github.com/sberex/go-sberex@v1.8.2-0.20181113200658-ed96ac38f7d7/common/math/big.go (about) 1 // This file is part of the go-sberex library. The go-sberex library is 2 // free software: you can redistribute it and/or modify it under the terms 3 // of the GNU Lesser General Public License as published by the Free 4 // Software Foundation, either version 3 of the License, or (at your option) 5 // any later version. 6 // 7 // The go-sberex library is distributed in the hope that it will be useful, 8 // but WITHOUT ANY WARRANTY; without even the implied warranty of 9 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser 10 // General Public License <http://www.gnu.org/licenses/> for more details. 11 12 // Package math provides integer math utilities. 13 package math 14 15 import ( 16 "fmt" 17 "math/big" 18 ) 19 20 var ( 21 tt255 = BigPow(2, 255) 22 tt256 = BigPow(2, 256) 23 tt256m1 = new(big.Int).Sub(tt256, big.NewInt(1)) 24 MaxBig256 = new(big.Int).Set(tt256m1) 25 tt63 = BigPow(2, 63) 26 MaxBig63 = new(big.Int).Sub(tt63, big.NewInt(1)) 27 ) 28 29 const ( 30 // number of bits in a big.Word 31 wordBits = 32 << (uint64(^big.Word(0)) >> 63) 32 // number of bytes in a big.Word 33 wordBytes = wordBits / 8 34 ) 35 36 // HexOrDecimal256 marshals big.Int as hex or decimal. 37 type HexOrDecimal256 big.Int 38 39 // UnmarshalText implements encoding.TextUnmarshaler. 40 func (i *HexOrDecimal256) UnmarshalText(input []byte) error { 41 bigint, ok := ParseBig256(string(input)) 42 if !ok { 43 return fmt.Errorf("invalid hex or decimal integer %q", input) 44 } 45 *i = HexOrDecimal256(*bigint) 46 return nil 47 } 48 49 // MarshalText implements encoding.TextMarshaler. 50 func (i *HexOrDecimal256) MarshalText() ([]byte, error) { 51 if i == nil { 52 return []byte("0x0"), nil 53 } 54 return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil 55 } 56 57 // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax. 58 // Leading zeros are accepted. The empty string parses as zero. 59 func ParseBig256(s string) (*big.Int, bool) { 60 if s == "" { 61 return new(big.Int), true 62 } 63 var bigint *big.Int 64 var ok bool 65 if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") { 66 bigint, ok = new(big.Int).SetString(s[2:], 16) 67 } else { 68 bigint, ok = new(big.Int).SetString(s, 10) 69 } 70 if ok && bigint.BitLen() > 256 { 71 bigint, ok = nil, false 72 } 73 return bigint, ok 74 } 75 76 // MustParseBig parses s as a 256 bit big integer and panics if the string is invalid. 77 func MustParseBig256(s string) *big.Int { 78 v, ok := ParseBig256(s) 79 if !ok { 80 panic("invalid 256 bit integer: " + s) 81 } 82 return v 83 } 84 85 // BigPow returns a ** b as a big integer. 86 func BigPow(a, b int64) *big.Int { 87 r := big.NewInt(a) 88 return r.Exp(r, big.NewInt(b), nil) 89 } 90 91 // BigMax returns the larger of x or y. 92 func BigMax(x, y *big.Int) *big.Int { 93 if x.Cmp(y) < 0 { 94 return y 95 } 96 return x 97 } 98 99 // BigMin returns the smaller of x or y. 100 func BigMin(x, y *big.Int) *big.Int { 101 if x.Cmp(y) > 0 { 102 return y 103 } 104 return x 105 } 106 107 // FirstBitSet returns the index of the first 1 bit in v, counting from LSB. 108 func FirstBitSet(v *big.Int) int { 109 for i := 0; i < v.BitLen(); i++ { 110 if v.Bit(i) > 0 { 111 return i 112 } 113 } 114 return v.BitLen() 115 } 116 117 // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length 118 // of the slice is at least n bytes. 119 func PaddedBigBytes(bigint *big.Int, n int) []byte { 120 if bigint.BitLen()/8 >= n { 121 return bigint.Bytes() 122 } 123 ret := make([]byte, n) 124 ReadBits(bigint, ret) 125 return ret 126 } 127 128 // bigEndianByteAt returns the byte at position n, 129 // in Big-Endian encoding 130 // So n==0 returns the least significant byte 131 func bigEndianByteAt(bigint *big.Int, n int) byte { 132 words := bigint.Bits() 133 // Check word-bucket the byte will reside in 134 i := n / wordBytes 135 if i >= len(words) { 136 return byte(0) 137 } 138 word := words[i] 139 // Offset of the byte 140 shift := 8 * uint(n%wordBytes) 141 142 return byte(word >> shift) 143 } 144 145 // Byte returns the byte at position n, 146 // with the supplied padlength in Little-Endian encoding. 147 // n==0 returns the MSB 148 // Example: bigint '5', padlength 32, n=31 => 5 149 func Byte(bigint *big.Int, padlength, n int) byte { 150 if n >= padlength { 151 return byte(0) 152 } 153 return bigEndianByteAt(bigint, padlength-1-n) 154 } 155 156 // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure 157 // that buf has enough space. If buf is too short the result will be incomplete. 158 func ReadBits(bigint *big.Int, buf []byte) { 159 i := len(buf) 160 for _, d := range bigint.Bits() { 161 for j := 0; j < wordBytes && i > 0; j++ { 162 i-- 163 buf[i] = byte(d) 164 d >>= 8 165 } 166 } 167 } 168 169 // U256 encodes as a 256 bit two's complement number. This operation is destructive. 170 func U256(x *big.Int) *big.Int { 171 return x.And(x, tt256m1) 172 } 173 174 // S256 interprets x as a two's complement number. 175 // x must not exceed 256 bits (the result is undefined if it does) and is not modified. 176 // 177 // S256(0) = 0 178 // S256(1) = 1 179 // S256(2**255) = -2**255 180 // S256(2**256-1) = -1 181 func S256(x *big.Int) *big.Int { 182 if x.Cmp(tt255) < 0 { 183 return x 184 } else { 185 return new(big.Int).Sub(x, tt256) 186 } 187 } 188 189 // Exp implements exponentiation by squaring. 190 // Exp returns a newly-allocated big integer and does not change 191 // base or exponent. The result is truncated to 256 bits. 192 // 193 // Courtesy @karalabe and @chfast 194 func Exp(base, exponent *big.Int) *big.Int { 195 result := big.NewInt(1) 196 197 for _, word := range exponent.Bits() { 198 for i := 0; i < wordBits; i++ { 199 if word&1 == 1 { 200 U256(result.Mul(result, base)) 201 } 202 U256(base.Mul(base, base)) 203 word >>= 1 204 } 205 } 206 return result 207 }