github.com/sanprasirt/go@v0.0.0-20170607001320-a027466e4b6d/src/runtime/vlop_arm.s (about)

     1  // Inferno's libkern/vlop-arm.s
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/libkern/vlop-arm.s
     3  //
     4  //         Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
     5  //         Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com).  All rights reserved.
     6  //         Portions Copyright 2009 The Go Authors. All rights reserved.
     7  //
     8  // Permission is hereby granted, free of charge, to any person obtaining a copy
     9  // of this software and associated documentation files (the "Software"), to deal
    10  // in the Software without restriction, including without limitation the rights
    11  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    12  // copies of the Software, and to permit persons to whom the Software is
    13  // furnished to do so, subject to the following conditions:
    14  //
    15  // The above copyright notice and this permission notice shall be included in
    16  // all copies or substantial portions of the Software.
    17  //
    18  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    19  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    20  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    21  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    22  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    23  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    24  // THE SOFTWARE.
    25  
    26  #include "go_asm.h"
    27  #include "go_tls.h"
    28  #include "funcdata.h"
    29  #include "textflag.h"
    30  
    31  /* replaced use of R10 by R11 because the former can be the data segment base register */
    32  
    33  TEXT _mulv(SB), NOSPLIT, $0
    34  	MOVW	l0+0(FP), R2	/* l0 */
    35  	MOVW	h0+4(FP), R11	/* h0 */
    36  	MOVW	l1+8(FP), R4	/* l1 */
    37  	MOVW	h1+12(FP), R5	/* h1 */
    38  	MULLU	R4, R2, (R7,R6)
    39  	MUL	R11, R4, R8
    40  	ADD	R8, R7
    41  	MUL	R2, R5, R8
    42  	ADD	R8, R7
    43  	MOVW	R6, ret_lo+16(FP)
    44  	MOVW	R7, ret_hi+20(FP)
    45  	RET
    46  
    47  // trampoline for _sfloat2. passes LR as arg0 and
    48  // saves registers R0-R13 and CPSR on the stack. R0-R12 and CPSR flags can
    49  // be changed by _sfloat2.
    50  TEXT _sfloat(SB), NOSPLIT, $68-0 // 4 arg + 14*4 saved regs + cpsr + return value
    51  	MOVW	R14, 4(R13)
    52  	MOVW	R0, 8(R13)
    53  	MOVW	$12(R13), R0
    54  	MOVM.IA.W	[R1-R12], (R0)
    55  	MOVW	$72(R13), R1 // correct for frame size
    56  	MOVW	R1, 60(R13)
    57  	WORD	$0xe10f1000 // mrs r1, cpsr
    58  	MOVW	R1, 64(R13)
    59  	// Disable preemption of this goroutine during _sfloat2 by
    60  	// m->locks++ and m->locks-- around the call.
    61  	// Rescheduling this goroutine may cause the loss of the
    62  	// contents of the software floating point registers in 
    63  	// m->freghi, m->freglo, m->fflag, if the goroutine is moved
    64  	// to a different m or another goroutine runs on this m.
    65  	// Rescheduling at ordinary function calls is okay because
    66  	// all registers are caller save, but _sfloat2 and the things
    67  	// that it runs are simulating the execution of individual
    68  	// program instructions, and those instructions do not expect
    69  	// the floating point registers to be lost.
    70  	// An alternative would be to move the software floating point
    71  	// registers into G, but they do not need to be kept at the 
    72  	// usual places a goroutine reschedules (at function calls),
    73  	// so it would be a waste of 132 bytes per G.
    74  	MOVW	g_m(g), R8
    75  	MOVW	m_locks(R8), R1
    76  	ADD	$1, R1
    77  	MOVW	R1, m_locks(R8)
    78  	MOVW	$1, R1
    79  	MOVW	R1, m_softfloat(R8)
    80  	BL	runtime·_sfloat2(SB)
    81  	MOVW	68(R13), R0
    82  	MOVW	g_m(g), R8
    83  	MOVW	m_locks(R8), R1
    84  	SUB	$1, R1
    85  	MOVW	R1, m_locks(R8)
    86  	MOVW	$0, R1
    87  	MOVW	R1, m_softfloat(R8)
    88  	MOVW	R0, 0(R13)
    89  	MOVW	64(R13), R1
    90  	WORD	$0xe128f001	// msr cpsr_f, r1
    91  	MOVW	$12(R13), R0
    92  	// Restore R1-R12, R0.
    93  	MOVM.IA.W	(R0), [R1-R12]
    94  	MOVW	8(R13), R0
    95  	RET
    96  
    97  // trampoline for _sfloat2 panic.
    98  // _sfloat2 instructs _sfloat to return here.
    99  // We need to push a fake saved LR onto the stack,
   100  // load the signal fault address into LR, and jump
   101  // to the real sigpanic.
   102  // This simulates what sighandler does for a memory fault.
   103  TEXT runtime·_sfloatpanic(SB),NOSPLIT,$-4
   104  	MOVW	$0, R0
   105  	MOVW.W	R0, -4(R13)
   106  	MOVW	g_sigpc(g), LR
   107  	B	runtime·sigpanic(SB)
   108  
   109  // func runtime·udiv(n, d uint32) (q, r uint32)
   110  // compiler knowns the register usage of this function
   111  // Reference: 
   112  // Sloss, Andrew et. al; ARM System Developer's Guide: Designing and Optimizing System Software
   113  // Morgan Kaufmann; 1 edition (April 8, 2004), ISBN 978-1558608740
   114  #define Rq	R0 // input d, output q
   115  #define Rr	R1 // input n, output r
   116  #define Rs	R2 // three temporary variables
   117  #define RM	R3
   118  #define Ra	R11
   119  
   120  // Be careful: Ra == R11 will be used by the linker for synthesized instructions.
   121  TEXT runtime·udiv(SB),NOSPLIT,$-4
   122  	MOVBU	runtime·hardDiv(SB), Ra
   123  	CMP	$0, Ra
   124  	BNE	udiv_hardware
   125  
   126  	CLZ 	Rq, Rs // find normalizing shift
   127  	MOVW.S	Rq<<Rs, Ra
   128  	MOVW	$fast_udiv_tab<>-64(SB), RM
   129  	ADD.NE	Ra>>25, RM, Ra // index by most significant 7 bits of divisor
   130  	MOVBU.NE	(Ra), Ra
   131  
   132  	SUB.S	$7, Rs
   133  	RSB 	$0, Rq, RM // M = -q
   134  	MOVW.PL	Ra<<Rs, Rq
   135  
   136  	// 1st Newton iteration
   137  	MUL.PL	RM, Rq, Ra // a = -q*d
   138  	BMI 	udiv_by_large_d
   139  	MULAWT	Ra, Rq, Rq, Rq // q approx q-(q*q*d>>32)
   140  	TEQ 	RM->1, RM // check for d=0 or d=1
   141  
   142  	// 2nd Newton iteration
   143  	MUL.NE	RM, Rq, Ra
   144  	MOVW.NE	$0, Rs
   145  	MULAL.NE Rq, Ra, (Rq,Rs)
   146  	BEQ 	udiv_by_0_or_1
   147  
   148  	// q now accurate enough for a remainder r, 0<=r<3*d
   149  	MULLU	Rq, Rr, (Rq,Rs) // q = (r * q) >> 32
   150  	ADD 	RM, Rr, Rr // r = n - d
   151  	MULA	RM, Rq, Rr, Rr // r = n - (q+1)*d
   152  
   153  	// since 0 <= n-q*d < 3*d; thus -d <= r < 2*d
   154  	CMN 	RM, Rr // t = r-d
   155  	SUB.CS	RM, Rr, Rr // if (t<-d || t>=0) r=r+d
   156  	ADD.CC	$1, Rq
   157  	ADD.PL	RM<<1, Rr
   158  	ADD.PL	$2, Rq
   159  	RET
   160  
   161  // use hardware divider
   162  udiv_hardware:
   163  	DIVUHW	Rq, Rr, Rs
   164  	MUL	Rs, Rq, RM
   165  	RSB	Rr, RM, Rr
   166  	MOVW	Rs, Rq
   167  	RET
   168  
   169  udiv_by_large_d:
   170  	// at this point we know d>=2^(31-6)=2^25
   171  	SUB 	$4, Ra, Ra
   172  	RSB 	$0, Rs, Rs
   173  	MOVW	Ra>>Rs, Rq
   174  	MULLU	Rq, Rr, (Rq,Rs)
   175  	MULA	RM, Rq, Rr, Rr
   176  
   177  	// q now accurate enough for a remainder r, 0<=r<4*d
   178  	CMN 	Rr>>1, RM // if(r/2 >= d)
   179  	ADD.CS	RM<<1, Rr
   180  	ADD.CS	$2, Rq
   181  	CMN 	Rr, RM
   182  	ADD.CS	RM, Rr
   183  	ADD.CS	$1, Rq
   184  	RET
   185  
   186  udiv_by_0_or_1:
   187  	// carry set if d==1, carry clear if d==0
   188  	BCC udiv_by_0
   189  	MOVW	Rr, Rq
   190  	MOVW	$0, Rr
   191  	RET
   192  
   193  udiv_by_0:
   194  	MOVW	$runtime·panicdivide(SB), R11
   195  	B	(R11)
   196  
   197  // var tab [64]byte
   198  // tab[0] = 255; for i := 1; i <= 63; i++ { tab[i] = (1<<14)/(64+i) }
   199  // laid out here as little-endian uint32s
   200  DATA fast_udiv_tab<>+0x00(SB)/4, $0xf4f8fcff
   201  DATA fast_udiv_tab<>+0x04(SB)/4, $0xe6eaedf0
   202  DATA fast_udiv_tab<>+0x08(SB)/4, $0xdadde0e3
   203  DATA fast_udiv_tab<>+0x0c(SB)/4, $0xcfd2d4d7
   204  DATA fast_udiv_tab<>+0x10(SB)/4, $0xc5c7cacc
   205  DATA fast_udiv_tab<>+0x14(SB)/4, $0xbcbec0c3
   206  DATA fast_udiv_tab<>+0x18(SB)/4, $0xb4b6b8ba
   207  DATA fast_udiv_tab<>+0x1c(SB)/4, $0xacaeb0b2
   208  DATA fast_udiv_tab<>+0x20(SB)/4, $0xa5a7a8aa
   209  DATA fast_udiv_tab<>+0x24(SB)/4, $0x9fa0a2a3
   210  DATA fast_udiv_tab<>+0x28(SB)/4, $0x999a9c9d
   211  DATA fast_udiv_tab<>+0x2c(SB)/4, $0x93949697
   212  DATA fast_udiv_tab<>+0x30(SB)/4, $0x8e8f9092
   213  DATA fast_udiv_tab<>+0x34(SB)/4, $0x898a8c8d
   214  DATA fast_udiv_tab<>+0x38(SB)/4, $0x85868788
   215  DATA fast_udiv_tab<>+0x3c(SB)/4, $0x81828384
   216  GLOBL fast_udiv_tab<>(SB), RODATA, $64
   217  
   218  // The linker will pass numerator in R8
   219  #define Rn R8
   220  // The linker expects the result in RTMP
   221  #define RTMP R11
   222  
   223  TEXT _divu(SB), NOSPLIT, $16-0
   224  	// It's not strictly true that there are no local pointers.
   225  	// It could be that the saved registers Rq, Rr, Rs, and Rm
   226  	// contain pointers. However, the only way this can matter
   227  	// is if the stack grows (which it can't, udiv is nosplit)
   228  	// or if a fault happens and more frames are added to
   229  	// the stack due to deferred functions.
   230  	// In the latter case, the stack can grow arbitrarily,
   231  	// and garbage collection can happen, and those
   232  	// operations care about pointers, but in that case
   233  	// the calling frame is dead, and so are the saved
   234  	// registers. So we can claim there are no pointers here.
   235  	NO_LOCAL_POINTERS
   236  	MOVW	Rq, 4(R13)
   237  	MOVW	Rr, 8(R13)
   238  	MOVW	Rs, 12(R13)
   239  	MOVW	RM, 16(R13)
   240  
   241  	MOVW	Rn, Rr			/* numerator */
   242  	MOVW	g_m(g), Rq
   243  	MOVW	m_divmod(Rq), Rq	/* denominator */
   244  	BL  	runtime·udiv(SB)
   245  	MOVW	Rq, RTMP
   246  	MOVW	4(R13), Rq
   247  	MOVW	8(R13), Rr
   248  	MOVW	12(R13), Rs
   249  	MOVW	16(R13), RM
   250  	RET
   251  
   252  TEXT _modu(SB), NOSPLIT, $16-0
   253  	NO_LOCAL_POINTERS
   254  	MOVW	Rq, 4(R13)
   255  	MOVW	Rr, 8(R13)
   256  	MOVW	Rs, 12(R13)
   257  	MOVW	RM, 16(R13)
   258  
   259  	MOVW	Rn, Rr			/* numerator */
   260  	MOVW	g_m(g), Rq
   261  	MOVW	m_divmod(Rq), Rq	/* denominator */
   262  	BL  	runtime·udiv(SB)
   263  	MOVW	Rr, RTMP
   264  	MOVW	4(R13), Rq
   265  	MOVW	8(R13), Rr
   266  	MOVW	12(R13), Rs
   267  	MOVW	16(R13), RM
   268  	RET
   269  
   270  TEXT _div(SB),NOSPLIT,$16-0
   271  	NO_LOCAL_POINTERS
   272  	MOVW	Rq, 4(R13)
   273  	MOVW	Rr, 8(R13)
   274  	MOVW	Rs, 12(R13)
   275  	MOVW	RM, 16(R13)
   276  	MOVW	Rn, Rr			/* numerator */
   277  	MOVW	g_m(g), Rq
   278  	MOVW	m_divmod(Rq), Rq	/* denominator */
   279  	CMP 	$0, Rr
   280  	BGE 	d1
   281  	RSB 	$0, Rr, Rr
   282  	CMP 	$0, Rq
   283  	BGE 	d2
   284  	RSB 	$0, Rq, Rq
   285  d0:
   286  	BL  	runtime·udiv(SB)  	/* none/both neg */
   287  	MOVW	Rq, RTMP
   288  	B	out1
   289  d1:
   290  	CMP 	$0, Rq
   291  	BGE 	d0
   292  	RSB 	$0, Rq, Rq
   293  d2:
   294  	BL  	runtime·udiv(SB)  	/* one neg */
   295  	RSB	$0, Rq, RTMP
   296  out1:
   297  	MOVW	4(R13), Rq
   298  	MOVW	8(R13), Rr
   299  	MOVW	12(R13), Rs
   300  	MOVW	16(R13), RM
   301  	RET
   302  
   303  TEXT _mod(SB),NOSPLIT,$16-0
   304  	NO_LOCAL_POINTERS
   305  	MOVW	Rq, 4(R13)
   306  	MOVW	Rr, 8(R13)
   307  	MOVW	Rs, 12(R13)
   308  	MOVW	RM, 16(R13)
   309  	MOVW	Rn, Rr			/* numerator */
   310  	MOVW	g_m(g), Rq
   311  	MOVW	m_divmod(Rq), Rq	/* denominator */
   312  	CMP 	$0, Rq
   313  	RSB.LT	$0, Rq, Rq
   314  	CMP 	$0, Rr
   315  	BGE 	m1
   316  	RSB 	$0, Rr, Rr
   317  	BL  	runtime·udiv(SB)  	/* neg numerator */
   318  	RSB 	$0, Rr, RTMP
   319  	B   	out
   320  m1:
   321  	BL  	runtime·udiv(SB)  	/* pos numerator */
   322  	MOVW	Rr, RTMP
   323  out:
   324  	MOVW	4(R13), Rq
   325  	MOVW	8(R13), Rr
   326  	MOVW	12(R13), Rs
   327  	MOVW	16(R13), RM
   328  	RET
   329  
   330  // _mul64by32 and _div64by32 not implemented on arm
   331  TEXT runtime·_mul64by32(SB), NOSPLIT, $0
   332  	MOVW	$0, R0
   333  	MOVW	(R0), R1 // crash
   334  
   335  TEXT runtime·_div64by32(SB), NOSPLIT, $0
   336  	MOVW	$0, R0
   337  	MOVW	(R0), R1 // crash