github.com/sanprasirt/go@v0.0.0-20170607001320-a027466e4b6d/src/runtime/malloc.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Memory allocator.
     6  //
     7  // This was originally based on tcmalloc, but has diverged quite a bit.
     8  // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
     9  
    10  // The main allocator works in runs of pages.
    11  // Small allocation sizes (up to and including 32 kB) are
    12  // rounded to one of about 70 size classes, each of which
    13  // has its own free set of objects of exactly that size.
    14  // Any free page of memory can be split into a set of objects
    15  // of one size class, which are then managed using a free bitmap.
    16  //
    17  // The allocator's data structures are:
    18  //
    19  //	fixalloc: a free-list allocator for fixed-size off-heap objects,
    20  //		used to manage storage used by the allocator.
    21  //	mheap: the malloc heap, managed at page (8192-byte) granularity.
    22  //	mspan: a run of pages managed by the mheap.
    23  //	mcentral: collects all spans of a given size class.
    24  //	mcache: a per-P cache of mspans with free space.
    25  //	mstats: allocation statistics.
    26  //
    27  // Allocating a small object proceeds up a hierarchy of caches:
    28  //
    29  //	1. Round the size up to one of the small size classes
    30  //	   and look in the corresponding mspan in this P's mcache.
    31  //	   Scan the mspan's free bitmap to find a free slot.
    32  //	   If there is a free slot, allocate it.
    33  //	   This can all be done without acquiring a lock.
    34  //
    35  //	2. If the mspan has no free slots, obtain a new mspan
    36  //	   from the mcentral's list of mspans of the required size
    37  //	   class that have free space.
    38  //	   Obtaining a whole span amortizes the cost of locking
    39  //	   the mcentral.
    40  //
    41  //	3. If the mcentral's mspan list is empty, obtain a run
    42  //	   of pages from the mheap to use for the mspan.
    43  //
    44  //	4. If the mheap is empty or has no page runs large enough,
    45  //	   allocate a new group of pages (at least 1MB) from the
    46  //	   operating system. Allocating a large run of pages
    47  //	   amortizes the cost of talking to the operating system.
    48  //
    49  // Sweeping an mspan and freeing objects on it proceeds up a similar
    50  // hierarchy:
    51  //
    52  //	1. If the mspan is being swept in response to allocation, it
    53  //	   is returned to the mcache to satisfy the allocation.
    54  //
    55  //	2. Otherwise, if the mspan still has allocated objects in it,
    56  //	   it is placed on the mcentral free list for the mspan's size
    57  //	   class.
    58  //
    59  //	3. Otherwise, if all objects in the mspan are free, the mspan
    60  //	   is now "idle", so it is returned to the mheap and no longer
    61  //	   has a size class.
    62  //	   This may coalesce it with adjacent idle mspans.
    63  //
    64  //	4. If an mspan remains idle for long enough, return its pages
    65  //	   to the operating system.
    66  //
    67  // Allocating and freeing a large object uses the mheap
    68  // directly, bypassing the mcache and mcentral.
    69  //
    70  // Free object slots in an mspan are zeroed only if mspan.needzero is
    71  // false. If needzero is true, objects are zeroed as they are
    72  // allocated. There are various benefits to delaying zeroing this way:
    73  //
    74  //	1. Stack frame allocation can avoid zeroing altogether.
    75  //
    76  //	2. It exhibits better temporal locality, since the program is
    77  //	   probably about to write to the memory.
    78  //
    79  //	3. We don't zero pages that never get reused.
    80  
    81  package runtime
    82  
    83  import (
    84  	"runtime/internal/sys"
    85  	"unsafe"
    86  )
    87  
    88  const (
    89  	debugMalloc = false
    90  
    91  	maxTinySize   = _TinySize
    92  	tinySizeClass = _TinySizeClass
    93  	maxSmallSize  = _MaxSmallSize
    94  
    95  	pageShift = _PageShift
    96  	pageSize  = _PageSize
    97  	pageMask  = _PageMask
    98  	// By construction, single page spans of the smallest object class
    99  	// have the most objects per span.
   100  	maxObjsPerSpan = pageSize / 8
   101  
   102  	mSpanInUse = _MSpanInUse
   103  
   104  	concurrentSweep = _ConcurrentSweep
   105  
   106  	_PageSize = 1 << _PageShift
   107  	_PageMask = _PageSize - 1
   108  
   109  	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
   110  	_64bit = 1 << (^uintptr(0) >> 63) / 2
   111  
   112  	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
   113  	_TinySize      = 16
   114  	_TinySizeClass = int8(2)
   115  
   116  	_FixAllocChunk  = 16 << 10               // Chunk size for FixAlloc
   117  	_MaxMHeapList   = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
   118  	_HeapAllocChunk = 1 << 20                // Chunk size for heap growth
   119  
   120  	// Per-P, per order stack segment cache size.
   121  	_StackCacheSize = 32 * 1024
   122  
   123  	// Number of orders that get caching. Order 0 is FixedStack
   124  	// and each successive order is twice as large.
   125  	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
   126  	// will be allocated directly.
   127  	// Since FixedStack is different on different systems, we
   128  	// must vary NumStackOrders to keep the same maximum cached size.
   129  	//   OS               | FixedStack | NumStackOrders
   130  	//   -----------------+------------+---------------
   131  	//   linux/darwin/bsd | 2KB        | 4
   132  	//   windows/32       | 4KB        | 3
   133  	//   windows/64       | 8KB        | 2
   134  	//   plan9            | 4KB        | 3
   135  	_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
   136  
   137  	// Number of bits in page to span calculations (4k pages).
   138  	// On Windows 64-bit we limit the arena to 32GB or 35 bits.
   139  	// Windows counts memory used by page table into committed memory
   140  	// of the process, so we can't reserve too much memory.
   141  	// See https://golang.org/issue/5402 and https://golang.org/issue/5236.
   142  	// On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
   143  	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
   144  	// The only exception is mips32 which only has access to low 2GB of virtual memory.
   145  	// On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
   146  	// but as most devices have less than 4GB of physical memory anyway, we
   147  	// try to be conservative here, and only ask for a 2GB heap.
   148  	_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
   149  	_MHeapMap_Bits      = _MHeapMap_TotalBits - _PageShift
   150  
   151  	// _MaxMem is the maximum heap arena size minus 1.
   152  	//
   153  	// On 32-bit, this is also the maximum heap pointer value,
   154  	// since the arena starts at address 0.
   155  	_MaxMem = 1<<_MHeapMap_TotalBits - 1
   156  
   157  	// Max number of threads to run garbage collection.
   158  	// 2, 3, and 4 are all plausible maximums depending
   159  	// on the hardware details of the machine. The garbage
   160  	// collector scales well to 32 cpus.
   161  	_MaxGcproc = 32
   162  
   163  	// minLegalPointer is the smallest possible legal pointer.
   164  	// This is the smallest possible architectural page size,
   165  	// since we assume that the first page is never mapped.
   166  	//
   167  	// This should agree with minZeroPage in the compiler.
   168  	minLegalPointer uintptr = 4096
   169  )
   170  
   171  // physPageSize is the size in bytes of the OS's physical pages.
   172  // Mapping and unmapping operations must be done at multiples of
   173  // physPageSize.
   174  //
   175  // This must be set by the OS init code (typically in osinit) before
   176  // mallocinit.
   177  var physPageSize uintptr
   178  
   179  // OS-defined helpers:
   180  //
   181  // sysAlloc obtains a large chunk of zeroed memory from the
   182  // operating system, typically on the order of a hundred kilobytes
   183  // or a megabyte.
   184  // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
   185  // may use larger alignment, so the caller must be careful to realign the
   186  // memory obtained by sysAlloc.
   187  //
   188  // SysUnused notifies the operating system that the contents
   189  // of the memory region are no longer needed and can be reused
   190  // for other purposes.
   191  // SysUsed notifies the operating system that the contents
   192  // of the memory region are needed again.
   193  //
   194  // SysFree returns it unconditionally; this is only used if
   195  // an out-of-memory error has been detected midway through
   196  // an allocation. It is okay if SysFree is a no-op.
   197  //
   198  // SysReserve reserves address space without allocating memory.
   199  // If the pointer passed to it is non-nil, the caller wants the
   200  // reservation there, but SysReserve can still choose another
   201  // location if that one is unavailable. On some systems and in some
   202  // cases SysReserve will simply check that the address space is
   203  // available and not actually reserve it. If SysReserve returns
   204  // non-nil, it sets *reserved to true if the address space is
   205  // reserved, false if it has merely been checked.
   206  // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
   207  // may use larger alignment, so the caller must be careful to realign the
   208  // memory obtained by sysAlloc.
   209  //
   210  // SysMap maps previously reserved address space for use.
   211  // The reserved argument is true if the address space was really
   212  // reserved, not merely checked.
   213  //
   214  // SysFault marks a (already sysAlloc'd) region to fault
   215  // if accessed. Used only for debugging the runtime.
   216  
   217  func mallocinit() {
   218  	if class_to_size[_TinySizeClass] != _TinySize {
   219  		throw("bad TinySizeClass")
   220  	}
   221  
   222  	testdefersizes()
   223  
   224  	// Copy class sizes out for statistics table.
   225  	for i := range class_to_size {
   226  		memstats.by_size[i].size = uint32(class_to_size[i])
   227  	}
   228  
   229  	// Check physPageSize.
   230  	if physPageSize == 0 {
   231  		// The OS init code failed to fetch the physical page size.
   232  		throw("failed to get system page size")
   233  	}
   234  	if physPageSize < minPhysPageSize {
   235  		print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
   236  		throw("bad system page size")
   237  	}
   238  	if physPageSize&(physPageSize-1) != 0 {
   239  		print("system page size (", physPageSize, ") must be a power of 2\n")
   240  		throw("bad system page size")
   241  	}
   242  
   243  	// The auxiliary regions start at p and are laid out in the
   244  	// following order: spans, bitmap, arena.
   245  	var p, pSize uintptr
   246  	var reserved bool
   247  
   248  	// The spans array holds one *mspan per _PageSize of arena.
   249  	var spansSize uintptr = (_MaxMem + 1) / _PageSize * sys.PtrSize
   250  	spansSize = round(spansSize, _PageSize)
   251  	// The bitmap holds 2 bits per word of arena.
   252  	var bitmapSize uintptr = (_MaxMem + 1) / (sys.PtrSize * 8 / 2)
   253  	bitmapSize = round(bitmapSize, _PageSize)
   254  
   255  	// Set up the allocation arena, a contiguous area of memory where
   256  	// allocated data will be found.
   257  	if sys.PtrSize == 8 {
   258  		// On a 64-bit machine, allocate from a single contiguous reservation.
   259  		// 512 GB (MaxMem) should be big enough for now.
   260  		//
   261  		// The code will work with the reservation at any address, but ask
   262  		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
   263  		// Allocating a 512 GB region takes away 39 bits, and the amd64
   264  		// doesn't let us choose the top 17 bits, so that leaves the 9 bits
   265  		// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
   266  		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
   267  		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
   268  		// UTF-8 sequences, and they are otherwise as far away from
   269  		// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
   270  		// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
   271  		// on OS X during thread allocations.  0x00c0 causes conflicts with
   272  		// AddressSanitizer which reserves all memory up to 0x0100.
   273  		// These choices are both for debuggability and to reduce the
   274  		// odds of a conservative garbage collector (as is still used in gccgo)
   275  		// not collecting memory because some non-pointer block of memory
   276  		// had a bit pattern that matched a memory address.
   277  		//
   278  		// Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
   279  		// but it hardly matters: e0 00 is not valid UTF-8 either.
   280  		//
   281  		// If this fails we fall back to the 32 bit memory mechanism
   282  		//
   283  		// However, on arm64, we ignore all this advice above and slam the
   284  		// allocation at 0x40 << 32 because when using 4k pages with 3-level
   285  		// translation buffers, the user address space is limited to 39 bits
   286  		// On darwin/arm64, the address space is even smaller.
   287  		arenaSize := round(_MaxMem, _PageSize)
   288  		pSize = bitmapSize + spansSize + arenaSize + _PageSize
   289  		for i := 0; i <= 0x7f; i++ {
   290  			switch {
   291  			case GOARCH == "arm64" && GOOS == "darwin":
   292  				p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
   293  			case GOARCH == "arm64":
   294  				p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
   295  			default:
   296  				p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
   297  			}
   298  			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
   299  			if p != 0 {
   300  				break
   301  			}
   302  		}
   303  	}
   304  
   305  	if p == 0 {
   306  		// On a 32-bit machine, we can't typically get away
   307  		// with a giant virtual address space reservation.
   308  		// Instead we map the memory information bitmap
   309  		// immediately after the data segment, large enough
   310  		// to handle the entire 4GB address space (256 MB),
   311  		// along with a reservation for an initial arena.
   312  		// When that gets used up, we'll start asking the kernel
   313  		// for any memory anywhere.
   314  
   315  		// We want to start the arena low, but if we're linked
   316  		// against C code, it's possible global constructors
   317  		// have called malloc and adjusted the process' brk.
   318  		// Query the brk so we can avoid trying to map the
   319  		// arena over it (which will cause the kernel to put
   320  		// the arena somewhere else, likely at a high
   321  		// address).
   322  		procBrk := sbrk0()
   323  
   324  		// If we fail to allocate, try again with a smaller arena.
   325  		// This is necessary on Android L where we share a process
   326  		// with ART, which reserves virtual memory aggressively.
   327  		// In the worst case, fall back to a 0-sized initial arena,
   328  		// in the hope that subsequent reservations will succeed.
   329  		arenaSizes := []uintptr{
   330  			512 << 20,
   331  			256 << 20,
   332  			128 << 20,
   333  			0,
   334  		}
   335  
   336  		for _, arenaSize := range arenaSizes {
   337  			// SysReserve treats the address we ask for, end, as a hint,
   338  			// not as an absolute requirement. If we ask for the end
   339  			// of the data segment but the operating system requires
   340  			// a little more space before we can start allocating, it will
   341  			// give out a slightly higher pointer. Except QEMU, which
   342  			// is buggy, as usual: it won't adjust the pointer upward.
   343  			// So adjust it upward a little bit ourselves: 1/4 MB to get
   344  			// away from the running binary image and then round up
   345  			// to a MB boundary.
   346  			p = round(firstmoduledata.end+(1<<18), 1<<20)
   347  			pSize = bitmapSize + spansSize + arenaSize + _PageSize
   348  			if p <= procBrk && procBrk < p+pSize {
   349  				// Move the start above the brk,
   350  				// leaving some room for future brk
   351  				// expansion.
   352  				p = round(procBrk+(1<<20), 1<<20)
   353  			}
   354  			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
   355  			if p != 0 {
   356  				break
   357  			}
   358  		}
   359  		if p == 0 {
   360  			throw("runtime: cannot reserve arena virtual address space")
   361  		}
   362  	}
   363  
   364  	// PageSize can be larger than OS definition of page size,
   365  	// so SysReserve can give us a PageSize-unaligned pointer.
   366  	// To overcome this we ask for PageSize more and round up the pointer.
   367  	p1 := round(p, _PageSize)
   368  	pSize -= p1 - p
   369  
   370  	spansStart := p1
   371  	p1 += spansSize
   372  	mheap_.bitmap = p1 + bitmapSize
   373  	p1 += bitmapSize
   374  	if sys.PtrSize == 4 {
   375  		// Set arena_start such that we can accept memory
   376  		// reservations located anywhere in the 4GB virtual space.
   377  		mheap_.arena_start = 0
   378  	} else {
   379  		mheap_.arena_start = p1
   380  	}
   381  	mheap_.arena_end = p + pSize
   382  	mheap_.arena_used = p1
   383  	mheap_.arena_alloc = p1
   384  	mheap_.arena_reserved = reserved
   385  
   386  	if mheap_.arena_start&(_PageSize-1) != 0 {
   387  		println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
   388  		throw("misrounded allocation in mallocinit")
   389  	}
   390  
   391  	// Initialize the rest of the allocator.
   392  	mheap_.init(spansStart, spansSize)
   393  	_g_ := getg()
   394  	_g_.m.mcache = allocmcache()
   395  }
   396  
   397  // sysAlloc allocates the next n bytes from the heap arena. The
   398  // returned pointer is always _PageSize aligned and between
   399  // h.arena_start and h.arena_end. sysAlloc returns nil on failure.
   400  // There is no corresponding free function.
   401  func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
   402  	// strandLimit is the maximum number of bytes to strand from
   403  	// the current arena block. If we would need to strand more
   404  	// than this, we fall back to sysAlloc'ing just enough for
   405  	// this allocation.
   406  	const strandLimit = 16 << 20
   407  
   408  	if n > h.arena_end-h.arena_alloc {
   409  		// If we haven't grown the arena to _MaxMem yet, try
   410  		// to reserve some more address space.
   411  		p_size := round(n+_PageSize, 256<<20)
   412  		new_end := h.arena_end + p_size // Careful: can overflow
   413  		if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxMem {
   414  			// TODO: It would be bad if part of the arena
   415  			// is reserved and part is not.
   416  			var reserved bool
   417  			p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
   418  			if p == 0 {
   419  				return nil
   420  			}
   421  			// p can be just about anywhere in the address
   422  			// space, including before arena_end.
   423  			if p == h.arena_end {
   424  				// The new block is contiguous with
   425  				// the current block. Extend the
   426  				// current arena block.
   427  				h.arena_end = new_end
   428  				h.arena_reserved = reserved
   429  			} else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxMem && h.arena_end-h.arena_alloc < strandLimit {
   430  				// We were able to reserve more memory
   431  				// within the arena space, but it's
   432  				// not contiguous with our previous
   433  				// reservation. It could be before or
   434  				// after our current arena_used.
   435  				//
   436  				// Keep everything page-aligned.
   437  				// Our pages are bigger than hardware pages.
   438  				h.arena_end = p + p_size
   439  				p = round(p, _PageSize)
   440  				h.arena_alloc = p
   441  				h.arena_reserved = reserved
   442  			} else {
   443  				// We got a mapping, but either
   444  				//
   445  				// 1) It's not in the arena, so we
   446  				// can't use it. (This should never
   447  				// happen on 32-bit.)
   448  				//
   449  				// 2) We would need to discard too
   450  				// much of our current arena block to
   451  				// use it.
   452  				//
   453  				// We haven't added this allocation to
   454  				// the stats, so subtract it from a
   455  				// fake stat (but avoid underflow).
   456  				//
   457  				// We'll fall back to a small sysAlloc.
   458  				stat := uint64(p_size)
   459  				sysFree(unsafe.Pointer(p), p_size, &stat)
   460  			}
   461  		}
   462  	}
   463  
   464  	if n <= h.arena_end-h.arena_alloc {
   465  		// Keep taking from our reservation.
   466  		p := h.arena_alloc
   467  		sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
   468  		h.arena_alloc += n
   469  		if h.arena_alloc > h.arena_used {
   470  			h.setArenaUsed(h.arena_alloc, true)
   471  		}
   472  
   473  		if p&(_PageSize-1) != 0 {
   474  			throw("misrounded allocation in MHeap_SysAlloc")
   475  		}
   476  		return unsafe.Pointer(p)
   477  	}
   478  
   479  	// If using 64-bit, our reservation is all we have.
   480  	if sys.PtrSize != 4 {
   481  		return nil
   482  	}
   483  
   484  	// On 32-bit, once the reservation is gone we can
   485  	// try to get memory at a location chosen by the OS.
   486  	p_size := round(n, _PageSize) + _PageSize
   487  	p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
   488  	if p == 0 {
   489  		return nil
   490  	}
   491  
   492  	if p < h.arena_start || p+p_size-h.arena_start > _MaxMem {
   493  		// This shouldn't be possible because _MaxMem is the
   494  		// whole address space on 32-bit.
   495  		top := uint64(h.arena_start) + _MaxMem
   496  		print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
   497  		sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
   498  		return nil
   499  	}
   500  
   501  	p += -p & (_PageSize - 1)
   502  	if p+n > h.arena_used {
   503  		h.setArenaUsed(p+n, true)
   504  	}
   505  
   506  	if p&(_PageSize-1) != 0 {
   507  		throw("misrounded allocation in MHeap_SysAlloc")
   508  	}
   509  	return unsafe.Pointer(p)
   510  }
   511  
   512  // base address for all 0-byte allocations
   513  var zerobase uintptr
   514  
   515  // nextFreeFast returns the next free object if one is quickly available.
   516  // Otherwise it returns 0.
   517  func nextFreeFast(s *mspan) gclinkptr {
   518  	theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
   519  	if theBit < 64 {
   520  		result := s.freeindex + uintptr(theBit)
   521  		if result < s.nelems {
   522  			freeidx := result + 1
   523  			if freeidx%64 == 0 && freeidx != s.nelems {
   524  				return 0
   525  			}
   526  			s.allocCache >>= uint(theBit + 1)
   527  			s.freeindex = freeidx
   528  			v := gclinkptr(result*s.elemsize + s.base())
   529  			s.allocCount++
   530  			return v
   531  		}
   532  	}
   533  	return 0
   534  }
   535  
   536  // nextFree returns the next free object from the cached span if one is available.
   537  // Otherwise it refills the cache with a span with an available object and
   538  // returns that object along with a flag indicating that this was a heavy
   539  // weight allocation. If it is a heavy weight allocation the caller must
   540  // determine whether a new GC cycle needs to be started or if the GC is active
   541  // whether this goroutine needs to assist the GC.
   542  func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
   543  	s = c.alloc[spc]
   544  	shouldhelpgc = false
   545  	freeIndex := s.nextFreeIndex()
   546  	if freeIndex == s.nelems {
   547  		// The span is full.
   548  		if uintptr(s.allocCount) != s.nelems {
   549  			println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
   550  			throw("s.allocCount != s.nelems && freeIndex == s.nelems")
   551  		}
   552  		systemstack(func() {
   553  			c.refill(spc)
   554  		})
   555  		shouldhelpgc = true
   556  		s = c.alloc[spc]
   557  
   558  		freeIndex = s.nextFreeIndex()
   559  	}
   560  
   561  	if freeIndex >= s.nelems {
   562  		throw("freeIndex is not valid")
   563  	}
   564  
   565  	v = gclinkptr(freeIndex*s.elemsize + s.base())
   566  	s.allocCount++
   567  	if uintptr(s.allocCount) > s.nelems {
   568  		println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
   569  		throw("s.allocCount > s.nelems")
   570  	}
   571  	return
   572  }
   573  
   574  // Allocate an object of size bytes.
   575  // Small objects are allocated from the per-P cache's free lists.
   576  // Large objects (> 32 kB) are allocated straight from the heap.
   577  func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
   578  	if gcphase == _GCmarktermination {
   579  		throw("mallocgc called with gcphase == _GCmarktermination")
   580  	}
   581  
   582  	if size == 0 {
   583  		return unsafe.Pointer(&zerobase)
   584  	}
   585  
   586  	if debug.sbrk != 0 {
   587  		align := uintptr(16)
   588  		if typ != nil {
   589  			align = uintptr(typ.align)
   590  		}
   591  		return persistentalloc(size, align, &memstats.other_sys)
   592  	}
   593  
   594  	// assistG is the G to charge for this allocation, or nil if
   595  	// GC is not currently active.
   596  	var assistG *g
   597  	if gcBlackenEnabled != 0 {
   598  		// Charge the current user G for this allocation.
   599  		assistG = getg()
   600  		if assistG.m.curg != nil {
   601  			assistG = assistG.m.curg
   602  		}
   603  		// Charge the allocation against the G. We'll account
   604  		// for internal fragmentation at the end of mallocgc.
   605  		assistG.gcAssistBytes -= int64(size)
   606  
   607  		if assistG.gcAssistBytes < 0 {
   608  			// This G is in debt. Assist the GC to correct
   609  			// this before allocating. This must happen
   610  			// before disabling preemption.
   611  			gcAssistAlloc(assistG)
   612  		}
   613  	}
   614  
   615  	// Set mp.mallocing to keep from being preempted by GC.
   616  	mp := acquirem()
   617  	if mp.mallocing != 0 {
   618  		throw("malloc deadlock")
   619  	}
   620  	if mp.gsignal == getg() {
   621  		throw("malloc during signal")
   622  	}
   623  	mp.mallocing = 1
   624  
   625  	shouldhelpgc := false
   626  	dataSize := size
   627  	c := gomcache()
   628  	var x unsafe.Pointer
   629  	noscan := typ == nil || typ.kind&kindNoPointers != 0
   630  	if size <= maxSmallSize {
   631  		if noscan && size < maxTinySize {
   632  			// Tiny allocator.
   633  			//
   634  			// Tiny allocator combines several tiny allocation requests
   635  			// into a single memory block. The resulting memory block
   636  			// is freed when all subobjects are unreachable. The subobjects
   637  			// must be noscan (don't have pointers), this ensures that
   638  			// the amount of potentially wasted memory is bounded.
   639  			//
   640  			// Size of the memory block used for combining (maxTinySize) is tunable.
   641  			// Current setting is 16 bytes, which relates to 2x worst case memory
   642  			// wastage (when all but one subobjects are unreachable).
   643  			// 8 bytes would result in no wastage at all, but provides less
   644  			// opportunities for combining.
   645  			// 32 bytes provides more opportunities for combining,
   646  			// but can lead to 4x worst case wastage.
   647  			// The best case winning is 8x regardless of block size.
   648  			//
   649  			// Objects obtained from tiny allocator must not be freed explicitly.
   650  			// So when an object will be freed explicitly, we ensure that
   651  			// its size >= maxTinySize.
   652  			//
   653  			// SetFinalizer has a special case for objects potentially coming
   654  			// from tiny allocator, it such case it allows to set finalizers
   655  			// for an inner byte of a memory block.
   656  			//
   657  			// The main targets of tiny allocator are small strings and
   658  			// standalone escaping variables. On a json benchmark
   659  			// the allocator reduces number of allocations by ~12% and
   660  			// reduces heap size by ~20%.
   661  			off := c.tinyoffset
   662  			// Align tiny pointer for required (conservative) alignment.
   663  			if size&7 == 0 {
   664  				off = round(off, 8)
   665  			} else if size&3 == 0 {
   666  				off = round(off, 4)
   667  			} else if size&1 == 0 {
   668  				off = round(off, 2)
   669  			}
   670  			if off+size <= maxTinySize && c.tiny != 0 {
   671  				// The object fits into existing tiny block.
   672  				x = unsafe.Pointer(c.tiny + off)
   673  				c.tinyoffset = off + size
   674  				c.local_tinyallocs++
   675  				mp.mallocing = 0
   676  				releasem(mp)
   677  				return x
   678  			}
   679  			// Allocate a new maxTinySize block.
   680  			span := c.alloc[tinySpanClass]
   681  			v := nextFreeFast(span)
   682  			if v == 0 {
   683  				v, _, shouldhelpgc = c.nextFree(tinySpanClass)
   684  			}
   685  			x = unsafe.Pointer(v)
   686  			(*[2]uint64)(x)[0] = 0
   687  			(*[2]uint64)(x)[1] = 0
   688  			// See if we need to replace the existing tiny block with the new one
   689  			// based on amount of remaining free space.
   690  			if size < c.tinyoffset || c.tiny == 0 {
   691  				c.tiny = uintptr(x)
   692  				c.tinyoffset = size
   693  			}
   694  			size = maxTinySize
   695  		} else {
   696  			var sizeclass uint8
   697  			if size <= smallSizeMax-8 {
   698  				sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
   699  			} else {
   700  				sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
   701  			}
   702  			size = uintptr(class_to_size[sizeclass])
   703  			spc := makeSpanClass(sizeclass, noscan)
   704  			span := c.alloc[spc]
   705  			v := nextFreeFast(span)
   706  			if v == 0 {
   707  				v, span, shouldhelpgc = c.nextFree(spc)
   708  			}
   709  			x = unsafe.Pointer(v)
   710  			if needzero && span.needzero != 0 {
   711  				memclrNoHeapPointers(unsafe.Pointer(v), size)
   712  			}
   713  		}
   714  	} else {
   715  		var s *mspan
   716  		shouldhelpgc = true
   717  		systemstack(func() {
   718  			s = largeAlloc(size, needzero, noscan)
   719  		})
   720  		s.freeindex = 1
   721  		s.allocCount = 1
   722  		x = unsafe.Pointer(s.base())
   723  		size = s.elemsize
   724  	}
   725  
   726  	var scanSize uintptr
   727  	if !noscan {
   728  		// If allocating a defer+arg block, now that we've picked a malloc size
   729  		// large enough to hold everything, cut the "asked for" size down to
   730  		// just the defer header, so that the GC bitmap will record the arg block
   731  		// as containing nothing at all (as if it were unused space at the end of
   732  		// a malloc block caused by size rounding).
   733  		// The defer arg areas are scanned as part of scanstack.
   734  		if typ == deferType {
   735  			dataSize = unsafe.Sizeof(_defer{})
   736  		}
   737  		heapBitsSetType(uintptr(x), size, dataSize, typ)
   738  		if dataSize > typ.size {
   739  			// Array allocation. If there are any
   740  			// pointers, GC has to scan to the last
   741  			// element.
   742  			if typ.ptrdata != 0 {
   743  				scanSize = dataSize - typ.size + typ.ptrdata
   744  			}
   745  		} else {
   746  			scanSize = typ.ptrdata
   747  		}
   748  		c.local_scan += scanSize
   749  	}
   750  
   751  	// Ensure that the stores above that initialize x to
   752  	// type-safe memory and set the heap bits occur before
   753  	// the caller can make x observable to the garbage
   754  	// collector. Otherwise, on weakly ordered machines,
   755  	// the garbage collector could follow a pointer to x,
   756  	// but see uninitialized memory or stale heap bits.
   757  	publicationBarrier()
   758  
   759  	// Allocate black during GC.
   760  	// All slots hold nil so no scanning is needed.
   761  	// This may be racing with GC so do it atomically if there can be
   762  	// a race marking the bit.
   763  	if gcphase != _GCoff {
   764  		gcmarknewobject(uintptr(x), size, scanSize)
   765  	}
   766  
   767  	if raceenabled {
   768  		racemalloc(x, size)
   769  	}
   770  
   771  	if msanenabled {
   772  		msanmalloc(x, size)
   773  	}
   774  
   775  	mp.mallocing = 0
   776  	releasem(mp)
   777  
   778  	if debug.allocfreetrace != 0 {
   779  		tracealloc(x, size, typ)
   780  	}
   781  
   782  	if rate := MemProfileRate; rate > 0 {
   783  		if size < uintptr(rate) && int32(size) < c.next_sample {
   784  			c.next_sample -= int32(size)
   785  		} else {
   786  			mp := acquirem()
   787  			profilealloc(mp, x, size)
   788  			releasem(mp)
   789  		}
   790  	}
   791  
   792  	if assistG != nil {
   793  		// Account for internal fragmentation in the assist
   794  		// debt now that we know it.
   795  		assistG.gcAssistBytes -= int64(size - dataSize)
   796  	}
   797  
   798  	if shouldhelpgc {
   799  		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
   800  			gcStart(gcBackgroundMode, t)
   801  		}
   802  	}
   803  
   804  	return x
   805  }
   806  
   807  func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
   808  	// print("largeAlloc size=", size, "\n")
   809  
   810  	if size+_PageSize < size {
   811  		throw("out of memory")
   812  	}
   813  	npages := size >> _PageShift
   814  	if size&_PageMask != 0 {
   815  		npages++
   816  	}
   817  
   818  	// Deduct credit for this span allocation and sweep if
   819  	// necessary. mHeap_Alloc will also sweep npages, so this only
   820  	// pays the debt down to npage pages.
   821  	deductSweepCredit(npages*_PageSize, npages)
   822  
   823  	s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero)
   824  	if s == nil {
   825  		throw("out of memory")
   826  	}
   827  	s.limit = s.base() + size
   828  	heapBitsForSpan(s.base()).initSpan(s)
   829  	return s
   830  }
   831  
   832  // implementation of new builtin
   833  // compiler (both frontend and SSA backend) knows the signature
   834  // of this function
   835  func newobject(typ *_type) unsafe.Pointer {
   836  	return mallocgc(typ.size, typ, true)
   837  }
   838  
   839  //go:linkname reflect_unsafe_New reflect.unsafe_New
   840  func reflect_unsafe_New(typ *_type) unsafe.Pointer {
   841  	return newobject(typ)
   842  }
   843  
   844  // newarray allocates an array of n elements of type typ.
   845  func newarray(typ *_type, n int) unsafe.Pointer {
   846  	if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
   847  		panic(plainError("runtime: allocation size out of range"))
   848  	}
   849  	return mallocgc(typ.size*uintptr(n), typ, true)
   850  }
   851  
   852  //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
   853  func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
   854  	return newarray(typ, n)
   855  }
   856  
   857  func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
   858  	mp.mcache.next_sample = nextSample()
   859  	mProf_Malloc(x, size)
   860  }
   861  
   862  // nextSample returns the next sampling point for heap profiling.
   863  // It produces a random variable with a geometric distribution and
   864  // mean MemProfileRate. This is done by generating a uniformly
   865  // distributed random number and applying the cumulative distribution
   866  // function for an exponential.
   867  func nextSample() int32 {
   868  	if GOOS == "plan9" {
   869  		// Plan 9 doesn't support floating point in note handler.
   870  		if g := getg(); g == g.m.gsignal {
   871  			return nextSampleNoFP()
   872  		}
   873  	}
   874  
   875  	period := MemProfileRate
   876  
   877  	// make nextSample not overflow. Maximum possible step is
   878  	// -ln(1/(1<<kRandomBitCount)) * period, approximately 20 * period.
   879  	switch {
   880  	case period > 0x7000000:
   881  		period = 0x7000000
   882  	case period == 0:
   883  		return 0
   884  	}
   885  
   886  	// Let m be the sample rate,
   887  	// the probability distribution function is m*exp(-mx), so the CDF is
   888  	// p = 1 - exp(-mx), so
   889  	// q = 1 - p == exp(-mx)
   890  	// log_e(q) = -mx
   891  	// -log_e(q)/m = x
   892  	// x = -log_e(q) * period
   893  	// x = log_2(q) * (-log_e(2)) * period    ; Using log_2 for efficiency
   894  	const randomBitCount = 26
   895  	q := fastrand()%(1<<randomBitCount) + 1
   896  	qlog := fastlog2(float64(q)) - randomBitCount
   897  	if qlog > 0 {
   898  		qlog = 0
   899  	}
   900  	const minusLog2 = -0.6931471805599453 // -ln(2)
   901  	return int32(qlog*(minusLog2*float64(period))) + 1
   902  }
   903  
   904  // nextSampleNoFP is similar to nextSample, but uses older,
   905  // simpler code to avoid floating point.
   906  func nextSampleNoFP() int32 {
   907  	// Set first allocation sample size.
   908  	rate := MemProfileRate
   909  	if rate > 0x3fffffff { // make 2*rate not overflow
   910  		rate = 0x3fffffff
   911  	}
   912  	if rate != 0 {
   913  		return int32(fastrand() % uint32(2*rate))
   914  	}
   915  	return 0
   916  }
   917  
   918  type persistentAlloc struct {
   919  	base unsafe.Pointer
   920  	off  uintptr
   921  }
   922  
   923  var globalAlloc struct {
   924  	mutex
   925  	persistentAlloc
   926  }
   927  
   928  // Wrapper around sysAlloc that can allocate small chunks.
   929  // There is no associated free operation.
   930  // Intended for things like function/type/debug-related persistent data.
   931  // If align is 0, uses default align (currently 8).
   932  // The returned memory will be zeroed.
   933  //
   934  // Consider marking persistentalloc'd types go:notinheap.
   935  func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
   936  	var p unsafe.Pointer
   937  	systemstack(func() {
   938  		p = persistentalloc1(size, align, sysStat)
   939  	})
   940  	return p
   941  }
   942  
   943  // Must run on system stack because stack growth can (re)invoke it.
   944  // See issue 9174.
   945  //go:systemstack
   946  func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer {
   947  	const (
   948  		chunk    = 256 << 10
   949  		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
   950  	)
   951  
   952  	if size == 0 {
   953  		throw("persistentalloc: size == 0")
   954  	}
   955  	if align != 0 {
   956  		if align&(align-1) != 0 {
   957  			throw("persistentalloc: align is not a power of 2")
   958  		}
   959  		if align > _PageSize {
   960  			throw("persistentalloc: align is too large")
   961  		}
   962  	} else {
   963  		align = 8
   964  	}
   965  
   966  	if size >= maxBlock {
   967  		return sysAlloc(size, sysStat)
   968  	}
   969  
   970  	mp := acquirem()
   971  	var persistent *persistentAlloc
   972  	if mp != nil && mp.p != 0 {
   973  		persistent = &mp.p.ptr().palloc
   974  	} else {
   975  		lock(&globalAlloc.mutex)
   976  		persistent = &globalAlloc.persistentAlloc
   977  	}
   978  	persistent.off = round(persistent.off, align)
   979  	if persistent.off+size > chunk || persistent.base == nil {
   980  		persistent.base = sysAlloc(chunk, &memstats.other_sys)
   981  		if persistent.base == nil {
   982  			if persistent == &globalAlloc.persistentAlloc {
   983  				unlock(&globalAlloc.mutex)
   984  			}
   985  			throw("runtime: cannot allocate memory")
   986  		}
   987  		persistent.off = 0
   988  	}
   989  	p := add(persistent.base, persistent.off)
   990  	persistent.off += size
   991  	releasem(mp)
   992  	if persistent == &globalAlloc.persistentAlloc {
   993  		unlock(&globalAlloc.mutex)
   994  	}
   995  
   996  	if sysStat != &memstats.other_sys {
   997  		mSysStatInc(sysStat, size)
   998  		mSysStatDec(&memstats.other_sys, size)
   999  	}
  1000  	return p
  1001  }