github.com/sberex/go-sberex@v1.8.2-0.20181113200658-ed96ac38f7d7/core/vm/contracts.go (about) 1 // This file is part of the go-sberex library. The go-sberex library is 2 // free software: you can redistribute it and/or modify it under the terms 3 // of the GNU Lesser General Public License as published by the Free 4 // Software Foundation, either version 3 of the License, or (at your option) 5 // any later version. 6 // 7 // The go-sberex library is distributed in the hope that it will be useful, 8 // but WITHOUT ANY WARRANTY; without even the implied warranty of 9 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser 10 // General Public License <http://www.gnu.org/licenses/> for more details. 11 12 package vm 13 14 import ( 15 "crypto/sha256" 16 "errors" 17 "math/big" 18 19 "github.com/Sberex/go-sberex/common" 20 "github.com/Sberex/go-sberex/common/math" 21 "github.com/Sberex/go-sberex/crypto" 22 "github.com/Sberex/go-sberex/crypto/bn256" 23 "github.com/Sberex/go-sberex/params" 24 "golang.org/x/crypto/ripemd160" 25 ) 26 27 // PrecompiledContract is the basic interface for native Go contracts. The implementation 28 // requires a deterministic gas count based on the input size of the Run method of the 29 // contract. 30 type PrecompiledContract interface { 31 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 32 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 33 } 34 35 // PrecompiledContractsHomestead contains the default set of pre-compiled Sberex 36 // contracts used in the Frontier and Homestead releases. 37 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 38 common.BytesToAddress([]byte{1}): &ecrecover{}, 39 common.BytesToAddress([]byte{2}): &sha256hash{}, 40 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 41 common.BytesToAddress([]byte{4}): &dataCopy{}, 42 } 43 44 // PrecompiledContractsByzantium contains the default set of pre-compiled Sberex 45 // contracts used in the Byzantium release. 46 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 47 common.BytesToAddress([]byte{1}): &ecrecover{}, 48 common.BytesToAddress([]byte{2}): &sha256hash{}, 49 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 50 common.BytesToAddress([]byte{4}): &dataCopy{}, 51 common.BytesToAddress([]byte{5}): &bigModExp{}, 52 common.BytesToAddress([]byte{6}): &bn256Add{}, 53 common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, 54 common.BytesToAddress([]byte{8}): &bn256Pairing{}, 55 } 56 57 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 58 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 59 gas := p.RequiredGas(input) 60 if contract.UseGas(gas) { 61 return p.Run(input) 62 } 63 return nil, ErrOutOfGas 64 } 65 66 // ECRECOVER implemented as a native contract. 67 type ecrecover struct{} 68 69 func (c *ecrecover) RequiredGas(input []byte) uint64 { 70 return params.EcrecoverGas 71 } 72 73 func (c *ecrecover) Run(input []byte) ([]byte, error) { 74 const ecRecoverInputLength = 128 75 76 input = common.RightPadBytes(input, ecRecoverInputLength) 77 // "input" is (hash, v, r, s), each 32 bytes 78 // but for ecrecover we want (r, s, v) 79 80 r := new(big.Int).SetBytes(input[64:96]) 81 s := new(big.Int).SetBytes(input[96:128]) 82 v := input[63] - 27 83 84 // tighter sig s values input homestead only apply to tx sigs 85 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 86 return nil, nil 87 } 88 // v needs to be at the end for libsecp256k1 89 pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) 90 // make sure the public key is a valid one 91 if err != nil { 92 return nil, nil 93 } 94 95 // the first byte of pubkey is bitcoin heritage 96 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 97 } 98 99 // SHA256 implemented as a native contract. 100 type sha256hash struct{} 101 102 // RequiredGas returns the gas required to execute the pre-compiled contract. 103 // 104 // This method does not require any overflow checking as the input size gas costs 105 // required for anything significant is so high it's impossible to pay for. 106 func (c *sha256hash) RequiredGas(input []byte) uint64 { 107 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 108 } 109 func (c *sha256hash) Run(input []byte) ([]byte, error) { 110 h := sha256.Sum256(input) 111 return h[:], nil 112 } 113 114 // RIPMED160 implemented as a native contract. 115 type ripemd160hash struct{} 116 117 // RequiredGas returns the gas required to execute the pre-compiled contract. 118 // 119 // This method does not require any overflow checking as the input size gas costs 120 // required for anything significant is so high it's impossible to pay for. 121 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 122 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 123 } 124 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 125 ripemd := ripemd160.New() 126 ripemd.Write(input) 127 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 128 } 129 130 // data copy implemented as a native contract. 131 type dataCopy struct{} 132 133 // RequiredGas returns the gas required to execute the pre-compiled contract. 134 // 135 // This method does not require any overflow checking as the input size gas costs 136 // required for anything significant is so high it's impossible to pay for. 137 func (c *dataCopy) RequiredGas(input []byte) uint64 { 138 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 139 } 140 func (c *dataCopy) Run(in []byte) ([]byte, error) { 141 return in, nil 142 } 143 144 // bigModExp implements a native big integer exponential modular operation. 145 type bigModExp struct{} 146 147 var ( 148 big1 = big.NewInt(1) 149 big4 = big.NewInt(4) 150 big8 = big.NewInt(8) 151 big16 = big.NewInt(16) 152 big32 = big.NewInt(32) 153 big64 = big.NewInt(64) 154 big96 = big.NewInt(96) 155 big480 = big.NewInt(480) 156 big1024 = big.NewInt(1024) 157 big3072 = big.NewInt(3072) 158 big199680 = big.NewInt(199680) 159 ) 160 161 // RequiredGas returns the gas required to execute the pre-compiled contract. 162 func (c *bigModExp) RequiredGas(input []byte) uint64 { 163 var ( 164 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 165 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 166 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 167 ) 168 if len(input) > 96 { 169 input = input[96:] 170 } else { 171 input = input[:0] 172 } 173 // Retrieve the head 32 bytes of exp for the adjusted exponent length 174 var expHead *big.Int 175 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 176 expHead = new(big.Int) 177 } else { 178 if expLen.Cmp(big32) > 0 { 179 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 180 } else { 181 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 182 } 183 } 184 // Calculate the adjusted exponent length 185 var msb int 186 if bitlen := expHead.BitLen(); bitlen > 0 { 187 msb = bitlen - 1 188 } 189 adjExpLen := new(big.Int) 190 if expLen.Cmp(big32) > 0 { 191 adjExpLen.Sub(expLen, big32) 192 adjExpLen.Mul(big8, adjExpLen) 193 } 194 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 195 196 // Calculate the gas cost of the operation 197 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 198 switch { 199 case gas.Cmp(big64) <= 0: 200 gas.Mul(gas, gas) 201 case gas.Cmp(big1024) <= 0: 202 gas = new(big.Int).Add( 203 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 204 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 205 ) 206 default: 207 gas = new(big.Int).Add( 208 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 209 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 210 ) 211 } 212 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 213 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 214 215 if gas.BitLen() > 64 { 216 return math.MaxUint64 217 } 218 return gas.Uint64() 219 } 220 221 func (c *bigModExp) Run(input []byte) ([]byte, error) { 222 var ( 223 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 224 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 225 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 226 ) 227 if len(input) > 96 { 228 input = input[96:] 229 } else { 230 input = input[:0] 231 } 232 // Handle a special case when both the base and mod length is zero 233 if baseLen == 0 && modLen == 0 { 234 return []byte{}, nil 235 } 236 // Retrieve the operands and execute the exponentiation 237 var ( 238 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 239 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 240 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 241 ) 242 if mod.BitLen() == 0 { 243 // Modulo 0 is undefined, return zero 244 return common.LeftPadBytes([]byte{}, int(modLen)), nil 245 } 246 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 247 } 248 249 var ( 250 // errNotOnCurve is returned if a point being unmarshalled as a bn256 elliptic 251 // curve point is not on the curve. 252 errNotOnCurve = errors.New("point not on elliptic curve") 253 254 // errInvalidCurvePoint is returned if a point being unmarshalled as a bn256 255 // elliptic curve point is invalid. 256 errInvalidCurvePoint = errors.New("invalid elliptic curve point") 257 ) 258 259 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 260 // returning it, or an error if the point is invalid. 261 func newCurvePoint(blob []byte) (*bn256.G1, error) { 262 p, onCurve := new(bn256.G1).Unmarshal(blob) 263 if !onCurve { 264 return nil, errNotOnCurve 265 } 266 gx, gy, _, _ := p.CurvePoints() 267 if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { 268 return nil, errInvalidCurvePoint 269 } 270 return p, nil 271 } 272 273 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 274 // returning it, or an error if the point is invalid. 275 func newTwistPoint(blob []byte) (*bn256.G2, error) { 276 p, onCurve := new(bn256.G2).Unmarshal(blob) 277 if !onCurve { 278 return nil, errNotOnCurve 279 } 280 x2, y2, _, _ := p.CurvePoints() 281 if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 || 282 y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 { 283 return nil, errInvalidCurvePoint 284 } 285 return p, nil 286 } 287 288 // bn256Add implements a native elliptic curve point addition. 289 type bn256Add struct{} 290 291 // RequiredGas returns the gas required to execute the pre-compiled contract. 292 func (c *bn256Add) RequiredGas(input []byte) uint64 { 293 return params.Bn256AddGas 294 } 295 296 func (c *bn256Add) Run(input []byte) ([]byte, error) { 297 x, err := newCurvePoint(getData(input, 0, 64)) 298 if err != nil { 299 return nil, err 300 } 301 y, err := newCurvePoint(getData(input, 64, 64)) 302 if err != nil { 303 return nil, err 304 } 305 res := new(bn256.G1) 306 res.Add(x, y) 307 return res.Marshal(), nil 308 } 309 310 // bn256ScalarMul implements a native elliptic curve scalar multiplication. 311 type bn256ScalarMul struct{} 312 313 // RequiredGas returns the gas required to execute the pre-compiled contract. 314 func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { 315 return params.Bn256ScalarMulGas 316 } 317 318 func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) { 319 p, err := newCurvePoint(getData(input, 0, 64)) 320 if err != nil { 321 return nil, err 322 } 323 res := new(bn256.G1) 324 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 325 return res.Marshal(), nil 326 } 327 328 var ( 329 // true32Byte is returned if the bn256 pairing check succeeds. 330 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 331 332 // false32Byte is returned if the bn256 pairing check fails. 333 false32Byte = make([]byte, 32) 334 335 // errBadPairingInput is returned if the bn256 pairing input is invalid. 336 errBadPairingInput = errors.New("bad elliptic curve pairing size") 337 ) 338 339 // bn256Pairing implements a pairing pre-compile for the bn256 curve 340 type bn256Pairing struct{} 341 342 // RequiredGas returns the gas required to execute the pre-compiled contract. 343 func (c *bn256Pairing) RequiredGas(input []byte) uint64 { 344 return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas 345 } 346 347 func (c *bn256Pairing) Run(input []byte) ([]byte, error) { 348 // Handle some corner cases cheaply 349 if len(input)%192 > 0 { 350 return nil, errBadPairingInput 351 } 352 // Convert the input into a set of coordinates 353 var ( 354 cs []*bn256.G1 355 ts []*bn256.G2 356 ) 357 for i := 0; i < len(input); i += 192 { 358 c, err := newCurvePoint(input[i : i+64]) 359 if err != nil { 360 return nil, err 361 } 362 t, err := newTwistPoint(input[i+64 : i+192]) 363 if err != nil { 364 return nil, err 365 } 366 cs = append(cs, c) 367 ts = append(ts, t) 368 } 369 // Execute the pairing checks and return the results 370 if bn256.PairingCheck(cs, ts) { 371 return true32Byte, nil 372 } 373 return false32Byte, nil 374 }