github.com/sanprasirt/go@v0.0.0-20170607001320-a027466e4b6d/src/cmd/link/internal/ld/data.go (about) 1 // Derived from Inferno utils/6l/obj.c and utils/6l/span.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c 3 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c 4 // 5 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 6 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 7 // Portions Copyright © 1997-1999 Vita Nuova Limited 8 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 9 // Portions Copyright © 2004,2006 Bruce Ellis 10 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 11 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 12 // Portions Copyright © 2009 The Go Authors. All rights reserved. 13 // 14 // Permission is hereby granted, free of charge, to any person obtaining a copy 15 // of this software and associated documentation files (the "Software"), to deal 16 // in the Software without restriction, including without limitation the rights 17 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 18 // copies of the Software, and to permit persons to whom the Software is 19 // furnished to do so, subject to the following conditions: 20 // 21 // The above copyright notice and this permission notice shall be included in 22 // all copies or substantial portions of the Software. 23 // 24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 29 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 30 // THE SOFTWARE. 31 32 package ld 33 34 import ( 35 "cmd/internal/gcprog" 36 "cmd/internal/objabi" 37 "cmd/internal/sys" 38 "fmt" 39 "log" 40 "os" 41 "sort" 42 "strconv" 43 "strings" 44 "sync" 45 ) 46 47 func Symgrow(s *Symbol, siz int64) { 48 if int64(int(siz)) != siz { 49 log.Fatalf("symgrow size %d too long", siz) 50 } 51 if int64(len(s.P)) >= siz { 52 return 53 } 54 if cap(s.P) < int(siz) { 55 p := make([]byte, 2*(siz+1)) 56 s.P = append(p[:0], s.P...) 57 } 58 s.P = s.P[:siz] 59 } 60 61 func Addrel(s *Symbol) *Reloc { 62 s.R = append(s.R, Reloc{}) 63 return &s.R[len(s.R)-1] 64 } 65 66 func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 { 67 if s.Type == 0 { 68 s.Type = SDATA 69 } 70 s.Attr |= AttrReachable 71 if s.Size < off+wid { 72 s.Size = off + wid 73 Symgrow(s, s.Size) 74 } 75 76 switch wid { 77 case 1: 78 s.P[off] = uint8(v) 79 case 2: 80 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v)) 81 case 4: 82 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v)) 83 case 8: 84 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v) 85 } 86 87 return off + wid 88 } 89 90 func Addbytes(s *Symbol, bytes []byte) int64 { 91 if s.Type == 0 { 92 s.Type = SDATA 93 } 94 s.Attr |= AttrReachable 95 s.P = append(s.P, bytes...) 96 s.Size = int64(len(s.P)) 97 98 return s.Size 99 } 100 101 func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 { 102 off := s.Size 103 setuintxx(ctxt, s, off, v, int64(wid)) 104 return off 105 } 106 107 func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 { 108 off := s.Size 109 if s.Type == 0 { 110 s.Type = SDATA 111 } 112 s.Attr |= AttrReachable 113 s.Size++ 114 s.P = append(s.P, v) 115 116 return off 117 } 118 119 func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 { 120 return adduintxx(ctxt, s, uint64(v), 2) 121 } 122 123 func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 { 124 return adduintxx(ctxt, s, uint64(v), 4) 125 } 126 127 func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 { 128 return adduintxx(ctxt, s, v, 8) 129 } 130 131 func adduint(ctxt *Link, s *Symbol, v uint64) int64 { 132 return adduintxx(ctxt, s, v, SysArch.PtrSize) 133 } 134 135 func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 { 136 return setuintxx(ctxt, s, r, uint64(v), 1) 137 } 138 139 func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 { 140 return setuintxx(ctxt, s, r, uint64(v), 4) 141 } 142 143 func setuint(ctxt *Link, s *Symbol, r int64, v uint64) int64 { 144 return setuintxx(ctxt, s, r, v, int64(SysArch.PtrSize)) 145 } 146 147 func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 148 if s.Type == 0 { 149 s.Type = SDATA 150 } 151 s.Attr |= AttrReachable 152 i := s.Size 153 s.Size += int64(ctxt.Arch.PtrSize) 154 Symgrow(s, s.Size) 155 r := Addrel(s) 156 r.Sym = t 157 r.Off = int32(i) 158 r.Siz = uint8(ctxt.Arch.PtrSize) 159 r.Type = objabi.R_ADDR 160 r.Add = add 161 return i + int64(r.Siz) 162 } 163 164 func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 165 if s.Type == 0 { 166 s.Type = SDATA 167 } 168 s.Attr |= AttrReachable 169 i := s.Size 170 s.Size += 4 171 Symgrow(s, s.Size) 172 r := Addrel(s) 173 r.Sym = t 174 r.Off = int32(i) 175 r.Add = add 176 r.Type = objabi.R_PCREL 177 r.Siz = 4 178 if SysArch.Family == sys.S390X { 179 r.Variant = RV_390_DBL 180 } 181 return i + int64(r.Siz) 182 } 183 184 func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 { 185 return Addaddrplus(ctxt, s, t, 0) 186 } 187 188 func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 { 189 if s.Type == 0 { 190 s.Type = SDATA 191 } 192 s.Attr |= AttrReachable 193 if off+int64(ctxt.Arch.PtrSize) > s.Size { 194 s.Size = off + int64(ctxt.Arch.PtrSize) 195 Symgrow(s, s.Size) 196 } 197 198 r := Addrel(s) 199 r.Sym = t 200 r.Off = int32(off) 201 r.Siz = uint8(ctxt.Arch.PtrSize) 202 r.Type = objabi.R_ADDR 203 r.Add = add 204 return off + int64(r.Siz) 205 } 206 207 func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 { 208 return setaddrplus(ctxt, s, off, t, 0) 209 } 210 211 func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 { 212 if s.Type == 0 { 213 s.Type = SDATA 214 } 215 s.Attr |= AttrReachable 216 i := s.Size 217 s.Size += int64(ctxt.Arch.PtrSize) 218 Symgrow(s, s.Size) 219 r := Addrel(s) 220 r.Sym = t 221 r.Off = int32(i) 222 r.Siz = uint8(ctxt.Arch.PtrSize) 223 r.Type = objabi.R_SIZE 224 return i + int64(r.Siz) 225 } 226 227 func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 228 if s.Type == 0 { 229 s.Type = SDATA 230 } 231 s.Attr |= AttrReachable 232 i := s.Size 233 s.Size += 4 234 Symgrow(s, s.Size) 235 r := Addrel(s) 236 r.Sym = t 237 r.Off = int32(i) 238 r.Siz = 4 239 r.Type = objabi.R_ADDR 240 r.Add = add 241 return i + int64(r.Siz) 242 } 243 244 /* 245 * divide-and-conquer list-link (by Sub) sort of Symbol* by Value. 246 * Used for sub-symbols when loading host objects (see e.g. ldelf.go). 247 */ 248 249 func listsort(l *Symbol) *Symbol { 250 if l == nil || l.Sub == nil { 251 return l 252 } 253 254 l1 := l 255 l2 := l 256 for { 257 l2 = l2.Sub 258 if l2 == nil { 259 break 260 } 261 l2 = l2.Sub 262 if l2 == nil { 263 break 264 } 265 l1 = l1.Sub 266 } 267 268 l2 = l1.Sub 269 l1.Sub = nil 270 l1 = listsort(l) 271 l2 = listsort(l2) 272 273 /* set up lead element */ 274 if l1.Value < l2.Value { 275 l = l1 276 l1 = l1.Sub 277 } else { 278 l = l2 279 l2 = l2.Sub 280 } 281 282 le := l 283 284 for { 285 if l1 == nil { 286 for l2 != nil { 287 le.Sub = l2 288 le = l2 289 l2 = l2.Sub 290 } 291 292 le.Sub = nil 293 break 294 } 295 296 if l2 == nil { 297 for l1 != nil { 298 le.Sub = l1 299 le = l1 300 l1 = l1.Sub 301 } 302 303 break 304 } 305 306 if l1.Value < l2.Value { 307 le.Sub = l1 308 le = l1 309 l1 = l1.Sub 310 } else { 311 le.Sub = l2 312 le = l2 313 l2 = l2.Sub 314 } 315 } 316 317 le.Sub = nil 318 return l 319 } 320 321 // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency 322 func isRuntimeDepPkg(pkg string) bool { 323 switch pkg { 324 case "runtime", 325 "sync/atomic": // runtime may call to sync/atomic, due to go:linkname 326 return true 327 } 328 return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") 329 } 330 331 // detect too-far jumps in function s, and add trampolines if necessary 332 // ARM supports trampoline insertion for internal and external linking 333 // PPC64 & PPC64LE support trampoline insertion for internal linking only 334 func trampoline(ctxt *Link, s *Symbol) { 335 if Thearch.Trampoline == nil { 336 return // no need or no support of trampolines on this arch 337 } 338 339 if Linkmode == LinkExternal && SysArch.Family == sys.PPC64 { 340 return 341 } 342 343 for ri := range s.R { 344 r := &s.R[ri] 345 if !r.Type.IsDirectJump() { 346 continue 347 } 348 if Symaddr(r.Sym) == 0 && r.Sym.Type != SDYNIMPORT { 349 if r.Sym.File != s.File { 350 if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) { 351 Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File) 352 } 353 // runtime and its dependent packages may call to each other. 354 // they are fine, as they will be laid down together. 355 } 356 continue 357 } 358 359 Thearch.Trampoline(ctxt, r, s) 360 } 361 362 } 363 364 // resolve relocations in s. 365 func relocsym(ctxt *Link, s *Symbol) { 366 var r *Reloc 367 var rs *Symbol 368 var i16 int16 369 var off int32 370 var siz int32 371 var fl int32 372 var o int64 373 374 for ri := int32(0); ri < int32(len(s.R)); ri++ { 375 r = &s.R[ri] 376 377 r.Done = 1 378 off = r.Off 379 siz = int32(r.Siz) 380 if off < 0 || off+siz > int32(len(s.P)) { 381 rname := "" 382 if r.Sym != nil { 383 rname = r.Sym.Name 384 } 385 Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) 386 continue 387 } 388 389 if r.Sym != nil && (r.Sym.Type&(SMASK|SHIDDEN) == 0 || r.Sym.Type&SMASK == SXREF) { 390 // When putting the runtime but not main into a shared library 391 // these symbols are undefined and that's OK. 392 if Buildmode == BuildmodeShared { 393 if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" { 394 r.Sym.Type = SDYNIMPORT 395 } else if strings.HasPrefix(r.Sym.Name, "go.info.") { 396 // Skip go.info symbols. They are only needed to communicate 397 // DWARF info between the compiler and linker. 398 continue 399 } 400 } else { 401 Errorf(s, "relocation target %s not defined", r.Sym.Name) 402 continue 403 } 404 } 405 406 if r.Type >= 256 { 407 continue 408 } 409 if r.Siz == 0 { // informational relocation - no work to do 410 continue 411 } 412 413 // We need to be able to reference dynimport symbols when linking against 414 // shared libraries, and Solaris needs it always 415 if Headtype != objabi.Hsolaris && r.Sym != nil && r.Sym.Type == SDYNIMPORT && !ctxt.DynlinkingGo() { 416 if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") { 417 Errorf(s, "unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type) 418 } 419 } 420 if r.Sym != nil && r.Sym.Type != STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { 421 Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) 422 } 423 424 // TODO(mundaym): remove this special case - see issue 14218. 425 if SysArch.Family == sys.S390X { 426 switch r.Type { 427 case objabi.R_PCRELDBL: 428 r.Type = objabi.R_PCREL 429 r.Variant = RV_390_DBL 430 case objabi.R_CALL: 431 r.Variant = RV_390_DBL 432 } 433 } 434 435 switch r.Type { 436 default: 437 switch siz { 438 default: 439 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 440 case 1: 441 o = int64(s.P[off]) 442 case 2: 443 o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) 444 case 4: 445 o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) 446 case 8: 447 o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) 448 } 449 if Thearch.Archreloc(ctxt, r, s, &o) < 0 { 450 Errorf(s, "unknown reloc to %v: %v", r.Sym.Name, r.Type) 451 } 452 453 case objabi.R_TLS_LE: 454 isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 455 456 if Linkmode == LinkExternal && Iself && !isAndroidX86 { 457 r.Done = 0 458 if r.Sym == nil { 459 r.Sym = ctxt.Tlsg 460 } 461 r.Xsym = r.Sym 462 r.Xadd = r.Add 463 o = 0 464 if SysArch.Family != sys.AMD64 { 465 o = r.Add 466 } 467 break 468 } 469 470 if Iself && SysArch.Family == sys.ARM { 471 // On ELF ARM, the thread pointer is 8 bytes before 472 // the start of the thread-local data block, so add 8 473 // to the actual TLS offset (r->sym->value). 474 // This 8 seems to be a fundamental constant of 475 // ELF on ARM (or maybe Glibc on ARM); it is not 476 // related to the fact that our own TLS storage happens 477 // to take up 8 bytes. 478 o = 8 + r.Sym.Value 479 } else if Iself || Headtype == objabi.Hplan9 || Headtype == objabi.Hdarwin || isAndroidX86 { 480 o = int64(ctxt.Tlsoffset) + r.Add 481 } else if Headtype == objabi.Hwindows { 482 o = r.Add 483 } else { 484 log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype) 485 } 486 487 case objabi.R_TLS_IE: 488 isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 489 490 if Linkmode == LinkExternal && Iself && !isAndroidX86 { 491 r.Done = 0 492 if r.Sym == nil { 493 r.Sym = ctxt.Tlsg 494 } 495 r.Xsym = r.Sym 496 r.Xadd = r.Add 497 o = 0 498 if SysArch.Family != sys.AMD64 { 499 o = r.Add 500 } 501 break 502 } 503 if Buildmode == BuildmodePIE && Iself { 504 // We are linking the final executable, so we 505 // can optimize any TLS IE relocation to LE. 506 if Thearch.TLSIEtoLE == nil { 507 log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family) 508 } 509 Thearch.TLSIEtoLE(s, int(off), int(r.Siz)) 510 o = int64(ctxt.Tlsoffset) 511 // TODO: o += r.Add when SysArch.Family != sys.AMD64? 512 // Why do we treat r.Add differently on AMD64? 513 // Is the external linker using Xadd at all? 514 } else { 515 log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) 516 } 517 518 case objabi.R_ADDR: 519 if Linkmode == LinkExternal && r.Sym.Type != SCONST { 520 r.Done = 0 521 522 // set up addend for eventual relocation via outer symbol. 523 rs = r.Sym 524 525 r.Xadd = r.Add 526 for rs.Outer != nil { 527 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 528 rs = rs.Outer 529 } 530 531 if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil { 532 Errorf(s, "missing section for relocation target %s", rs.Name) 533 } 534 r.Xsym = rs 535 536 o = r.Xadd 537 if Iself { 538 if SysArch.Family == sys.AMD64 { 539 o = 0 540 } 541 } else if Headtype == objabi.Hdarwin { 542 // ld64 for arm64 has a bug where if the address pointed to by o exists in the 543 // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol 544 // table, then it will add o twice into the relocated value. 545 // The workaround is that on arm64 don't ever add symaddr to o and always use 546 // extern relocation by requiring rs->dynid >= 0. 547 if rs.Type != SHOSTOBJ { 548 if SysArch.Family == sys.ARM64 && rs.Dynid < 0 { 549 Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) 550 } 551 if SysArch.Family != sys.ARM64 { 552 o += Symaddr(rs) 553 } 554 } 555 } else if Headtype == objabi.Hwindows { 556 // nothing to do 557 } else { 558 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 559 } 560 561 break 562 } 563 564 o = Symaddr(r.Sym) + r.Add 565 566 // On amd64, 4-byte offsets will be sign-extended, so it is impossible to 567 // access more than 2GB of static data; fail at link time is better than 568 // fail at runtime. See https://golang.org/issue/7980. 569 // Instead of special casing only amd64, we treat this as an error on all 570 // 64-bit architectures so as to be future-proof. 571 if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 { 572 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) 573 errorexit() 574 } 575 576 case objabi.R_DWARFREF: 577 var sectName string 578 var vaddr int64 579 switch { 580 case r.Sym.Sect != nil: 581 sectName = r.Sym.Sect.Name 582 vaddr = int64(r.Sym.Sect.Vaddr) 583 case r.Sym.Type == SDWARFRANGE: 584 sectName = ".debug_ranges" 585 default: 586 Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) 587 } 588 589 if Linkmode == LinkExternal { 590 r.Done = 0 591 // PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL 592 // for R_DWARFREF relocations, while R_ADDR is replaced with 593 // IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32. 594 // Do not replace R_DWARFREF with R_ADDR for windows - 595 // let PE code emit correct relocations. 596 if Headtype != objabi.Hwindows { 597 r.Type = objabi.R_ADDR 598 } 599 600 r.Xsym = ctxt.Syms.ROLookup(sectName, 0) 601 r.Xadd = r.Add + Symaddr(r.Sym) - vaddr 602 603 o = r.Xadd 604 rs = r.Xsym 605 if Iself && SysArch.Family == sys.AMD64 { 606 o = 0 607 } 608 break 609 } 610 o = Symaddr(r.Sym) + r.Add - vaddr 611 612 case objabi.R_WEAKADDROFF: 613 if !r.Sym.Attr.Reachable() { 614 continue 615 } 616 fallthrough 617 case objabi.R_ADDROFF: 618 // The method offset tables using this relocation expect the offset to be relative 619 // to the start of the first text section, even if there are multiple. 620 621 if r.Sym.Sect.Name == ".text" { 622 o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add 623 } else { 624 o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add 625 } 626 627 // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. 628 case objabi.R_GOTPCREL: 629 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != SCONST { 630 r.Done = 0 631 r.Xadd = r.Add 632 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 633 r.Xsym = r.Sym 634 635 o = r.Xadd 636 o += int64(r.Siz) 637 break 638 } 639 fallthrough 640 case objabi.R_CALL, objabi.R_PCREL: 641 if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) { 642 r.Done = 0 643 644 // set up addend for eventual relocation via outer symbol. 645 rs = r.Sym 646 647 r.Xadd = r.Add 648 for rs.Outer != nil { 649 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 650 rs = rs.Outer 651 } 652 653 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 654 if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil { 655 Errorf(s, "missing section for relocation target %s", rs.Name) 656 } 657 r.Xsym = rs 658 659 o = r.Xadd 660 if Iself { 661 if SysArch.Family == sys.AMD64 { 662 o = 0 663 } 664 } else if Headtype == objabi.Hdarwin { 665 if r.Type == objabi.R_CALL { 666 if rs.Type != SHOSTOBJ { 667 o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) 668 } 669 o -= int64(r.Off) // relative to section offset, not symbol 670 } else if SysArch.Family == sys.ARM { 671 // see ../arm/asm.go:/machoreloc1 672 o += Symaddr(rs) - int64(s.Value) - int64(r.Off) 673 } else { 674 o += int64(r.Siz) 675 } 676 } else if Headtype == objabi.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL 677 // PE/COFF's PC32 relocation uses the address after the relocated 678 // bytes as the base. Compensate by skewing the addend. 679 o += int64(r.Siz) 680 } else { 681 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 682 } 683 684 break 685 } 686 687 o = 0 688 if r.Sym != nil { 689 o += Symaddr(r.Sym) 690 } 691 692 o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) 693 694 case objabi.R_SIZE: 695 o = r.Sym.Size + r.Add 696 } 697 698 if r.Variant != RV_NONE { 699 o = Thearch.Archrelocvariant(ctxt, r, s, o) 700 } 701 702 if false { 703 nam := "<nil>" 704 if r.Sym != nil { 705 nam = r.Sym.Name 706 } 707 fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o) 708 } 709 switch siz { 710 default: 711 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 712 fallthrough 713 714 // TODO(rsc): Remove. 715 case 1: 716 s.P[off] = byte(int8(o)) 717 718 case 2: 719 if o != int64(int16(o)) { 720 Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) 721 } 722 i16 = int16(o) 723 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) 724 725 case 4: 726 if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL { 727 if o != int64(int32(o)) { 728 Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) 729 } 730 } else { 731 if o != int64(int32(o)) && o != int64(uint32(o)) { 732 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) 733 } 734 } 735 736 fl = int32(o) 737 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) 738 739 case 8: 740 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) 741 } 742 } 743 } 744 745 func (ctxt *Link) reloc() { 746 if ctxt.Debugvlog != 0 { 747 ctxt.Logf("%5.2f reloc\n", Cputime()) 748 } 749 750 for _, s := range ctxt.Textp { 751 relocsym(ctxt, s) 752 } 753 for _, sym := range datap { 754 relocsym(ctxt, sym) 755 } 756 for _, s := range dwarfp { 757 relocsym(ctxt, s) 758 } 759 } 760 761 func dynrelocsym(ctxt *Link, s *Symbol) { 762 if Headtype == objabi.Hwindows && Linkmode != LinkExternal { 763 rel := ctxt.Syms.Lookup(".rel", 0) 764 if s == rel { 765 return 766 } 767 for ri := 0; ri < len(s.R); ri++ { 768 r := &s.R[ri] 769 targ := r.Sym 770 if targ == nil { 771 continue 772 } 773 if !targ.Attr.Reachable() { 774 if r.Type == objabi.R_WEAKADDROFF { 775 continue 776 } 777 Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name) 778 } 779 if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. 780 targ.Plt = int32(rel.Size) 781 r.Sym = rel 782 r.Add = int64(targ.Plt) 783 784 // jmp *addr 785 if SysArch.Family == sys.I386 { 786 Adduint8(ctxt, rel, 0xff) 787 Adduint8(ctxt, rel, 0x25) 788 Addaddr(ctxt, rel, targ) 789 Adduint8(ctxt, rel, 0x90) 790 Adduint8(ctxt, rel, 0x90) 791 } else { 792 Adduint8(ctxt, rel, 0xff) 793 Adduint8(ctxt, rel, 0x24) 794 Adduint8(ctxt, rel, 0x25) 795 addaddrplus4(ctxt, rel, targ, 0) 796 Adduint8(ctxt, rel, 0x90) 797 } 798 } else if r.Sym.Plt >= 0 { 799 r.Sym = rel 800 r.Add = int64(targ.Plt) 801 } 802 } 803 804 return 805 } 806 807 for ri := 0; ri < len(s.R); ri++ { 808 r := &s.R[ri] 809 if Buildmode == BuildmodePIE && Linkmode == LinkInternal { 810 // It's expected that some relocations will be done 811 // later by relocsym (R_TLS_LE, R_ADDROFF), so 812 // don't worry if Adddynrel returns false. 813 Thearch.Adddynrel(ctxt, s, r) 814 continue 815 } 816 if r.Sym != nil && r.Sym.Type == SDYNIMPORT || r.Type >= 256 { 817 if r.Sym != nil && !r.Sym.Attr.Reachable() { 818 Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) 819 } 820 if !Thearch.Adddynrel(ctxt, s, r) { 821 Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d stype=%d)", r.Sym.Name, r.Type, r.Sym.Type) 822 } 823 } 824 } 825 } 826 827 func dynreloc(ctxt *Link, data *[SXREF][]*Symbol) { 828 // -d suppresses dynamic loader format, so we may as well not 829 // compute these sections or mark their symbols as reachable. 830 if *FlagD && Headtype != objabi.Hwindows { 831 return 832 } 833 if ctxt.Debugvlog != 0 { 834 ctxt.Logf("%5.2f reloc\n", Cputime()) 835 } 836 837 for _, s := range ctxt.Textp { 838 dynrelocsym(ctxt, s) 839 } 840 for _, syms := range data { 841 for _, sym := range syms { 842 dynrelocsym(ctxt, sym) 843 } 844 } 845 if Iself { 846 elfdynhash(ctxt) 847 } 848 } 849 850 func Codeblk(ctxt *Link, addr int64, size int64) { 851 CodeblkPad(ctxt, addr, size, zeros[:]) 852 } 853 func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { 854 if *flagA { 855 ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 856 } 857 858 blk(ctxt, ctxt.Textp, addr, size, pad) 859 860 /* again for printing */ 861 if !*flagA { 862 return 863 } 864 865 syms := ctxt.Textp 866 for i, sym := range syms { 867 if !sym.Attr.Reachable() { 868 continue 869 } 870 if sym.Value >= addr { 871 syms = syms[i:] 872 break 873 } 874 } 875 876 eaddr := addr + size 877 var q []byte 878 for _, sym := range syms { 879 if !sym.Attr.Reachable() { 880 continue 881 } 882 if sym.Value >= eaddr { 883 break 884 } 885 886 if addr < sym.Value { 887 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 888 for ; addr < sym.Value; addr++ { 889 ctxt.Logf(" %.2x", 0) 890 } 891 ctxt.Logf("\n") 892 } 893 894 ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name) 895 q = sym.P 896 897 for len(q) >= 16 { 898 ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) 899 addr += 16 900 q = q[16:] 901 } 902 903 if len(q) > 0 { 904 ctxt.Logf("%.6x\t% x\n", uint64(addr), q) 905 addr += int64(len(q)) 906 } 907 } 908 909 if addr < eaddr { 910 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 911 for ; addr < eaddr; addr++ { 912 ctxt.Logf(" %.2x", 0) 913 } 914 } 915 } 916 917 func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) { 918 for i, s := range syms { 919 if s.Type&SSUB == 0 && s.Value >= addr { 920 syms = syms[i:] 921 break 922 } 923 } 924 925 eaddr := addr + size 926 for _, s := range syms { 927 if s.Type&SSUB != 0 { 928 continue 929 } 930 if s.Value >= eaddr { 931 break 932 } 933 if s.Value < addr { 934 Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) 935 errorexit() 936 } 937 if addr < s.Value { 938 strnputPad("", int(s.Value-addr), pad) 939 addr = s.Value 940 } 941 Cwrite(s.P) 942 addr += int64(len(s.P)) 943 if addr < s.Value+s.Size { 944 strnputPad("", int(s.Value+s.Size-addr), pad) 945 addr = s.Value + s.Size 946 } 947 if addr != s.Value+s.Size { 948 Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) 949 errorexit() 950 } 951 if s.Value+s.Size >= eaddr { 952 break 953 } 954 } 955 956 if addr < eaddr { 957 strnputPad("", int(eaddr-addr), pad) 958 } 959 Cflush() 960 } 961 962 func Datblk(ctxt *Link, addr int64, size int64) { 963 if *flagA { 964 ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 965 } 966 967 blk(ctxt, datap, addr, size, zeros[:]) 968 969 /* again for printing */ 970 if !*flagA { 971 return 972 } 973 974 syms := datap 975 for i, sym := range syms { 976 if sym.Value >= addr { 977 syms = syms[i:] 978 break 979 } 980 } 981 982 eaddr := addr + size 983 for _, sym := range syms { 984 if sym.Value >= eaddr { 985 break 986 } 987 if addr < sym.Value { 988 ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) 989 addr = sym.Value 990 } 991 992 ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) 993 for i, b := range sym.P { 994 if i > 0 && i%16 == 0 { 995 ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) 996 } 997 ctxt.Logf(" %.2x", b) 998 } 999 1000 addr += int64(len(sym.P)) 1001 for ; addr < sym.Value+sym.Size; addr++ { 1002 ctxt.Logf(" %.2x", 0) 1003 } 1004 ctxt.Logf("\n") 1005 1006 if Linkmode != LinkExternal { 1007 continue 1008 } 1009 for _, r := range sym.R { 1010 rsname := "" 1011 if r.Sym != nil { 1012 rsname = r.Sym.Name 1013 } 1014 typ := "?" 1015 switch r.Type { 1016 case objabi.R_ADDR: 1017 typ = "addr" 1018 case objabi.R_PCREL: 1019 typ = "pcrel" 1020 case objabi.R_CALL: 1021 typ = "call" 1022 } 1023 ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add) 1024 } 1025 } 1026 1027 if addr < eaddr { 1028 ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) 1029 } 1030 ctxt.Logf("\t%.8x|\n", uint(eaddr)) 1031 } 1032 1033 func Dwarfblk(ctxt *Link, addr int64, size int64) { 1034 if *flagA { 1035 ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 1036 } 1037 1038 blk(ctxt, dwarfp, addr, size, zeros[:]) 1039 } 1040 1041 var zeros [512]byte 1042 1043 // strnput writes the first n bytes of s. 1044 // If n is larger than len(s), 1045 // it is padded with NUL bytes. 1046 func strnput(s string, n int) { 1047 strnputPad(s, n, zeros[:]) 1048 } 1049 1050 // strnput writes the first n bytes of s. 1051 // If n is larger than len(s), 1052 // it is padded with the bytes in pad (repeated as needed). 1053 func strnputPad(s string, n int, pad []byte) { 1054 if len(s) >= n { 1055 Cwritestring(s[:n]) 1056 } else { 1057 Cwritestring(s) 1058 n -= len(s) 1059 for n > len(pad) { 1060 Cwrite(pad) 1061 n -= len(pad) 1062 1063 } 1064 Cwrite(pad[:n]) 1065 } 1066 } 1067 1068 var strdata []*Symbol 1069 1070 func addstrdata1(ctxt *Link, arg string) { 1071 eq := strings.Index(arg, "=") 1072 dot := strings.LastIndex(arg[:eq+1], ".") 1073 if eq < 0 || dot < 0 { 1074 Exitf("-X flag requires argument of the form importpath.name=value") 1075 } 1076 addstrdata(ctxt, objabi.PathToPrefix(arg[:dot])+arg[dot:eq], arg[eq+1:]) 1077 } 1078 1079 func addstrdata(ctxt *Link, name string, value string) { 1080 p := fmt.Sprintf("%s.str", name) 1081 sp := ctxt.Syms.Lookup(p, 0) 1082 1083 Addstring(sp, value) 1084 sp.Type = SRODATA 1085 1086 s := ctxt.Syms.Lookup(name, 0) 1087 s.Size = 0 1088 s.Attr |= AttrDuplicateOK 1089 reachable := s.Attr.Reachable() 1090 Addaddr(ctxt, s, sp) 1091 adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize) 1092 1093 // addstring, addaddr, etc., mark the symbols as reachable. 1094 // In this case that is not necessarily true, so stick to what 1095 // we know before entering this function. 1096 s.Attr.Set(AttrReachable, reachable) 1097 1098 strdata = append(strdata, s) 1099 1100 sp.Attr.Set(AttrReachable, reachable) 1101 } 1102 1103 func (ctxt *Link) checkstrdata() { 1104 for _, s := range strdata { 1105 if s.Type == STEXT { 1106 Errorf(s, "cannot use -X with text symbol") 1107 } else if s.Gotype != nil && s.Gotype.Name != "type.string" { 1108 Errorf(s, "cannot use -X with non-string symbol") 1109 } 1110 } 1111 } 1112 1113 func Addstring(s *Symbol, str string) int64 { 1114 if s.Type == 0 { 1115 s.Type = SNOPTRDATA 1116 } 1117 s.Attr |= AttrReachable 1118 r := s.Size 1119 if s.Name == ".shstrtab" { 1120 elfsetstring(s, str, int(r)) 1121 } 1122 s.P = append(s.P, str...) 1123 s.P = append(s.P, 0) 1124 s.Size = int64(len(s.P)) 1125 return r 1126 } 1127 1128 // addgostring adds str, as a Go string value, to s. symname is the name of the 1129 // symbol used to define the string data and must be unique per linked object. 1130 func addgostring(ctxt *Link, s *Symbol, symname, str string) { 1131 sym := ctxt.Syms.Lookup(symname, 0) 1132 if sym.Type != Sxxx { 1133 Errorf(s, "duplicate symname in addgostring: %s", symname) 1134 } 1135 sym.Attr |= AttrReachable 1136 sym.Attr |= AttrLocal 1137 sym.Type = SRODATA 1138 sym.Size = int64(len(str)) 1139 sym.P = []byte(str) 1140 Addaddr(ctxt, s, sym) 1141 adduint(ctxt, s, uint64(len(str))) 1142 } 1143 1144 func addinitarrdata(ctxt *Link, s *Symbol) { 1145 p := s.Name + ".ptr" 1146 sp := ctxt.Syms.Lookup(p, 0) 1147 sp.Type = SINITARR 1148 sp.Size = 0 1149 sp.Attr |= AttrDuplicateOK 1150 Addaddr(ctxt, sp, s) 1151 } 1152 1153 func dosymtype(ctxt *Link) { 1154 switch Buildmode { 1155 case BuildmodeCArchive, BuildmodeCShared: 1156 for _, s := range ctxt.Syms.Allsym { 1157 // Create a new entry in the .init_array section that points to the 1158 // library initializer function. 1159 switch Buildmode { 1160 case BuildmodeCArchive, BuildmodeCShared: 1161 if s.Name == *flagEntrySymbol { 1162 addinitarrdata(ctxt, s) 1163 } 1164 } 1165 } 1166 } 1167 } 1168 1169 // symalign returns the required alignment for the given symbol s. 1170 func symalign(s *Symbol) int32 { 1171 min := int32(Thearch.Minalign) 1172 if s.Align >= min { 1173 return s.Align 1174 } else if s.Align != 0 { 1175 return min 1176 } 1177 if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { 1178 // String data is just bytes. 1179 // If we align it, we waste a lot of space to padding. 1180 return min 1181 } 1182 align := int32(Thearch.Maxalign) 1183 for int64(align) > s.Size && align > min { 1184 align >>= 1 1185 } 1186 return align 1187 } 1188 1189 func aligndatsize(datsize int64, s *Symbol) int64 { 1190 return Rnd(datsize, int64(symalign(s))) 1191 } 1192 1193 const debugGCProg = false 1194 1195 type GCProg struct { 1196 ctxt *Link 1197 sym *Symbol 1198 w gcprog.Writer 1199 } 1200 1201 func (p *GCProg) Init(ctxt *Link, name string) { 1202 p.ctxt = ctxt 1203 p.sym = ctxt.Syms.Lookup(name, 0) 1204 p.w.Init(p.writeByte(ctxt)) 1205 if debugGCProg { 1206 fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) 1207 p.w.Debug(os.Stderr) 1208 } 1209 } 1210 1211 func (p *GCProg) writeByte(ctxt *Link) func(x byte) { 1212 return func(x byte) { 1213 Adduint8(ctxt, p.sym, x) 1214 } 1215 } 1216 1217 func (p *GCProg) End(size int64) { 1218 p.w.ZeroUntil(size / int64(SysArch.PtrSize)) 1219 p.w.End() 1220 if debugGCProg { 1221 fmt.Fprintf(os.Stderr, "ld: end GCProg\n") 1222 } 1223 } 1224 1225 func (p *GCProg) AddSym(s *Symbol) { 1226 typ := s.Gotype 1227 // Things without pointers should be in SNOPTRDATA or SNOPTRBSS; 1228 // everything we see should have pointers and should therefore have a type. 1229 if typ == nil { 1230 switch s.Name { 1231 case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": 1232 // Ignore special symbols that are sometimes laid out 1233 // as real symbols. See comment about dyld on darwin in 1234 // the address function. 1235 return 1236 } 1237 Errorf(s, "missing Go type information for global symbol: size %d", s.Size) 1238 return 1239 } 1240 1241 ptrsize := int64(SysArch.PtrSize) 1242 nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize 1243 1244 if debugGCProg { 1245 fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) 1246 } 1247 1248 if decodetypeUsegcprog(typ) == 0 { 1249 // Copy pointers from mask into program. 1250 mask := decodetypeGcmask(p.ctxt, typ) 1251 for i := int64(0); i < nptr; i++ { 1252 if (mask[i/8]>>uint(i%8))&1 != 0 { 1253 p.w.Ptr(s.Value/ptrsize + i) 1254 } 1255 } 1256 return 1257 } 1258 1259 // Copy program. 1260 prog := decodetypeGcprog(p.ctxt, typ) 1261 p.w.ZeroUntil(s.Value / ptrsize) 1262 p.w.Append(prog[4:], nptr) 1263 } 1264 1265 // dataSortKey is used to sort a slice of data symbol *Symbol pointers. 1266 // The sort keys are kept inline to improve cache behavior while sorting. 1267 type dataSortKey struct { 1268 size int64 1269 name string 1270 sym *Symbol 1271 } 1272 1273 type bySizeAndName []dataSortKey 1274 1275 func (d bySizeAndName) Len() int { return len(d) } 1276 func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } 1277 func (d bySizeAndName) Less(i, j int) bool { 1278 s1, s2 := d[i], d[j] 1279 if s1.size != s2.size { 1280 return s1.size < s2.size 1281 } 1282 return s1.name < s2.name 1283 } 1284 1285 const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31) 1286 1287 func checkdatsize(ctxt *Link, datsize int64, symn SymKind) { 1288 if datsize > cutoff { 1289 Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff) 1290 } 1291 } 1292 1293 // datap is a collection of reachable data symbols in address order. 1294 // Generated by dodata. 1295 var datap []*Symbol 1296 1297 func (ctxt *Link) dodata() { 1298 if ctxt.Debugvlog != 0 { 1299 ctxt.Logf("%5.2f dodata\n", Cputime()) 1300 } 1301 1302 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { 1303 // The values in moduledata are filled out by relocations 1304 // pointing to the addresses of these special symbols. 1305 // Typically these symbols have no size and are not laid 1306 // out with their matching section. 1307 // 1308 // However on darwin, dyld will find the special symbol 1309 // in the first loaded module, even though it is local. 1310 // 1311 // (An hypothesis, formed without looking in the dyld sources: 1312 // these special symbols have no size, so their address 1313 // matches a real symbol. The dynamic linker assumes we 1314 // want the normal symbol with the same address and finds 1315 // it in the other module.) 1316 // 1317 // To work around this we lay out the symbls whose 1318 // addresses are vital for multi-module programs to work 1319 // as normal symbols, and give them a little size. 1320 bss := ctxt.Syms.Lookup("runtime.bss", 0) 1321 bss.Size = 8 1322 bss.Attr.Set(AttrSpecial, false) 1323 1324 ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false) 1325 1326 data := ctxt.Syms.Lookup("runtime.data", 0) 1327 data.Size = 8 1328 data.Attr.Set(AttrSpecial, false) 1329 1330 ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false) 1331 1332 types := ctxt.Syms.Lookup("runtime.types", 0) 1333 types.Type = STYPE 1334 types.Size = 8 1335 types.Attr.Set(AttrSpecial, false) 1336 1337 etypes := ctxt.Syms.Lookup("runtime.etypes", 0) 1338 etypes.Type = SFUNCTAB 1339 etypes.Attr.Set(AttrSpecial, false) 1340 } 1341 1342 // Collect data symbols by type into data. 1343 var data [SXREF][]*Symbol 1344 for _, s := range ctxt.Syms.Allsym { 1345 if !s.Attr.Reachable() || s.Attr.Special() { 1346 continue 1347 } 1348 if s.Type <= STEXT || s.Type >= SXREF { 1349 continue 1350 } 1351 data[s.Type] = append(data[s.Type], s) 1352 } 1353 1354 // Now that we have the data symbols, but before we start 1355 // to assign addresses, record all the necessary 1356 // dynamic relocations. These will grow the relocation 1357 // symbol, which is itself data. 1358 // 1359 // On darwin, we need the symbol table numbers for dynreloc. 1360 if Headtype == objabi.Hdarwin { 1361 machosymorder(ctxt) 1362 } 1363 dynreloc(ctxt, &data) 1364 1365 if UseRelro() { 1366 // "read only" data with relocations needs to go in its own section 1367 // when building a shared library. We do this by boosting objects of 1368 // type SXXX with relocations to type SXXXRELRO. 1369 for _, symnro := range readOnly { 1370 symnrelro := relROMap[symnro] 1371 1372 ro := []*Symbol{} 1373 relro := data[symnrelro] 1374 1375 for _, s := range data[symnro] { 1376 isRelro := len(s.R) > 0 1377 switch s.Type { 1378 case STYPE, STYPERELRO, SGOFUNCRELRO: 1379 // Symbols are not sorted yet, so it is possible 1380 // that an Outer symbol has been changed to a 1381 // relro Type before it reaches here. 1382 isRelro = true 1383 } 1384 if isRelro { 1385 s.Type = symnrelro 1386 if s.Outer != nil { 1387 s.Outer.Type = s.Type 1388 } 1389 relro = append(relro, s) 1390 } else { 1391 ro = append(ro, s) 1392 } 1393 } 1394 1395 // Check that we haven't made two symbols with the same .Outer into 1396 // different types (because references two symbols with non-nil Outer 1397 // become references to the outer symbol + offset it's vital that the 1398 // symbol and the outer end up in the same section). 1399 for _, s := range relro { 1400 if s.Outer != nil && s.Outer.Type != s.Type { 1401 Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", 1402 s.Outer.Name, s.Type, s.Outer.Type) 1403 } 1404 } 1405 1406 data[symnro] = ro 1407 data[symnrelro] = relro 1408 } 1409 } 1410 1411 // Sort symbols. 1412 var dataMaxAlign [SXREF]int32 1413 var wg sync.WaitGroup 1414 for symn := range data { 1415 symn := SymKind(symn) 1416 wg.Add(1) 1417 go func() { 1418 data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) 1419 wg.Done() 1420 }() 1421 } 1422 wg.Wait() 1423 1424 // Allocate sections. 1425 // Data is processed before segtext, because we need 1426 // to see all symbols in the .data and .bss sections in order 1427 // to generate garbage collection information. 1428 datsize := int64(0) 1429 1430 // Writable data sections that do not need any specialized handling. 1431 writable := []SymKind{ 1432 SELFSECT, 1433 SMACHO, 1434 SMACHOGOT, 1435 SWINDOWS, 1436 } 1437 for _, symn := range writable { 1438 for _, s := range data[symn] { 1439 sect := addsection(&Segdata, s.Name, 06) 1440 sect.Align = symalign(s) 1441 datsize = Rnd(datsize, int64(sect.Align)) 1442 sect.Vaddr = uint64(datsize) 1443 s.Sect = sect 1444 s.Type = SDATA 1445 s.Value = int64(uint64(datsize) - sect.Vaddr) 1446 datsize += s.Size 1447 sect.Length = uint64(datsize) - sect.Vaddr 1448 } 1449 checkdatsize(ctxt, datsize, symn) 1450 } 1451 1452 // .got (and .toc on ppc64) 1453 if len(data[SELFGOT]) > 0 { 1454 sect := addsection(&Segdata, ".got", 06) 1455 sect.Align = dataMaxAlign[SELFGOT] 1456 datsize = Rnd(datsize, int64(sect.Align)) 1457 sect.Vaddr = uint64(datsize) 1458 var toc *Symbol 1459 for _, s := range data[SELFGOT] { 1460 datsize = aligndatsize(datsize, s) 1461 s.Sect = sect 1462 s.Type = SDATA 1463 s.Value = int64(uint64(datsize) - sect.Vaddr) 1464 1465 // Resolve .TOC. symbol for this object file (ppc64) 1466 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 1467 if toc != nil { 1468 toc.Sect = sect 1469 toc.Outer = s 1470 toc.Sub = s.Sub 1471 s.Sub = toc 1472 1473 toc.Value = 0x8000 1474 } 1475 1476 datsize += s.Size 1477 } 1478 checkdatsize(ctxt, datsize, SELFGOT) 1479 sect.Length = uint64(datsize) - sect.Vaddr 1480 } 1481 1482 /* pointer-free data */ 1483 sect := addsection(&Segdata, ".noptrdata", 06) 1484 sect.Align = dataMaxAlign[SNOPTRDATA] 1485 datsize = Rnd(datsize, int64(sect.Align)) 1486 sect.Vaddr = uint64(datsize) 1487 ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect 1488 ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect 1489 for _, s := range data[SNOPTRDATA] { 1490 datsize = aligndatsize(datsize, s) 1491 s.Sect = sect 1492 s.Type = SDATA 1493 s.Value = int64(uint64(datsize) - sect.Vaddr) 1494 datsize += s.Size 1495 } 1496 checkdatsize(ctxt, datsize, SNOPTRDATA) 1497 sect.Length = uint64(datsize) - sect.Vaddr 1498 1499 hasinitarr := *FlagLinkshared 1500 1501 /* shared library initializer */ 1502 switch Buildmode { 1503 case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin: 1504 hasinitarr = true 1505 } 1506 if hasinitarr { 1507 sect := addsection(&Segdata, ".init_array", 06) 1508 sect.Align = dataMaxAlign[SINITARR] 1509 datsize = Rnd(datsize, int64(sect.Align)) 1510 sect.Vaddr = uint64(datsize) 1511 for _, s := range data[SINITARR] { 1512 datsize = aligndatsize(datsize, s) 1513 s.Sect = sect 1514 s.Value = int64(uint64(datsize) - sect.Vaddr) 1515 datsize += s.Size 1516 } 1517 sect.Length = uint64(datsize) - sect.Vaddr 1518 checkdatsize(ctxt, datsize, SINITARR) 1519 } 1520 1521 /* data */ 1522 sect = addsection(&Segdata, ".data", 06) 1523 sect.Align = dataMaxAlign[SDATA] 1524 datsize = Rnd(datsize, int64(sect.Align)) 1525 sect.Vaddr = uint64(datsize) 1526 ctxt.Syms.Lookup("runtime.data", 0).Sect = sect 1527 ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect 1528 var gc GCProg 1529 gc.Init(ctxt, "runtime.gcdata") 1530 for _, s := range data[SDATA] { 1531 s.Sect = sect 1532 s.Type = SDATA 1533 datsize = aligndatsize(datsize, s) 1534 s.Value = int64(uint64(datsize) - sect.Vaddr) 1535 gc.AddSym(s) 1536 datsize += s.Size 1537 } 1538 checkdatsize(ctxt, datsize, SDATA) 1539 sect.Length = uint64(datsize) - sect.Vaddr 1540 gc.End(int64(sect.Length)) 1541 1542 /* bss */ 1543 sect = addsection(&Segdata, ".bss", 06) 1544 sect.Align = dataMaxAlign[SBSS] 1545 datsize = Rnd(datsize, int64(sect.Align)) 1546 sect.Vaddr = uint64(datsize) 1547 ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect 1548 ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect 1549 gc = GCProg{} 1550 gc.Init(ctxt, "runtime.gcbss") 1551 for _, s := range data[SBSS] { 1552 s.Sect = sect 1553 datsize = aligndatsize(datsize, s) 1554 s.Value = int64(uint64(datsize) - sect.Vaddr) 1555 gc.AddSym(s) 1556 datsize += s.Size 1557 } 1558 checkdatsize(ctxt, datsize, SBSS) 1559 sect.Length = uint64(datsize) - sect.Vaddr 1560 gc.End(int64(sect.Length)) 1561 1562 /* pointer-free bss */ 1563 sect = addsection(&Segdata, ".noptrbss", 06) 1564 sect.Align = dataMaxAlign[SNOPTRBSS] 1565 datsize = Rnd(datsize, int64(sect.Align)) 1566 sect.Vaddr = uint64(datsize) 1567 ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect 1568 ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect 1569 for _, s := range data[SNOPTRBSS] { 1570 datsize = aligndatsize(datsize, s) 1571 s.Sect = sect 1572 s.Value = int64(uint64(datsize) - sect.Vaddr) 1573 datsize += s.Size 1574 } 1575 1576 sect.Length = uint64(datsize) - sect.Vaddr 1577 ctxt.Syms.Lookup("runtime.end", 0).Sect = sect 1578 checkdatsize(ctxt, datsize, SNOPTRBSS) 1579 1580 if len(data[STLSBSS]) > 0 { 1581 var sect *Section 1582 if Iself && (Linkmode == LinkExternal || !*FlagD) { 1583 sect = addsection(&Segdata, ".tbss", 06) 1584 sect.Align = int32(SysArch.PtrSize) 1585 sect.Vaddr = 0 1586 } 1587 datsize = 0 1588 1589 for _, s := range data[STLSBSS] { 1590 datsize = aligndatsize(datsize, s) 1591 s.Sect = sect 1592 s.Value = datsize 1593 datsize += s.Size 1594 } 1595 checkdatsize(ctxt, datsize, STLSBSS) 1596 1597 if sect != nil { 1598 sect.Length = uint64(datsize) 1599 } 1600 } 1601 1602 /* 1603 * We finished data, begin read-only data. 1604 * Not all systems support a separate read-only non-executable data section. 1605 * ELF systems do. 1606 * OS X and Plan 9 do not. 1607 * Windows PE may, but if so we have not implemented it. 1608 * And if we're using external linking mode, the point is moot, 1609 * since it's not our decision; that code expects the sections in 1610 * segtext. 1611 */ 1612 var segro *Segment 1613 if Iself && Linkmode == LinkInternal { 1614 segro = &Segrodata 1615 } else { 1616 segro = &Segtext 1617 } 1618 1619 datsize = 0 1620 1621 /* read-only executable ELF, Mach-O sections */ 1622 if len(data[STEXT]) != 0 { 1623 Errorf(nil, "dodata found an STEXT symbol: %s", data[STEXT][0].Name) 1624 } 1625 for _, s := range data[SELFRXSECT] { 1626 sect := addsection(&Segtext, s.Name, 04) 1627 sect.Align = symalign(s) 1628 datsize = Rnd(datsize, int64(sect.Align)) 1629 sect.Vaddr = uint64(datsize) 1630 s.Sect = sect 1631 s.Type = SRODATA 1632 s.Value = int64(uint64(datsize) - sect.Vaddr) 1633 datsize += s.Size 1634 sect.Length = uint64(datsize) - sect.Vaddr 1635 checkdatsize(ctxt, datsize, SELFRXSECT) 1636 } 1637 1638 /* read-only data */ 1639 sect = addsection(segro, ".rodata", 04) 1640 1641 sect.Vaddr = 0 1642 ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect 1643 ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect 1644 if !UseRelro() { 1645 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1646 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1647 } 1648 for _, symn := range readOnly { 1649 align := dataMaxAlign[symn] 1650 if sect.Align < align { 1651 sect.Align = align 1652 } 1653 } 1654 datsize = Rnd(datsize, int64(sect.Align)) 1655 for _, symn := range readOnly { 1656 for _, s := range data[symn] { 1657 datsize = aligndatsize(datsize, s) 1658 s.Sect = sect 1659 s.Type = SRODATA 1660 s.Value = int64(uint64(datsize) - sect.Vaddr) 1661 datsize += s.Size 1662 } 1663 checkdatsize(ctxt, datsize, symn) 1664 } 1665 sect.Length = uint64(datsize) - sect.Vaddr 1666 1667 /* read-only ELF, Mach-O sections */ 1668 for _, s := range data[SELFROSECT] { 1669 sect = addsection(segro, s.Name, 04) 1670 sect.Align = symalign(s) 1671 datsize = Rnd(datsize, int64(sect.Align)) 1672 sect.Vaddr = uint64(datsize) 1673 s.Sect = sect 1674 s.Type = SRODATA 1675 s.Value = int64(uint64(datsize) - sect.Vaddr) 1676 datsize += s.Size 1677 sect.Length = uint64(datsize) - sect.Vaddr 1678 } 1679 checkdatsize(ctxt, datsize, SELFROSECT) 1680 1681 for _, s := range data[SMACHOPLT] { 1682 sect = addsection(segro, s.Name, 04) 1683 sect.Align = symalign(s) 1684 datsize = Rnd(datsize, int64(sect.Align)) 1685 sect.Vaddr = uint64(datsize) 1686 s.Sect = sect 1687 s.Type = SRODATA 1688 s.Value = int64(uint64(datsize) - sect.Vaddr) 1689 datsize += s.Size 1690 sect.Length = uint64(datsize) - sect.Vaddr 1691 } 1692 checkdatsize(ctxt, datsize, SMACHOPLT) 1693 1694 // There is some data that are conceptually read-only but are written to by 1695 // relocations. On GNU systems, we can arrange for the dynamic linker to 1696 // mprotect sections after relocations are applied by giving them write 1697 // permissions in the object file and calling them ".data.rel.ro.FOO". We 1698 // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, 1699 // but for the other sections that this applies to, we just write a read-only 1700 // .FOO section or a read-write .data.rel.ro.FOO section depending on the 1701 // situation. 1702 // TODO(mwhudson): It would make sense to do this more widely, but it makes 1703 // the system linker segfault on darwin. 1704 addrelrosection := func(suffix string) *Section { 1705 return addsection(segro, suffix, 04) 1706 } 1707 1708 if UseRelro() { 1709 addrelrosection = func(suffix string) *Section { 1710 seg := &Segrelrodata 1711 if Linkmode == LinkExternal { 1712 // Using a separate segment with an external 1713 // linker results in some programs moving 1714 // their data sections unexpectedly, which 1715 // corrupts the moduledata. So we use the 1716 // rodata segment and let the external linker 1717 // sort out a rel.ro segment. 1718 seg = &Segrodata 1719 } 1720 return addsection(seg, ".data.rel.ro"+suffix, 06) 1721 } 1722 /* data only written by relocations */ 1723 sect = addrelrosection("") 1724 1725 sect.Vaddr = 0 1726 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1727 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1728 for _, symnro := range readOnly { 1729 symn := relROMap[symnro] 1730 align := dataMaxAlign[symn] 1731 if sect.Align < align { 1732 sect.Align = align 1733 } 1734 } 1735 datsize = Rnd(datsize, int64(sect.Align)) 1736 for _, symnro := range readOnly { 1737 symn := relROMap[symnro] 1738 for _, s := range data[symn] { 1739 datsize = aligndatsize(datsize, s) 1740 if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { 1741 Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) 1742 } 1743 s.Sect = sect 1744 s.Type = SRODATA 1745 s.Value = int64(uint64(datsize) - sect.Vaddr) 1746 datsize += s.Size 1747 } 1748 checkdatsize(ctxt, datsize, symn) 1749 } 1750 1751 sect.Length = uint64(datsize) - sect.Vaddr 1752 } 1753 1754 /* typelink */ 1755 sect = addrelrosection(".typelink") 1756 sect.Align = dataMaxAlign[STYPELINK] 1757 datsize = Rnd(datsize, int64(sect.Align)) 1758 sect.Vaddr = uint64(datsize) 1759 typelink := ctxt.Syms.Lookup("runtime.typelink", 0) 1760 typelink.Sect = sect 1761 typelink.Type = SRODATA 1762 datsize += typelink.Size 1763 checkdatsize(ctxt, datsize, STYPELINK) 1764 sect.Length = uint64(datsize) - sect.Vaddr 1765 1766 /* itablink */ 1767 sect = addrelrosection(".itablink") 1768 sect.Align = dataMaxAlign[SITABLINK] 1769 datsize = Rnd(datsize, int64(sect.Align)) 1770 sect.Vaddr = uint64(datsize) 1771 ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect 1772 ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect 1773 for _, s := range data[SITABLINK] { 1774 datsize = aligndatsize(datsize, s) 1775 s.Sect = sect 1776 s.Type = SRODATA 1777 s.Value = int64(uint64(datsize) - sect.Vaddr) 1778 datsize += s.Size 1779 } 1780 checkdatsize(ctxt, datsize, SITABLINK) 1781 sect.Length = uint64(datsize) - sect.Vaddr 1782 1783 /* gosymtab */ 1784 sect = addrelrosection(".gosymtab") 1785 sect.Align = dataMaxAlign[SSYMTAB] 1786 datsize = Rnd(datsize, int64(sect.Align)) 1787 sect.Vaddr = uint64(datsize) 1788 ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect 1789 ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect 1790 for _, s := range data[SSYMTAB] { 1791 datsize = aligndatsize(datsize, s) 1792 s.Sect = sect 1793 s.Type = SRODATA 1794 s.Value = int64(uint64(datsize) - sect.Vaddr) 1795 datsize += s.Size 1796 } 1797 checkdatsize(ctxt, datsize, SSYMTAB) 1798 sect.Length = uint64(datsize) - sect.Vaddr 1799 1800 /* gopclntab */ 1801 sect = addrelrosection(".gopclntab") 1802 sect.Align = dataMaxAlign[SPCLNTAB] 1803 datsize = Rnd(datsize, int64(sect.Align)) 1804 sect.Vaddr = uint64(datsize) 1805 ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect 1806 ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect 1807 for _, s := range data[SPCLNTAB] { 1808 datsize = aligndatsize(datsize, s) 1809 s.Sect = sect 1810 s.Type = SRODATA 1811 s.Value = int64(uint64(datsize) - sect.Vaddr) 1812 datsize += s.Size 1813 } 1814 checkdatsize(ctxt, datsize, SRODATA) 1815 sect.Length = uint64(datsize) - sect.Vaddr 1816 1817 // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. 1818 if datsize != int64(uint32(datsize)) { 1819 Errorf(nil, "read-only data segment too large: %d", datsize) 1820 } 1821 1822 for symn := SELFRXSECT; symn < SXREF; symn++ { 1823 datap = append(datap, data[symn]...) 1824 } 1825 1826 dwarfgeneratedebugsyms(ctxt) 1827 1828 var s *Symbol 1829 var i int 1830 for i, s = range dwarfp { 1831 if s.Type != SDWARFSECT { 1832 break 1833 } 1834 1835 sect = addsection(&Segdwarf, s.Name, 04) 1836 sect.Align = 1 1837 datsize = Rnd(datsize, int64(sect.Align)) 1838 sect.Vaddr = uint64(datsize) 1839 s.Sect = sect 1840 s.Type = SRODATA 1841 s.Value = int64(uint64(datsize) - sect.Vaddr) 1842 datsize += s.Size 1843 sect.Length = uint64(datsize) - sect.Vaddr 1844 } 1845 checkdatsize(ctxt, datsize, SDWARFSECT) 1846 1847 if i < len(dwarfp) { 1848 sect = addsection(&Segdwarf, ".debug_info", 04) 1849 sect.Align = 1 1850 datsize = Rnd(datsize, int64(sect.Align)) 1851 sect.Vaddr = uint64(datsize) 1852 for _, s := range dwarfp[i:] { 1853 if s.Type != SDWARFINFO { 1854 break 1855 } 1856 s.Sect = sect 1857 s.Type = SRODATA 1858 s.Value = int64(uint64(datsize) - sect.Vaddr) 1859 s.Attr |= AttrLocal 1860 datsize += s.Size 1861 } 1862 sect.Length = uint64(datsize) - sect.Vaddr 1863 checkdatsize(ctxt, datsize, SDWARFINFO) 1864 } 1865 1866 /* number the sections */ 1867 n := int32(1) 1868 1869 for _, sect := range Segtext.Sections { 1870 sect.Extnum = int16(n) 1871 n++ 1872 } 1873 for _, sect := range Segrodata.Sections { 1874 sect.Extnum = int16(n) 1875 n++ 1876 } 1877 for _, sect := range Segrelrodata.Sections { 1878 sect.Extnum = int16(n) 1879 n++ 1880 } 1881 for _, sect := range Segdata.Sections { 1882 sect.Extnum = int16(n) 1883 n++ 1884 } 1885 for _, sect := range Segdwarf.Sections { 1886 sect.Extnum = int16(n) 1887 n++ 1888 } 1889 } 1890 1891 func dodataSect(ctxt *Link, symn SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) { 1892 if Headtype == objabi.Hdarwin { 1893 // Some symbols may no longer belong in syms 1894 // due to movement in machosymorder. 1895 newSyms := make([]*Symbol, 0, len(syms)) 1896 for _, s := range syms { 1897 if s.Type == symn { 1898 newSyms = append(newSyms, s) 1899 } 1900 } 1901 syms = newSyms 1902 } 1903 1904 var head, tail *Symbol 1905 symsSort := make([]dataSortKey, 0, len(syms)) 1906 for _, s := range syms { 1907 if s.Attr.OnList() { 1908 log.Fatalf("symbol %s listed multiple times", s.Name) 1909 } 1910 s.Attr |= AttrOnList 1911 switch { 1912 case s.Size < int64(len(s.P)): 1913 Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) 1914 case s.Size < 0: 1915 Errorf(s, "negative size (%d bytes)", s.Size) 1916 case s.Size > cutoff: 1917 Errorf(s, "symbol too large (%d bytes)", s.Size) 1918 } 1919 1920 // If the usually-special section-marker symbols are being laid 1921 // out as regular symbols, put them either at the beginning or 1922 // end of their section. 1923 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { 1924 switch s.Name { 1925 case "runtime.text", "runtime.bss", "runtime.data", "runtime.types": 1926 head = s 1927 continue 1928 case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes": 1929 tail = s 1930 continue 1931 } 1932 } 1933 1934 key := dataSortKey{ 1935 size: s.Size, 1936 name: s.Name, 1937 sym: s, 1938 } 1939 1940 switch s.Type { 1941 case SELFGOT: 1942 // For ppc64, we want to interleave the .got and .toc sections 1943 // from input files. Both are type SELFGOT, so in that case 1944 // we skip size comparison and fall through to the name 1945 // comparison (conveniently, .got sorts before .toc). 1946 key.size = 0 1947 } 1948 1949 symsSort = append(symsSort, key) 1950 } 1951 1952 sort.Sort(bySizeAndName(symsSort)) 1953 1954 off := 0 1955 if head != nil { 1956 syms[0] = head 1957 off++ 1958 } 1959 for i, symSort := range symsSort { 1960 syms[i+off] = symSort.sym 1961 align := symalign(symSort.sym) 1962 if maxAlign < align { 1963 maxAlign = align 1964 } 1965 } 1966 if tail != nil { 1967 syms[len(syms)-1] = tail 1968 } 1969 1970 if Iself && symn == SELFROSECT { 1971 // Make .rela and .rela.plt contiguous, the ELF ABI requires this 1972 // and Solaris actually cares. 1973 reli, plti := -1, -1 1974 for i, s := range syms { 1975 switch s.Name { 1976 case ".rel.plt", ".rela.plt": 1977 plti = i 1978 case ".rel", ".rela": 1979 reli = i 1980 } 1981 } 1982 if reli >= 0 && plti >= 0 && plti != reli+1 { 1983 var first, second int 1984 if plti > reli { 1985 first, second = reli, plti 1986 } else { 1987 first, second = plti, reli 1988 } 1989 rel, plt := syms[reli], syms[plti] 1990 copy(syms[first+2:], syms[first+1:second]) 1991 syms[first+0] = rel 1992 syms[first+1] = plt 1993 1994 // Make sure alignment doesn't introduce a gap. 1995 // Setting the alignment explicitly prevents 1996 // symalign from basing it on the size and 1997 // getting it wrong. 1998 rel.Align = int32(SysArch.RegSize) 1999 plt.Align = int32(SysArch.RegSize) 2000 } 2001 } 2002 2003 return syms, maxAlign 2004 } 2005 2006 // Add buildid to beginning of text segment, on non-ELF systems. 2007 // Non-ELF binary formats are not always flexible enough to 2008 // give us a place to put the Go build ID. On those systems, we put it 2009 // at the very beginning of the text segment. 2010 // This ``header'' is read by cmd/go. 2011 func (ctxt *Link) textbuildid() { 2012 if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" { 2013 return 2014 } 2015 2016 sym := ctxt.Syms.Lookup("go.buildid", 0) 2017 sym.Attr |= AttrReachable 2018 // The \xff is invalid UTF-8, meant to make it less likely 2019 // to find one of these accidentally. 2020 data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" 2021 sym.Type = STEXT 2022 sym.P = []byte(data) 2023 sym.Size = int64(len(sym.P)) 2024 2025 ctxt.Textp = append(ctxt.Textp, nil) 2026 copy(ctxt.Textp[1:], ctxt.Textp) 2027 ctxt.Textp[0] = sym 2028 } 2029 2030 // assign addresses to text 2031 func (ctxt *Link) textaddress() { 2032 addsection(&Segtext, ".text", 05) 2033 2034 // Assign PCs in text segment. 2035 // Could parallelize, by assigning to text 2036 // and then letting threads copy down, but probably not worth it. 2037 sect := Segtext.Sections[0] 2038 2039 sect.Align = int32(Funcalign) 2040 2041 text := ctxt.Syms.Lookup("runtime.text", 0) 2042 text.Sect = sect 2043 2044 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { 2045 etext := ctxt.Syms.Lookup("runtime.etext", 0) 2046 etext.Sect = sect 2047 2048 ctxt.Textp = append(ctxt.Textp, etext, nil) 2049 copy(ctxt.Textp[1:], ctxt.Textp) 2050 ctxt.Textp[0] = text 2051 } 2052 2053 va := uint64(*FlagTextAddr) 2054 n := 1 2055 sect.Vaddr = va 2056 ntramps := 0 2057 for _, sym := range ctxt.Textp { 2058 sect, n, va = assignAddress(ctxt, sect, n, sym, va) 2059 2060 trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far 2061 2062 // lay down trampolines after each function 2063 for ; ntramps < len(ctxt.tramps); ntramps++ { 2064 tramp := ctxt.tramps[ntramps] 2065 sect, n, va = assignAddress(ctxt, sect, n, tramp, va) 2066 } 2067 } 2068 2069 sect.Length = va - sect.Vaddr 2070 ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect 2071 2072 // merge tramps into Textp, keeping Textp in address order 2073 if ntramps != 0 { 2074 newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps) 2075 i := 0 2076 for _, sym := range ctxt.Textp { 2077 for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ { 2078 newtextp = append(newtextp, ctxt.tramps[i]) 2079 } 2080 newtextp = append(newtextp, sym) 2081 } 2082 newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) 2083 2084 ctxt.Textp = newtextp 2085 } 2086 } 2087 2088 // assigns address for a text symbol, returns (possibly new) section, its number, and the address 2089 // Note: once we have trampoline insertion support for external linking, this function 2090 // will not need to create new text sections, and so no need to return sect and n. 2091 func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64) (*Section, int, uint64) { 2092 sym.Sect = sect 2093 if sym.Type&SSUB != 0 { 2094 return sect, n, va 2095 } 2096 if sym.Align != 0 { 2097 va = uint64(Rnd(int64(va), int64(sym.Align))) 2098 } else { 2099 va = uint64(Rnd(int64(va), int64(Funcalign))) 2100 } 2101 sym.Value = 0 2102 for sub := sym; sub != nil; sub = sub.Sub { 2103 sub.Value += int64(va) 2104 } 2105 2106 funcsize := uint64(MINFUNC) // spacing required for findfunctab 2107 if sym.Size > MINFUNC { 2108 funcsize = uint64(sym.Size) 2109 } 2110 2111 // On ppc64x a text section should not be larger than 2^26 bytes due to the size of 2112 // call target offset field in the bl instruction. Splitting into smaller text 2113 // sections smaller than this limit allows the GNU linker to modify the long calls 2114 // appropriately. The limit allows for the space needed for tables inserted by the linker. 2115 2116 // If this function doesn't fit in the current text section, then create a new one. 2117 2118 // Only break at outermost syms. 2119 2120 if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize > 0x1c00000 { 2121 2122 // Set the length for the previous text section 2123 sect.Length = va - sect.Vaddr 2124 2125 // Create new section, set the starting Vaddr 2126 sect = addsection(&Segtext, ".text", 05) 2127 sect.Vaddr = va 2128 sym.Sect = sect 2129 2130 // Create a symbol for the start of the secondary text sections 2131 ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect 2132 n++ 2133 } 2134 va += funcsize 2135 2136 return sect, n, va 2137 } 2138 2139 // assign addresses 2140 func (ctxt *Link) address() { 2141 va := uint64(*FlagTextAddr) 2142 Segtext.Rwx = 05 2143 Segtext.Vaddr = va 2144 Segtext.Fileoff = uint64(HEADR) 2145 for _, s := range Segtext.Sections { 2146 va = uint64(Rnd(int64(va), int64(s.Align))) 2147 s.Vaddr = va 2148 va += s.Length 2149 } 2150 2151 Segtext.Length = va - uint64(*FlagTextAddr) 2152 Segtext.Filelen = Segtext.Length 2153 if Headtype == objabi.Hnacl { 2154 va += 32 // room for the "halt sled" 2155 } 2156 2157 if len(Segrodata.Sections) > 0 { 2158 // align to page boundary so as not to mix 2159 // rodata and executable text. 2160 // 2161 // Note: gold or GNU ld will reduce the size of the executable 2162 // file by arranging for the relro segment to end at a page 2163 // boundary, and overlap the end of the text segment with the 2164 // start of the relro segment in the file. The PT_LOAD segments 2165 // will be such that the last page of the text segment will be 2166 // mapped twice, once r-x and once starting out rw- and, after 2167 // relocation processing, changed to r--. 2168 // 2169 // Ideally the last page of the text segment would not be 2170 // writable even for this short period. 2171 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2172 2173 Segrodata.Rwx = 04 2174 Segrodata.Vaddr = va 2175 Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2176 Segrodata.Filelen = 0 2177 for _, s := range Segrodata.Sections { 2178 va = uint64(Rnd(int64(va), int64(s.Align))) 2179 s.Vaddr = va 2180 va += s.Length 2181 } 2182 2183 Segrodata.Length = va - Segrodata.Vaddr 2184 Segrodata.Filelen = Segrodata.Length 2185 } 2186 if len(Segrelrodata.Sections) > 0 { 2187 // align to page boundary so as not to mix 2188 // rodata, rel-ro data, and executable text. 2189 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2190 2191 Segrelrodata.Rwx = 06 2192 Segrelrodata.Vaddr = va 2193 Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff 2194 Segrelrodata.Filelen = 0 2195 for _, s := range Segrelrodata.Sections { 2196 va = uint64(Rnd(int64(va), int64(s.Align))) 2197 s.Vaddr = va 2198 va += s.Length 2199 } 2200 2201 Segrelrodata.Length = va - Segrelrodata.Vaddr 2202 Segrelrodata.Filelen = Segrelrodata.Length 2203 } 2204 2205 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2206 Segdata.Rwx = 06 2207 Segdata.Vaddr = va 2208 Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2209 Segdata.Filelen = 0 2210 if Headtype == objabi.Hwindows { 2211 Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) 2212 } 2213 if Headtype == objabi.Hplan9 { 2214 Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen 2215 } 2216 var data *Section 2217 var noptr *Section 2218 var bss *Section 2219 var noptrbss *Section 2220 var vlen int64 2221 for i, s := range Segdata.Sections { 2222 if Iself && s.Name == ".tbss" { 2223 continue 2224 } 2225 vlen = int64(s.Length) 2226 if i+1 < len(Segdata.Sections) && !(Iself && Segdata.Sections[i+1].Name == ".tbss") { 2227 vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr) 2228 } 2229 s.Vaddr = va 2230 va += uint64(vlen) 2231 Segdata.Length = va - Segdata.Vaddr 2232 if s.Name == ".data" { 2233 data = s 2234 } 2235 if s.Name == ".noptrdata" { 2236 noptr = s 2237 } 2238 if s.Name == ".bss" { 2239 bss = s 2240 } 2241 if s.Name == ".noptrbss" { 2242 noptrbss = s 2243 } 2244 } 2245 2246 Segdata.Filelen = bss.Vaddr - Segdata.Vaddr 2247 2248 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2249 Segdwarf.Rwx = 06 2250 Segdwarf.Vaddr = va 2251 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound))) 2252 Segdwarf.Filelen = 0 2253 if Headtype == objabi.Hwindows { 2254 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) 2255 } 2256 for i, s := range Segdwarf.Sections { 2257 vlen = int64(s.Length) 2258 if i+1 < len(Segdwarf.Sections) { 2259 vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr) 2260 } 2261 s.Vaddr = va 2262 va += uint64(vlen) 2263 if Headtype == objabi.Hwindows { 2264 va = uint64(Rnd(int64(va), PEFILEALIGN)) 2265 } 2266 Segdwarf.Length = va - Segdwarf.Vaddr 2267 } 2268 2269 Segdwarf.Filelen = va - Segdwarf.Vaddr 2270 2271 var ( 2272 text = Segtext.Sections[0] 2273 rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect 2274 itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect 2275 symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect 2276 pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect 2277 types = ctxt.Syms.Lookup("runtime.types", 0).Sect 2278 ) 2279 lasttext := text 2280 // Could be multiple .text sections 2281 for _, sect := range Segtext.Sections { 2282 if sect.Name == ".text" { 2283 lasttext = sect 2284 } 2285 } 2286 2287 for _, s := range datap { 2288 if s.Sect != nil { 2289 s.Value += int64(s.Sect.Vaddr) 2290 } 2291 for sub := s.Sub; sub != nil; sub = sub.Sub { 2292 sub.Value += s.Value 2293 } 2294 } 2295 2296 for _, sym := range dwarfp { 2297 if sym.Sect != nil { 2298 sym.Value += int64(sym.Sect.Vaddr) 2299 } 2300 for sub := sym.Sub; sub != nil; sub = sub.Sub { 2301 sub.Value += sym.Value 2302 } 2303 } 2304 2305 if Buildmode == BuildmodeShared { 2306 s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) 2307 sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) 2308 s.Sect = sectSym.Sect 2309 s.Value = int64(sectSym.Sect.Vaddr + 16) 2310 } 2311 2312 ctxt.xdefine("runtime.text", STEXT, int64(text.Vaddr)) 2313 ctxt.xdefine("runtime.etext", STEXT, int64(lasttext.Vaddr+lasttext.Length)) 2314 2315 // If there are multiple text sections, create runtime.text.n for 2316 // their section Vaddr, using n for index 2317 n := 1 2318 for _, sect := range Segtext.Sections[1:] { 2319 if sect.Name == ".text" { 2320 symname := fmt.Sprintf("runtime.text.%d", n) 2321 ctxt.xdefine(symname, STEXT, int64(sect.Vaddr)) 2322 n++ 2323 } else { 2324 break 2325 } 2326 } 2327 2328 ctxt.xdefine("runtime.rodata", SRODATA, int64(rodata.Vaddr)) 2329 ctxt.xdefine("runtime.erodata", SRODATA, int64(rodata.Vaddr+rodata.Length)) 2330 ctxt.xdefine("runtime.types", SRODATA, int64(types.Vaddr)) 2331 ctxt.xdefine("runtime.etypes", SRODATA, int64(types.Vaddr+types.Length)) 2332 ctxt.xdefine("runtime.itablink", SRODATA, int64(itablink.Vaddr)) 2333 ctxt.xdefine("runtime.eitablink", SRODATA, int64(itablink.Vaddr+itablink.Length)) 2334 2335 sym := ctxt.Syms.Lookup("runtime.gcdata", 0) 2336 sym.Attr |= AttrLocal 2337 ctxt.xdefine("runtime.egcdata", SRODATA, Symaddr(sym)+sym.Size) 2338 ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect 2339 2340 sym = ctxt.Syms.Lookup("runtime.gcbss", 0) 2341 sym.Attr |= AttrLocal 2342 ctxt.xdefine("runtime.egcbss", SRODATA, Symaddr(sym)+sym.Size) 2343 ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect 2344 2345 ctxt.xdefine("runtime.symtab", SRODATA, int64(symtab.Vaddr)) 2346 ctxt.xdefine("runtime.esymtab", SRODATA, int64(symtab.Vaddr+symtab.Length)) 2347 ctxt.xdefine("runtime.pclntab", SRODATA, int64(pclntab.Vaddr)) 2348 ctxt.xdefine("runtime.epclntab", SRODATA, int64(pclntab.Vaddr+pclntab.Length)) 2349 ctxt.xdefine("runtime.noptrdata", SNOPTRDATA, int64(noptr.Vaddr)) 2350 ctxt.xdefine("runtime.enoptrdata", SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) 2351 ctxt.xdefine("runtime.bss", SBSS, int64(bss.Vaddr)) 2352 ctxt.xdefine("runtime.ebss", SBSS, int64(bss.Vaddr+bss.Length)) 2353 ctxt.xdefine("runtime.data", SDATA, int64(data.Vaddr)) 2354 ctxt.xdefine("runtime.edata", SDATA, int64(data.Vaddr+data.Length)) 2355 ctxt.xdefine("runtime.noptrbss", SNOPTRBSS, int64(noptrbss.Vaddr)) 2356 ctxt.xdefine("runtime.enoptrbss", SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) 2357 ctxt.xdefine("runtime.end", SBSS, int64(Segdata.Vaddr+Segdata.Length)) 2358 } 2359 2360 // add a trampoline with symbol s (to be laid down after the current function) 2361 func (ctxt *Link) AddTramp(s *Symbol) { 2362 s.Type = STEXT 2363 s.Attr |= AttrReachable 2364 s.Attr |= AttrOnList 2365 ctxt.tramps = append(ctxt.tramps, s) 2366 if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { 2367 ctxt.Logf("trampoline %s inserted\n", s) 2368 } 2369 }