		v := c.regoff(&p.From)
  3309  		d := c.regoff(&p.To)
  3310  		r := p.To.Reg
  3311  		if p.To.Index != 0 {
  3312  			c.ctxt.Diag("cannot use index register")
  3313  		}
  3314  		if r == 0 {
  3315  			r = o.param
  3316  		}
  3317  		var opcode uint32
  3318  		switch p.As {
  3319  		case AMOVD:
  3320  			opcode = op_MVGHI
  3321  		case AMOVW, AMOVWZ:
  3322  			opcode = op_MVHI
  3323  		case AMOVH, AMOVHZ:
  3324  			opcode = op_MVHHI
  3325  		case AMOVB, AMOVBZ:
  3326  			opcode = op_MVI
  3327  		}
  3328  		if d < 0 || d >= DISP12 {
  3329  			if r == REGTMP {
  3330  				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
  3331  			}
  3332  			if d >= -DISP20/2 && d < DISP20/2 {
  3333  				if opcode == op_MVI {
  3334  					opcode = op_MVIY
  3335  				} else {
  3336  					zRXY(op_LAY, uint32(REGTMP), 0, uint32(r), uint32(d), asm)
  3337  					r = REGTMP
  3338  					d = 0
  3339  				}
  3340  			} else {
  3341  				zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3342  				zRX(op_LA, REGTMP, REGTMP, uint32(r), 0, asm)
  3343  				r = REGTMP
  3344  				d = 0
  3345  			}
  3346  		}
  3347  		switch opcode {
  3348  		case op_MVI:
  3349  			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3350  		case op_MVIY:
  3351  			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
  3352  		default:
  3353  			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3354  		}
  3355  
  3356  	case 74: // mov reg addr (including relocation)
  3357  		i2 := c.regoff(&p.To)
  3358  		switch p.As {
  3359  		case AMOVD:
  3360  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3361  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3362  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3363  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3364  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3365  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3366  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3367  			adj := uint32(0) // adjustment needed for odd addresses
  3368  			if i2&1 != 0 {
  3369  				i2 -= 1
  3370  				adj = 1
  3371  			}
  3372  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3373  		case AFMOVD:
  3374  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3375  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3376  		case AFMOVS:
  3377  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3378  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3379  		}
  3380  		c.addrilreloc(p.To.Sym, int64(i2))
  3381  
  3382  	case 75: // mov addr reg (including relocation)
  3383  		i2 := c.regoff(&p.From)
  3384  		switch p.As {
  3385  		case AMOVD:
  3386  			if i2&1 != 0 {
  3387  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3388  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3389  				i2 -= 1
  3390  			} else {
  3391  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3392  			}
  3393  		case AMOVW:
  3394  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3395  		case AMOVWZ:
  3396  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3397  		case AMOVH:
  3398  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3399  		case AMOVHZ:
  3400  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3401  		case AMOVB, AMOVBZ:
  3402  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3403  			adj := uint32(0) // adjustment needed for odd addresses
  3404  			if i2&1 != 0 {
  3405  				i2 -= 1
  3406  				adj = 1
  3407  			}
  3408  			switch p.As {
  3409  			case AMOVB:
  3410  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3411  			case AMOVBZ:
  3412  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3413  			}
  3414  		case AFMOVD:
  3415  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3416  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3417  		case AFMOVS:
  3418  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3419  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3420  		}
  3421  		c.addrilreloc(p.From.Sym, int64(i2))
  3422  
  3423  	case 77: // syscall $constant
  3424  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3425  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3426  			zE(op_TRAP2, asm) // trap always
  3427  		} else {
  3428  			zI(op_SVC, uint32(p.From.Offset), asm)
  3429  		}
  3430  
  3431  	case 78: // undef
  3432  		// "An instruction consisting entirely of binary 0s is guaranteed
  3433  		// always to be an illegal instruction."
  3434  		*asm = append(*asm, 0, 0, 0, 0)
  3435  
  3436  	case 79: // compare and swap reg reg reg
  3437  		v := c.regoff(&p.To)
  3438  		if v < 0 {
  3439  			v = 0
  3440  		}
  3441  		if p.As == ACS {
  3442  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3443  		} else if p.As == ACSG {
  3444  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3445  		}
  3446  
  3447  	case 80: // sync
  3448  		zRR(op_BCR, 0xE, 0, asm)
  3449  
  3450  	case 81: // float to fixed and fixed to float moves (no conversion)
  3451  		switch p.As {
  3452  		case ALDGR:
  3453  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3454  		case ALGDR:
  3455  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3456  		}
  3457  
  3458  	case 82: // fixed to float conversion
  3459  		var opcode uint32
  3460  		switch p.As {
  3461  		default:
  3462  			log.Fatalf("unexpected opcode %v", p.As)
  3463  		case ACEFBRA:
  3464  			opcode = op_CEFBRA
  3465  		case ACDFBRA:
  3466  			opcode = op_CDFBRA
  3467  		case ACEGBRA:
  3468  			opcode = op_CEGBRA
  3469  		case ACDGBRA:
  3470  			opcode = op_CDGBRA
  3471  		case ACELFBR:
  3472  			opcode = op_CELFBR
  3473  		case ACDLFBR:
  3474  			opcode = op_CDLFBR
  3475  		case ACELGBR:
  3476  			opcode = op_CELGBR
  3477  		case ACDLGBR:
  3478  			opcode = op_CDLGBR
  3479  		}
  3480  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3481  		// (usually round to nearest, ties to even)
  3482  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3483  		// M4 is reserved and must be 0
  3484  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3485  
  3486  	case 83: // float to fixed conversion
  3487  		var opcode uint32
  3488  		switch p.As {
  3489  		default:
  3490  			log.Fatalf("unexpected opcode %v", p.As)
  3491  		case ACFEBRA:
  3492  			opcode = op_CFEBRA
  3493  		case ACFDBRA:
  3494  			opcode = op_CFDBRA
  3495  		case ACGEBRA:
  3496  			opcode = op_CGEBRA
  3497  		case ACGDBRA:
  3498  			opcode = op_CGDBRA
  3499  		case ACLFEBR:
  3500  			opcode = op_CLFEBR
  3501  		case ACLFDBR:
  3502  			opcode = op_CLFDBR
  3503  		case ACLGEBR:
  3504  			opcode = op_CLGEBR
  3505  		case ACLGDBR:
  3506  			opcode = op_CLGDBR
  3507  		}
  3508  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3509  		// M4 is reserved and must be 0
  3510  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3511  
  3512  	case 84: // storage-and-storage operations $length mem mem
  3513  		l := c.regoff(&p.From)
  3514  		if l < 1 || l > 256 {
  3515  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3516  		}
  3517  		if p.From3.Index != 0 || p.To.Index != 0 {
  3518  			c.ctxt.Diag("cannot use index reg")
  3519  		}
  3520  		b1 := p.To.Reg
  3521  		b2 := p.From3.Reg
  3522  		if b1 == 0 {
  3523  			b1 = o.param
  3524  		}
  3525  		if b2 == 0 {
  3526  			b2 = o.param
  3527  		}
  3528  		d1 := c.regoff(&p.To)
  3529  		d2 := c.regoff(p.From3)
  3530  		if d1 < 0 || d1 >= DISP12 {
  3531  			if b2 == REGTMP {
  3532  				c.ctxt.Diag("REGTMP conflict")
  3533  			}
  3534  			if b1 != REGTMP {
  3535  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3536  			}
  3537  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3538  			if d1 == d2 && b1 == b2 {
  3539  				d2 = 0
  3540  				b2 = REGTMP
  3541  			}
  3542  			d1 = 0
  3543  			b1 = REGTMP
  3544  		}
  3545  		if d2 < 0 || d2 >= DISP12 {
  3546  			if b1 == REGTMP2 {
  3547  				c.ctxt.Diag("REGTMP2 conflict")
  3548  			}
  3549  			if b2 != REGTMP2 {
  3550  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3551  			}
  3552  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3553  			d2 = 0
  3554  			b2 = REGTMP2
  3555  		}
  3556  		var opcode uint32
  3557  		switch p.As {
  3558  		default:
  3559  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3560  		case AMVC:
  3561  			opcode = op_MVC
  3562  		case ACLC:
  3563  			opcode = op_CLC
  3564  			// swap operand order for CLC so that it matches CMP
  3565  			b1, b2 = b2, b1
  3566  			d1, d2 = d2, d1
  3567  		case AXC:
  3568  			opcode = op_XC
  3569  		case AOC:
  3570  			opcode = op_OC
  3571  		case ANC:
  3572  			opcode = op_NC
  3573  		}
  3574  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3575  
  3576  	case 85: // load address relative long
  3577  		v := c.regoff(&p.From)
  3578  		if p.From.Sym == nil {
  3579  			if (v & 1) != 0 {
  3580  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3581  			}
  3582  		} else {
  3583  			c.addrilreloc(p.From.Sym, int64(v))
  3584  			v = 0
  3585  		}
  3586  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3587  
  3588  	case 86: // load address
  3589  		d := c.vregoff(&p.From)
  3590  		x := p.From.Index
  3591  		b := p.From.Reg
  3592  		if b == 0 {
  3593  			b = o.param
  3594  		}
  3595  		switch p.As {
  3596  		case ALA:
  3597  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3598  		case ALAY:
  3599  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3600  		}
  3601  
  3602  	case 87: // execute relative long
  3603  		v := c.vregoff(&p.From)
  3604  		if p.From.Sym == nil {
  3605  			if v&1 != 0 {
  3606  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3607  			}
  3608  		} else {
  3609  			c.addrilreloc(p.From.Sym, v)
  3610  			v = 0
  3611  		}
  3612  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3613  
  3614  	case 88: // store clock
  3615  		var opcode uint32
  3616  		switch p.As {
  3617  		case ASTCK:
  3618  			opcode = op_STCK
  3619  		case ASTCKC:
  3620  			opcode = op_STCKC
  3621  		case ASTCKE:
  3622  			opcode = op_STCKE
  3623  		case ASTCKF:
  3624  			opcode = op_STCKF
  3625  		}
  3626  		v := c.vregoff(&p.To)
  3627  		r := int(p.To.Reg)
  3628  		if r == 0 {
  3629  			r = int(o.param)
  3630  		}
  3631  		zS(opcode, uint32(r), uint32(v), asm)
  3632  
  3633  	case 89: // compare and branch reg reg
  3634  		var v int32
  3635  		if p.Pcond != nil {
  3636  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3637  		}
  3638  		var opcode, opcode2 uint32
  3639  		switch p.As {
  3640  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3641  			opcode = op_CGRJ
  3642  			opcode2 = op_CGR
  3643  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3644  			opcode = op_CLGRJ
  3645  			opcode2 = op_CLGR
  3646  		}
  3647  		mask := c.branchMask(p)
  3648  		if int32(int16(v)) != v {
  3649  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3650  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3651  		} else {
  3652  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3653  		}
  3654  
  3655  	case 90: // compare and branch reg $constant
  3656  		var v int32
  3657  		if p.Pcond != nil {
  3658  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3659  		}
  3660  		var opcode, opcode2 uint32
  3661  		switch p.As {
  3662  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3663  			opcode = op_CGIJ
  3664  			opcode2 = op_CGFI
  3665  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3666  			opcode = op_CLGIJ
  3667  			opcode2 = op_CLGFI
  3668  		}
  3669  		mask := c.branchMask(p)
  3670  		if int32(int16(v)) != v {
  3671  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(c.regoff(p.From3)), asm)
  3672  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3673  		} else {
  3674  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(c.regoff(p.From3)), asm)
  3675  		}
  3676  
  3677  	case 93: // GOT lookup
  3678  		v := c.vregoff(&p.To)
  3679  		if v != 0 {
  3680  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  3681  		}
  3682  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3683  		rel := obj.Addrel(c.cursym)
  3684  		rel.Off = int32(c.pc + 2)
  3685  		rel.Siz = 4
  3686  		rel.Sym = p.From.Sym
  3687  		rel.Type = objabi.R_GOTPCREL
  3688  		rel.Add = 2 + int64(rel.Siz)
  3689  
  3690  	case 94: // TLS local exec model
  3691  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3692  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3693  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3694  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3695  		rel := obj.Addrel(c.cursym)
  3696  		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
  3697  		rel.Siz = 8
  3698  		rel.Sym = p.From.Sym
  3699  		rel.Type = objabi.R_TLS_LE
  3700  		rel.Add = 0
  3701  
  3702  	case 95: // TLS initial exec model
  3703  		// Assembly                   | Relocation symbol    | Done Here?
  3704  		// --------------------------------------------------------------
  3705  		// ear  %r11, %a0             |                      |
  3706  		// sllg %r11, %r11, 32        |                      |
  3707  		// ear  %r11, %a1             |                      |
  3708  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3709  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3710  		// la   %r10, 0(%r10, %r11)   |                      |
  3711  		// --------------------------------------------------------------
  3712  
  3713  		// R_390_TLS_IEENT
  3714  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3715  		ieent := obj.Addrel(c.cursym)
  3716  		ieent.Off = int32(c.pc + 2)
  3717  		ieent.Siz = 4
  3718  		ieent.Sym = p.From.Sym
  3719  		ieent.Type = objabi.R_TLS_IE
  3720  		ieent.Add = 2 + int64(ieent.Siz)
  3721  
  3722  		// R_390_TLS_LOAD
  3723  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3724  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3725  		// not strictly required but might allow the linker to optimize
  3726  
  3727  	case 96: // clear macro
  3728  		length := c.vregoff(&p.From)
  3729  		offset := c.vregoff(&p.To)
  3730  		reg := p.To.Reg
  3731  		if reg == 0 {
  3732  			reg = o.param
  3733  		}
  3734  		if length <= 0 {
  3735  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3736  		}
  3737  		for length > 0 {
  3738  			if offset < 0 || offset >= DISP12 {
  3739  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3740  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3741  				} else {
  3742  					if reg != REGTMP {
  3743  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3744  					}
  3745  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3746  				}
  3747  				reg = REGTMP
  3748  				offset = 0
  3749  			}
  3750  			size := length
  3751  			if size > 256 {
  3752  				size = 256
  3753  			}
  3754  
  3755  			switch size {
  3756  			case 1:
  3757  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3758  			case 2:
  3759  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3760  			case 4:
  3761  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3762  			case 8:
  3763  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3764  			default:
  3765  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3766  			}
  3767  
  3768  			length -= size
  3769  			offset += size
  3770  		}
  3771  
  3772  	case 97: // store multiple
  3773  		rstart := p.From.Reg
  3774  		rend := p.Reg
  3775  		offset := c.regoff(&p.To)
  3776  		reg := p.To.Reg
  3777  		if reg == 0 {
  3778  			reg = o.param
  3779  		}
  3780  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3781  			if reg != REGTMP {
  3782  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3783  			}
  3784  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3785  			reg = REGTMP
  3786  			offset = 0
  3787  		}
  3788  		switch p.As {
  3789  		case ASTMY:
  3790  			if offset >= 0 && offset < DISP12 {
  3791  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3792  			} else {
  3793  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3794  			}
  3795  		case ASTMG:
  3796  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3797  		}
  3798  
  3799  	case 98: // load multiple
  3800  		rstart := p.Reg
  3801  		rend := p.To.Reg
  3802  		offset := c.regoff(&p.From)
  3803  		reg := p.From.Reg
  3804  		if reg == 0 {
  3805  			reg = o.param
  3806  		}
  3807  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3808  			if reg != REGTMP {
  3809  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3810  			}
  3811  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3812  			reg = REGTMP
  3813  			offset = 0
  3814  		}
  3815  		switch p.As {
  3816  		case ALMY:
  3817  			if offset >= 0 && offset < DISP12 {
  3818  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3819  			} else {
  3820  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3821  			}
  3822  		case ALMG:
  3823  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3824  		}
  3825  
  3826  	case 99: // interlocked load and op
  3827  		if p.To.Index != 0 {
  3828  			c.ctxt.Diag("cannot use indexed address")
  3829  		}
  3830  		offset := c.regoff(&p.To)
  3831  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3832  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3833  		}
  3834  		var opcode uint32
  3835  		switch p.As {
  3836  		case ALAA:
  3837  			opcode = op_LAA
  3838  		case ALAAG:
  3839  			opcode = op_LAAG
  3840  		case ALAAL:
  3841  			opcode = op_LAAL
  3842  		case ALAALG:
  3843  			opcode = op_LAALG
  3844  		case ALAN:
  3845  			opcode = op_LAN
  3846  		case ALANG:
  3847  			opcode = op_LANG
  3848  		case ALAX:
  3849  			opcode = op_LAX
  3850  		case ALAXG:
  3851  			opcode = op_LAXG
  3852  		case ALAO:
  3853  			opcode = op_LAO
  3854  		case ALAOG:
  3855  			opcode = op_LAOG
  3856  		}
  3857  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3858  
  3859  	case 100: // VRX STORE
  3860  		op, m3, _ := vop(p.As)
  3861  		v1 := p.From.Reg
  3862  		if p.Reg != 0 {
  3863  			m3 = uint32(c.vregoff(&p.From))
  3864  			v1 = p.Reg
  3865  		}
  3866  		b2 := p.To.Reg
  3867  		if b2 == 0 {
  3868  			b2 = o.param
  3869  		}
  3870  		d2 := uint32(c.vregoff(&p.To))
  3871  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3872  
  3873  	case 101: // VRX LOAD
  3874  		op, m3, _ := vop(p.As)
  3875  		src := &p.From
  3876  		if p.From3 != nil {
  3877  			m3 = uint32(c.vregoff(&p.From))
  3878  			src = p.From3
  3879  		}
  3880  		b2 := src.Reg
  3881  		if b2 == 0 {
  3882  			b2 = o.param
  3883  		}
  3884  		d2 := uint32(c.vregoff(src))
  3885  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  3886  
  3887  	case 102: // VRV SCATTER
  3888  		op, _, _ := vop(p.As)
  3889  		m3 := uint32(c.vregoff(&p.From))
  3890  		b2 := p.To.Reg
  3891  		if b2 == 0 {
  3892  			b2 = o.param
  3893  		}
  3894  		d2 := uint32(c.vregoff(&p.To))
  3895  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3896  
  3897  	case 103: // VRV GATHER
  3898  		op, _, _ := vop(p.As)
  3899  		m3 := uint32(c.vregoff(&p.From))
  3900  		b2 := p.From3.Reg
  3901  		if b2 == 0 {
  3902  			b2 = o.param
  3903  		}
  3904  		d2 := uint32(c.vregoff(p.From3))
  3905  		zVRV(op, uint32(p.To.Reg), uint32(p.From3.Index), uint32(b2), d2, m3, asm)
  3906  
  3907  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3908  		op, m4, _ := vop(p.As)
  3909  		fr := p.Reg
  3910  		if fr == 0 {
  3911  			fr = p.To.Reg
  3912  		}
  3913  		bits := uint32(c.vregoff(&p.From))
  3914  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3915  
  3916  	case 105: // VRS STORE MULTIPLE
  3917  		op, _, _ := vop(p.As)
  3918  		offset := uint32(c.vregoff(&p.To))
  3919  		reg := p.To.Reg
  3920  		if reg == 0 {
  3921  			reg = o.param
  3922  		}
  3923  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3924  
  3925  	case 106: // VRS LOAD MULTIPLE
  3926  		op, _, _ := vop(p.As)
  3927  		offset := uint32(c.vregoff(&p.From))
  3928  		reg := p.From.Reg
  3929  		if reg == 0 {
  3930  			reg = o.param
  3931  		}
  3932  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3933  
  3934  	case 107: // VRS STORE WITH LENGTH
  3935  		op, _, _ := vop(p.As)
  3936  		offset := uint32(c.vregoff(&p.To))
  3937  		reg := p.To.Reg
  3938  		if reg == 0 {
  3939  			reg = o.param
  3940  		}
  3941  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  3942  
  3943  	case 108: // VRS LOAD WITH LENGTH
  3944  		op, _, _ := vop(p.As)
  3945  		offset := uint32(c.vregoff(p.From3))
  3946  		reg := p.From3.Reg
  3947  		if reg == 0 {
  3948  			reg = o.param
  3949  		}
  3950  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  3951  
  3952  	case 109: // VRI-a
  3953  		op, m3, _ := vop(p.As)
  3954  		i2 := uint32(c.vregoff(&p.From))
  3955  		if p.From3 != nil {
  3956  			m3 = uint32(c.vregoff(&p.From))
  3957  			i2 = uint32(c.vregoff(p.From3))
  3958  		}
  3959  		switch p.As {
  3960  		case AVZERO:
  3961  			i2 = 0
  3962  		case AVONE:
  3963  			i2 = 0xffff
  3964  		}
  3965  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  3966  
  3967  	case 110:
  3968  		op, m4, _ := vop(p.As)
  3969  		i2 := uint32(c.vregoff(&p.From))
  3970  		i3 := uint32(c.vregoff(p.From3))
  3971  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  3972  
  3973  	case 111:
  3974  		op, m4, _ := vop(p.As)
  3975  		i2 := uint32(c.vregoff(&p.From))
  3976  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  3977  
  3978  	case 112:
  3979  		op, m5, _ := vop(p.As)
  3980  		i4 := uint32(c.vregoff(&p.From))
  3981  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From3.Reg), i4, m5, asm)
  3982  
  3983  	case 113:
  3984  		op, m4, _ := vop(p.As)
  3985  		m5 := singleElementMask(p.As)
  3986  		i3 := uint32(c.vregoff(&p.From))
  3987  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  3988  
  3989  	case 114: // VRR-a
  3990  		op, m3, m5 := vop(p.As)
  3991  		m4 := singleElementMask(p.As)
  3992  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  3993  
  3994  	case 115: // VRR-a COMPARE
  3995  		op, m3, m5 := vop(p.As)
  3996  		m4 := singleElementMask(p.As)
  3997  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  3998  
  3999  	case 117: // VRR-b
  4000  		op, m4, m5 := vop(p.As)
  4001  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4002  
  4003  	case 118: // VRR-c
  4004  		op, m4, m6 := vop(p.As)
  4005  		m5 := singleElementMask(p.As)
  4006  		v3 := p.Reg
  4007  		if v3 == 0 {
  4008  			v3 = p.To.Reg
  4009  		}
  4010  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4011  
  4012  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4013  		op, m4, m6 := vop(p.As)
  4014  		m5 := singleElementMask(p.As)
  4015  		v2 := p.Reg
  4016  		if v2 == 0 {
  4017  			v2 = p.To.Reg
  4018  		}
  4019  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4020  
  4021  	case 120: // VRR-d
  4022  		op, m6, _ := vop(p.As)
  4023  		m5 := singleElementMask(p.As)
  4024  		v1 := uint32(p.To.Reg)
  4025  		v2 := uint32(p.From.Reg)
  4026  		v3 := uint32(p.Reg)
  4027  		v4 := uint32(p.From3.Reg)
  4028  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4029  
  4030  	case 121: // VRR-e
  4031  		op, m6, _ := vop(p.As)
  4032  		m5 := singleElementMask(p.As)
  4033  		v1 := uint32(p.To.Reg)
  4034  		v2 := uint32(p.From.Reg)
  4035  		v3 := uint32(p.Reg)
  4036  		v4 := uint32(p.From3.Reg)
  4037  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4038  
  4039  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4040  		op, _, _ := vop(p.As)
  4041  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4042  
  4043  	case 123: // VPDI $m4, V2, V3, V1
  4044  		op, _, _ := vop(p.As)
  4045  		m4 := c.regoff(&p.From)
  4046  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From3.Reg), 0, 0, uint32(m4), asm)
  4047  	}
  4048  }
  4049  
  4050  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4051  	c.instoffset = 0
  4052  	if a != nil {
  4053  		c.aclass(a)
  4054  	}
  4055  	return c.instoffset
  4056  }
  4057  
  4058  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4059  	return int32(c.vregoff(a))
  4060  }
  4061  
  4062  // zopload returns the RXY op for the given load
  4063  func (c *ctxtz) zopload(a obj.As) uint32 {
  4064  	switch a {
  4065  	// fixed point load
  4066  	case AMOVD:
  4067  		return op_LG
  4068  	case AMOVW:
  4069  		return op_LGF
  4070  	case AMOVWZ:
  4071  		return op_LLGF
  4072  	case AMOVH:
  4073  		return op_LGH
  4074  	case AMOVHZ:
  4075  		return op_LLGH
  4076  	case AMOVB:
  4077  		return op_LGB
  4078  	case AMOVBZ:
  4079  		return op_LLGC
  4080  
  4081  	// floating point load
  4082  	case AFMOVD:
  4083  		return op_LDY
  4084  	case AFMOVS:
  4085  		return op_LEY
  4086  
  4087  	// byte reversed load
  4088  	case AMOVDBR:
  4089  		return op_LRVG
  4090  	case AMOVWBR:
  4091  		return op_LRV
  4092  	case AMOVHBR:
  4093  		return op_LRVH
  4094  	}
  4095  
  4096  	c.ctxt.Diag("unknown store opcode %v", a)
  4097  	return 0
  4098  }
  4099  
  4100  // zopstore returns the RXY op for the given store
  4101  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4102  	switch a {
  4103  	// fixed point store
  4104  	case AMOVD:
  4105  		return op_STG
  4106  	case AMOVW, AMOVWZ:
  4107  		return op_STY
  4108  	case AMOVH, AMOVHZ:
  4109  		return op_STHY
  4110  	case AMOVB, AMOVBZ:
  4111  		return op_STCY
  4112  
  4113  	// floating point store
  4114  	case AFMOVD:
  4115  		return op_STDY
  4116  	case AFMOVS:
  4117  		return op_STEY
  4118  
  4119  	// byte reversed store
  4120  	case AMOVDBR:
  4121  		return op_STRVG
  4122  	case AMOVWBR:
  4123  		return op_STRV
  4124  	case AMOVHBR:
  4125  		return op_STRVH
  4126  	}
  4127  
  4128  	c.ctxt.Diag("unknown store opcode %v", a)
  4129  	return 0
  4130  }
  4131  
  4132  // zoprre returns the RRE op for the given a
  4133  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4134  	switch a {
  4135  	case ACMP:
  4136  		return op_CGR
  4137  	case ACMPU:
  4138  		return op_CLGR
  4139  	case AFCMPO: //ordered
  4140  		return op_KDBR
  4141  	case AFCMPU: //unordered
  4142  		return op_CDBR
  4143  	case ACEBR:
  4144  		return op_CEBR
  4145  	}
  4146  	c.ctxt.Diag("unknown rre opcode %v", a)
  4147  	return 0
  4148  }
  4149  
  4150  // zoprr returns the RR op for the given a
  4151  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4152  	switch a {
  4153  	case ACMPW:
  4154  		return op_CR
  4155  	case ACMPWU:
  4156  		return op_CLR
  4157  	}
  4158  	c.ctxt.Diag("unknown rr opcode %v", a)
  4159  	return 0
  4160  }
  4161  
  4162  // zopril returns the RIL op for the given a
  4163  func (c *ctxtz) zopril(a obj.As) uint32 {
  4164  	switch a {
  4165  	case ACMP:
  4166  		return op_CGFI
  4167  	case ACMPU:
  4168  		return op_CLGFI
  4169  	case ACMPW:
  4170  		return op_CFI
  4171  	case ACMPWU:
  4172  		return op_CLFI
  4173  	}
  4174  	c.ctxt.Diag("unknown ril opcode %v", a)
  4175  	return 0
  4176  }
  4177  
  4178  // z instructions sizes
  4179  const (
  4180  	sizeE    = 2
  4181  	sizeI    = 2
  4182  	sizeIE   = 4
  4183  	sizeMII  = 6
  4184  	sizeRI   = 4
  4185  	sizeRI1  = 4
  4186  	sizeRI2  = 4
  4187  	sizeRI3  = 4
  4188  	sizeRIE  = 6
  4189  	sizeRIE1 = 6
  4190  	sizeRIE2 = 6
  4191  	sizeRIE3 = 6
  4192  	sizeRIE4 = 6
  4193  	sizeRIE5 = 6
  4194  	sizeRIE6 = 6
  4195  	sizeRIL  = 6
  4196  	sizeRIL1 = 6
  4197  	sizeRIL2 = 6
  4198  	sizeRIL3 = 6
  4199  	sizeRIS  = 6
  4200  	sizeRR   = 2
  4201  	sizeRRD  = 4
  4202  	sizeRRE  = 4
  4203  	sizeRRF  = 4
  4204  	sizeRRF1 = 4
  4205  	sizeRRF2 = 4
  4206  	sizeRRF3 = 4
  4207  	sizeRRF4 = 4
  4208  	sizeRRF5 = 4
  4209  	sizeRRR  = 2
  4210  	sizeRRS  = 6
  4211  	sizeRS   = 4
  4212  	sizeRS1  = 4
  4213  	sizeRS2  = 4
  4214  	sizeRSI  = 4
  4215  	sizeRSL  = 6
  4216  	sizeRSY  = 6
  4217  	sizeRSY1 = 6
  4218  	sizeRSY2 = 6
  4219  	sizeRX   = 4
  4220  	sizeRX1  = 4
  4221  	sizeRX2  = 4
  4222  	sizeRXE  = 6
  4223  	sizeRXF  = 6
  4224  	sizeRXY  = 6
  4225  	sizeRXY1 = 6
  4226  	sizeRXY2 = 6
  4227  	sizeS    = 4
  4228  	sizeSI   = 4
  4229  	sizeSIL  = 6
  4230  	sizeSIY  = 6
  4231  	sizeSMI  = 6
  4232  	sizeSS   = 6
  4233  	sizeSS1  = 6
  4234  	sizeSS2  = 6
  4235  	sizeSS3  = 6
  4236  	sizeSS4  = 6
  4237  	sizeSS5  = 6
  4238  	sizeSS6  = 6
  4239  	sizeSSE  = 6
  4240  	sizeSSF  = 6
  4241  )
  4242  
  4243  // instruction format variations
  4244  type form int
  4245  
  4246  const (
  4247  	_a form = iota
  4248  	_b
  4249  	_c
  4250  	_d
  4251  	_e
  4252  	_f
  4253  )
  4254  
  4255  func zE(op uint32, asm *[]byte) {
  4256  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4257  }
  4258  
  4259  func zI(op, i1 uint32, asm *[]byte) {
  4260  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4261  }
  4262  
  4263  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4264  	*asm = append(*asm,
  4265  		uint8(op>>8),
  4266  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4267  		uint8(ri2),
  4268  		uint8(ri3>>16),
  4269  		uint8(ri3>>8),
  4270  		uint8(ri3))
  4271  }
  4272  
  4273  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4274  	*asm = append(*asm,
  4275  		uint8(op>>8),
  4276  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4277  		uint8(i2_ri2>>8),
  4278  		uint8(i2_ri2))
  4279  }
  4280  
  4281  // Expected argument values for the instruction formats.
  4282  //
  4283  // Format    a1  a2   a3  a4  a5  a6  a7
  4284  // ------------------------------------
  4285  // a         r1,  0,  i2,  0,  0, m3,  0
  4286  // b         r1, r2, ri4,  0,  0, m3,  0
  4287  // c         r1, m3, ri4,  0,  0,  0, i2
  4288  // d         r1, r3,  i2,  0,  0,  0,  0
  4289  // e         r1, r3, ri2,  0,  0,  0,  0
  4290  // f         r1, r2,   0, i3, i4,  0, i5
  4291  // g         r1, m3,  i2,  0,  0,  0,  0
  4292  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4293  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4294  
  4295  	switch f {
  4296  	default:
  4297  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4298  	case _f:
  4299  		*asm = append(*asm, uint8(i3), uint8(i4))
  4300  	}
  4301  
  4302  	switch f {
  4303  	case _a, _b:
  4304  		*asm = append(*asm, uint8(m3)<<4)
  4305  	default:
  4306  		*asm = append(*asm, uint8(i2_i5))
  4307  	}
  4308  
  4309  	*asm = append(*asm, uint8(op))
  4310  }
  4311  
  4312  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4313  	if f == _a || f == _b {
  4314  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4315  	}
  4316  	*asm = append(*asm,
  4317  		uint8(op>>8),
  4318  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4319  		uint8(i2_ri2>>24),
  4320  		uint8(i2_ri2>>16),
  4321  		uint8(i2_ri2>>8),
  4322  		uint8(i2_ri2))
  4323  }
  4324  
  4325  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4326  	*asm = append(*asm,
  4327  		uint8(op>>8),
  4328  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4329  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4330  		uint8(d4),
  4331  		uint8(i2),
  4332  		uint8(op))
  4333  }
  4334  
  4335  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4336  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4337  }
  4338  
  4339  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4340  	*asm = append(*asm,
  4341  		uint8(op>>8),
  4342  		uint8(op),
  4343  		uint8(r1)<<4,
  4344  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4345  }
  4346  
  4347  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4348  	*asm = append(*asm,
  4349  		uint8(op>>8),
  4350  		uint8(op),
  4351  		0,
  4352  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4353  }
  4354  
  4355  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4356  	*asm = append(*asm,
  4357  		uint8(op>>8),
  4358  		uint8(op),
  4359  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4360  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4361  }
  4362  
  4363  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4364  	*asm = append(*asm,
  4365  		uint8(op>>8),
  4366  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4367  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4368  		uint8(d4),
  4369  		uint8(m3)<<4,
  4370  		uint8(op))
  4371  }
  4372  
  4373  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4374  	*asm = append(*asm,
  4375  		uint8(op>>8),
  4376  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4377  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4378  		uint8(d2))
  4379  }
  4380  
  4381  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4382  	*asm = append(*asm,
  4383  		uint8(op>>8),
  4384  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4385  		uint8(ri2>>8),
  4386  		uint8(ri2))
  4387  }
  4388  
  4389  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4390  	*asm = append(*asm,
  4391  		uint8(op>>8),
  4392  		uint8(l1),
  4393  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4394  		uint8(d2),
  4395  		uint8(op))
  4396  }
  4397  
  4398  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4399  	dl2 := uint16(d2) & 0x0FFF
  4400  	*asm = append(*asm,
  4401  		uint8(op>>8),
  4402  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4403  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4404  		uint8(dl2),
  4405  		uint8(d2>>12),
  4406  		uint8(op))
  4407  }
  4408  
  4409  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4410  	*asm = append(*asm,
  4411  		uint8(op>>8),
  4412  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4413  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4414  		uint8(d2))
  4415  }
  4416  
  4417  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4418  	*asm = append(*asm,
  4419  		uint8(op>>8),
  4420  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4421  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4422  		uint8(d2),
  4423  		uint8(m3)<<4,
  4424  		uint8(op))
  4425  }
  4426  
  4427  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4428  	*asm = append(*asm,
  4429  		uint8(op>>8),
  4430  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4431  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4432  		uint8(d2),
  4433  		uint8(m1)<<4,
  4434  		uint8(op))
  4435  }
  4436  
  4437  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4438  	dl2 := uint16(d2) & 0x0FFF
  4439  	*asm = append(*asm,
  4440  		uint8(op>>8),
  4441  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4442  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4443  		uint8(dl2),
  4444  		uint8(d2>>12),
  4445  		uint8(op))
  4446  }
  4447  
  4448  func zS(op, b2, d2 uint32, asm *[]byte) {
  4449  	*asm = append(*asm,
  4450  		uint8(op>>8),
  4451  		uint8(op),
  4452  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4453  		uint8(d2))
  4454  }
  4455  
  4456  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4457  	*asm = append(*asm,
  4458  		uint8(op>>8),
  4459  		uint8(i2),
  4460  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4461  		uint8(d1))
  4462  }
  4463  
  4464  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4465  	*asm = append(*asm,
  4466  		uint8(op>>8),
  4467  		uint8(op),
  4468  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4469  		uint8(d1),
  4470  		uint8(i2>>8),
  4471  		uint8(i2))
  4472  }
  4473  
  4474  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4475  	dl1 := uint16(d1) & 0x0FFF
  4476  	*asm = append(*asm,
  4477  		uint8(op>>8),
  4478  		uint8(i2),
  4479  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4480  		uint8(dl1),
  4481  		uint8(d1>>12),
  4482  		uint8(op))
  4483  }
  4484  
  4485  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4486  	*asm = append(*asm,
  4487  		uint8(op>>8),
  4488  		uint8(m1)<<4,
  4489  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4490  		uint8(d3),
  4491  		uint8(ri2>>8),
  4492  		uint8(ri2))
  4493  }
  4494  
  4495  // Expected argument values for the instruction formats.
  4496  //
  4497  // Format    a1  a2  a3  a4  a5  a6
  4498  // -------------------------------
  4499  // a         l1,  0, b1, d1, b2, d2
  4500  // b         l1, l2, b1, d1, b2, d2
  4501  // c         l1, i3, b1, d1, b2, d2
  4502  // d         r1, r3, b1, d1, b2, d2
  4503  // e         r1, r3, b2, d2, b4, d4
  4504  // f          0, l2, b1, d1, b2, d2
  4505  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4506  	*asm = append(*asm, uint8(op>>8))
  4507  
  4508  	switch f {
  4509  	case _a:
  4510  		*asm = append(*asm, uint8(l1_r1))
  4511  	case _b, _c, _d, _e:
  4512  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4513  	case _f:
  4514  		*asm = append(*asm, uint8(l2_i3_r3))
  4515  	}
  4516  
  4517  	*asm = append(*asm,
  4518  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4519  		uint8(d1_d2),
  4520  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4521  		uint8(d2_d4))
  4522  }
  4523  
  4524  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4525  	*asm = append(*asm,
  4526  		uint8(op>>8),
  4527  		uint8(op),
  4528  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4529  		uint8(d1),
  4530  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4531  		uint8(d2))
  4532  }
  4533  
  4534  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4535  	*asm = append(*asm,
  4536  		uint8(op>>8),
  4537  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4538  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4539  		uint8(d1),
  4540  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4541  		uint8(d2))
  4542  }
  4543  
  4544  func rxb(va, vb, vc, vd uint32) uint8 {
  4545  	mask := uint8(0)
  4546  	if va >= REG_V16 && va <= REG_V31 {
  4547  		mask |= 0x8
  4548  	}
  4549  	if vb >= REG_V16 && vb <= REG_V31 {
  4550  		mask |= 0x4
  4551  	}
  4552  	if vc >= REG_V16 && vc <= REG_V31 {
  4553  		mask |= 0x2
  4554  	}
  4555  	if vd >= REG_V16 && vd <= REG_V31 {
  4556  		mask |= 0x1
  4557  	}
  4558  	return mask
  4559  }
  4560  
  4561  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4562  	*asm = append(*asm,
  4563  		uint8(op>>8),
  4564  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4565  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4566  		uint8(d2),
  4567  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4568  		uint8(op))
  4569  }
  4570  
  4571  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4572  	*asm = append(*asm,
  4573  		uint8(op>>8),
  4574  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4575  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4576  		uint8(d2),
  4577  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4578  		uint8(op))
  4579  }
  4580  
  4581  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4582  	*asm = append(*asm,
  4583  		uint8(op>>8),
  4584  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4585  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4586  		uint8(d2),
  4587  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4588  		uint8(op))
  4589  }
  4590  
  4591  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4592  	*asm = append(*asm,
  4593  		uint8(op>>8),
  4594  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4595  		0,
  4596  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4597  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4598  		uint8(op))
  4599  }
  4600  
  4601  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4602  	*asm = append(*asm,
  4603  		uint8(op>>8),
  4604  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4605  		uint8(v3)<<4,
  4606  		uint8(m5)<<4,
  4607  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4608  		uint8(op))
  4609  }
  4610  
  4611  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4612  	*asm = append(*asm,
  4613  		uint8(op>>8),
  4614  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4615  		uint8(v3)<<4,
  4616  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4617  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4618  		uint8(op))
  4619  }
  4620  
  4621  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4622  	*asm = append(*asm,
  4623  		uint8(op>>8),
  4624  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4625  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4626  		uint8(m6)<<4,
  4627  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4628  		uint8(op))
  4629  }
  4630  
  4631  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4632  	*asm = append(*asm,
  4633  		uint8(op>>8),
  4634  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4635  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4636  		uint8(m5),
  4637  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4638  		uint8(op))
  4639  }
  4640  
  4641  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4642  	*asm = append(*asm,
  4643  		uint8(op>>8),
  4644  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4645  		uint8(r3)<<4,
  4646  		0,
  4647  		rxb(v1, 0, 0, 0),
  4648  		uint8(op))
  4649  }
  4650  
  4651  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4652  	*asm = append(*asm,
  4653  		uint8(op>>8),
  4654  		uint8(v1)<<4,
  4655  		uint8(i2>>8),
  4656  		uint8(i2),
  4657  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4658  		uint8(op))
  4659  }
  4660  
  4661  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4662  	*asm = append(*asm,
  4663  		uint8(op>>8),
  4664  		uint8(v1)<<4,
  4665  		uint8(i2),
  4666  		uint8(i3),
  4667  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4668  		uint8(op))
  4669  }
  4670  
  4671  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4672  	*asm = append(*asm,
  4673  		uint8(op>>8),
  4674  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4675  		uint8(i2>>8),
  4676  		uint8(i2),
  4677  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4678  		uint8(op))
  4679  }
  4680  
  4681  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4682  	*asm = append(*asm,
  4683  		uint8(op>>8),
  4684  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4685  		uint8(v3)<<4,
  4686  		uint8(i4),
  4687  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4688  		uint8(op))
  4689  }
  4690  
  4691  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4692  	*asm = append(*asm,
  4693  		uint8(op>>8),
  4694  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4695  		uint8(i3>>4),
  4696  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4697  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4698  		uint8(op))
  4699  }