github.com/sberex/go-sberex@v1.8.2-0.20181113200658-ed96ac38f7d7/crypto/bn256/bn256.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package bn256 implements a particular bilinear group at the 128-bit security level.
     6  //
     7  // Bilinear groups are the basis of many of the new cryptographic protocols
     8  // that have been proposed over the past decade. They consist of a triplet of
     9  // groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
    10  // (where gₓ is a generator of the respective group). That function is called
    11  // a pairing function.
    12  //
    13  // This package specifically implements the Optimal Ate pairing over a 256-bit
    14  // Barreto-Naehrig curve as described in
    15  // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
    16  // with the implementation described in that paper.
    17  package bn256
    18  
    19  import (
    20  	"crypto/rand"
    21  	"io"
    22  	"math/big"
    23  )
    24  
    25  // BUG(agl): this implementation is not constant time.
    26  // TODO(agl): keep GF(p²) elements in Mongomery form.
    27  
    28  // G1 is an abstract cyclic group. The zero value is suitable for use as the
    29  // output of an operation, but cannot be used as an input.
    30  type G1 struct {
    31  	p *curvePoint
    32  }
    33  
    34  // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
    35  func RandomG1(r io.Reader) (*big.Int, *G1, error) {
    36  	var k *big.Int
    37  	var err error
    38  
    39  	for {
    40  		k, err = rand.Int(r, Order)
    41  		if err != nil {
    42  			return nil, nil, err
    43  		}
    44  		if k.Sign() > 0 {
    45  			break
    46  		}
    47  	}
    48  
    49  	return k, new(G1).ScalarBaseMult(k), nil
    50  }
    51  
    52  func (g *G1) String() string {
    53  	return "bn256.G1" + g.p.String()
    54  }
    55  
    56  // CurvePoints returns p's curve points in big integer
    57  func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
    58  	return e.p.x, e.p.y, e.p.z, e.p.t
    59  }
    60  
    61  // ScalarBaseMult sets e to g*k where g is the generator of the group and
    62  // then returns e.
    63  func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
    64  	if e.p == nil {
    65  		e.p = newCurvePoint(nil)
    66  	}
    67  	e.p.Mul(curveGen, k, new(bnPool))
    68  	return e
    69  }
    70  
    71  // ScalarMult sets e to a*k and then returns e.
    72  func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
    73  	if e.p == nil {
    74  		e.p = newCurvePoint(nil)
    75  	}
    76  	e.p.Mul(a.p, k, new(bnPool))
    77  	return e
    78  }
    79  
    80  // Add sets e to a+b and then returns e.
    81  // BUG(agl): this function is not complete: a==b fails.
    82  func (e *G1) Add(a, b *G1) *G1 {
    83  	if e.p == nil {
    84  		e.p = newCurvePoint(nil)
    85  	}
    86  	e.p.Add(a.p, b.p, new(bnPool))
    87  	return e
    88  }
    89  
    90  // Neg sets e to -a and then returns e.
    91  func (e *G1) Neg(a *G1) *G1 {
    92  	if e.p == nil {
    93  		e.p = newCurvePoint(nil)
    94  	}
    95  	e.p.Negative(a.p)
    96  	return e
    97  }
    98  
    99  // Marshal converts n to a byte slice.
   100  func (n *G1) Marshal() []byte {
   101  	n.p.MakeAffine(nil)
   102  
   103  	xBytes := new(big.Int).Mod(n.p.x, P).Bytes()
   104  	yBytes := new(big.Int).Mod(n.p.y, P).Bytes()
   105  
   106  	// Each value is a 256-bit number.
   107  	const numBytes = 256 / 8
   108  
   109  	ret := make([]byte, numBytes*2)
   110  	copy(ret[1*numBytes-len(xBytes):], xBytes)
   111  	copy(ret[2*numBytes-len(yBytes):], yBytes)
   112  
   113  	return ret
   114  }
   115  
   116  // Unmarshal sets e to the result of converting the output of Marshal back into
   117  // a group element and then returns e.
   118  func (e *G1) Unmarshal(m []byte) (*G1, bool) {
   119  	// Each value is a 256-bit number.
   120  	const numBytes = 256 / 8
   121  
   122  	if len(m) != 2*numBytes {
   123  		return nil, false
   124  	}
   125  
   126  	if e.p == nil {
   127  		e.p = newCurvePoint(nil)
   128  	}
   129  
   130  	e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
   131  	e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
   132  
   133  	if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
   134  		// This is the point at infinity.
   135  		e.p.y.SetInt64(1)
   136  		e.p.z.SetInt64(0)
   137  		e.p.t.SetInt64(0)
   138  	} else {
   139  		e.p.z.SetInt64(1)
   140  		e.p.t.SetInt64(1)
   141  
   142  		if !e.p.IsOnCurve() {
   143  			return nil, false
   144  		}
   145  	}
   146  
   147  	return e, true
   148  }
   149  
   150  // G2 is an abstract cyclic group. The zero value is suitable for use as the
   151  // output of an operation, but cannot be used as an input.
   152  type G2 struct {
   153  	p *twistPoint
   154  }
   155  
   156  // RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
   157  func RandomG2(r io.Reader) (*big.Int, *G2, error) {
   158  	var k *big.Int
   159  	var err error
   160  
   161  	for {
   162  		k, err = rand.Int(r, Order)
   163  		if err != nil {
   164  			return nil, nil, err
   165  		}
   166  		if k.Sign() > 0 {
   167  			break
   168  		}
   169  	}
   170  
   171  	return k, new(G2).ScalarBaseMult(k), nil
   172  }
   173  
   174  func (g *G2) String() string {
   175  	return "bn256.G2" + g.p.String()
   176  }
   177  
   178  // CurvePoints returns the curve points of p which includes the real
   179  // and imaginary parts of the curve point.
   180  func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
   181  	return e.p.x, e.p.y, e.p.z, e.p.t
   182  }
   183  
   184  // ScalarBaseMult sets e to g*k where g is the generator of the group and
   185  // then returns out.
   186  func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
   187  	if e.p == nil {
   188  		e.p = newTwistPoint(nil)
   189  	}
   190  	e.p.Mul(twistGen, k, new(bnPool))
   191  	return e
   192  }
   193  
   194  // ScalarMult sets e to a*k and then returns e.
   195  func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
   196  	if e.p == nil {
   197  		e.p = newTwistPoint(nil)
   198  	}
   199  	e.p.Mul(a.p, k, new(bnPool))
   200  	return e
   201  }
   202  
   203  // Add sets e to a+b and then returns e.
   204  // BUG(agl): this function is not complete: a==b fails.
   205  func (e *G2) Add(a, b *G2) *G2 {
   206  	if e.p == nil {
   207  		e.p = newTwistPoint(nil)
   208  	}
   209  	e.p.Add(a.p, b.p, new(bnPool))
   210  	return e
   211  }
   212  
   213  // Marshal converts n into a byte slice.
   214  func (n *G2) Marshal() []byte {
   215  	n.p.MakeAffine(nil)
   216  
   217  	xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
   218  	xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
   219  	yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
   220  	yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
   221  
   222  	// Each value is a 256-bit number.
   223  	const numBytes = 256 / 8
   224  
   225  	ret := make([]byte, numBytes*4)
   226  	copy(ret[1*numBytes-len(xxBytes):], xxBytes)
   227  	copy(ret[2*numBytes-len(xyBytes):], xyBytes)
   228  	copy(ret[3*numBytes-len(yxBytes):], yxBytes)
   229  	copy(ret[4*numBytes-len(yyBytes):], yyBytes)
   230  
   231  	return ret
   232  }
   233  
   234  // Unmarshal sets e to the result of converting the output of Marshal back into
   235  // a group element and then returns e.
   236  func (e *G2) Unmarshal(m []byte) (*G2, bool) {
   237  	// Each value is a 256-bit number.
   238  	const numBytes = 256 / 8
   239  
   240  	if len(m) != 4*numBytes {
   241  		return nil, false
   242  	}
   243  
   244  	if e.p == nil {
   245  		e.p = newTwistPoint(nil)
   246  	}
   247  
   248  	e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
   249  	e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
   250  	e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
   251  	e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
   252  
   253  	if e.p.x.x.Sign() == 0 &&
   254  		e.p.x.y.Sign() == 0 &&
   255  		e.p.y.x.Sign() == 0 &&
   256  		e.p.y.y.Sign() == 0 {
   257  		// This is the point at infinity.
   258  		e.p.y.SetOne()
   259  		e.p.z.SetZero()
   260  		e.p.t.SetZero()
   261  	} else {
   262  		e.p.z.SetOne()
   263  		e.p.t.SetOne()
   264  
   265  		if !e.p.IsOnCurve() {
   266  			return nil, false
   267  		}
   268  	}
   269  
   270  	return e, true
   271  }
   272  
   273  // GT is an abstract cyclic group. The zero value is suitable for use as the
   274  // output of an operation, but cannot be used as an input.
   275  type GT struct {
   276  	p *gfP12
   277  }
   278  
   279  func (g *GT) String() string {
   280  	return "bn256.GT" + g.p.String()
   281  }
   282  
   283  // ScalarMult sets e to a*k and then returns e.
   284  func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
   285  	if e.p == nil {
   286  		e.p = newGFp12(nil)
   287  	}
   288  	e.p.Exp(a.p, k, new(bnPool))
   289  	return e
   290  }
   291  
   292  // Add sets e to a+b and then returns e.
   293  func (e *GT) Add(a, b *GT) *GT {
   294  	if e.p == nil {
   295  		e.p = newGFp12(nil)
   296  	}
   297  	e.p.Mul(a.p, b.p, new(bnPool))
   298  	return e
   299  }
   300  
   301  // Neg sets e to -a and then returns e.
   302  func (e *GT) Neg(a *GT) *GT {
   303  	if e.p == nil {
   304  		e.p = newGFp12(nil)
   305  	}
   306  	e.p.Invert(a.p, new(bnPool))
   307  	return e
   308  }
   309  
   310  // Marshal converts n into a byte slice.
   311  func (n *GT) Marshal() []byte {
   312  	n.p.Minimal()
   313  
   314  	xxxBytes := n.p.x.x.x.Bytes()
   315  	xxyBytes := n.p.x.x.y.Bytes()
   316  	xyxBytes := n.p.x.y.x.Bytes()
   317  	xyyBytes := n.p.x.y.y.Bytes()
   318  	xzxBytes := n.p.x.z.x.Bytes()
   319  	xzyBytes := n.p.x.z.y.Bytes()
   320  	yxxBytes := n.p.y.x.x.Bytes()
   321  	yxyBytes := n.p.y.x.y.Bytes()
   322  	yyxBytes := n.p.y.y.x.Bytes()
   323  	yyyBytes := n.p.y.y.y.Bytes()
   324  	yzxBytes := n.p.y.z.x.Bytes()
   325  	yzyBytes := n.p.y.z.y.Bytes()
   326  
   327  	// Each value is a 256-bit number.
   328  	const numBytes = 256 / 8
   329  
   330  	ret := make([]byte, numBytes*12)
   331  	copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
   332  	copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
   333  	copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
   334  	copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
   335  	copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
   336  	copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
   337  	copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
   338  	copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
   339  	copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
   340  	copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
   341  	copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
   342  	copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
   343  
   344  	return ret
   345  }
   346  
   347  // Unmarshal sets e to the result of converting the output of Marshal back into
   348  // a group element and then returns e.
   349  func (e *GT) Unmarshal(m []byte) (*GT, bool) {
   350  	// Each value is a 256-bit number.
   351  	const numBytes = 256 / 8
   352  
   353  	if len(m) != 12*numBytes {
   354  		return nil, false
   355  	}
   356  
   357  	if e.p == nil {
   358  		e.p = newGFp12(nil)
   359  	}
   360  
   361  	e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
   362  	e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
   363  	e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
   364  	e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
   365  	e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
   366  	e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
   367  	e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
   368  	e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
   369  	e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
   370  	e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
   371  	e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
   372  	e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
   373  
   374  	return e, true
   375  }
   376  
   377  // Pair calculates an Optimal Ate pairing.
   378  func Pair(g1 *G1, g2 *G2) *GT {
   379  	return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
   380  }
   381  
   382  // PairingCheck calculates the Optimal Ate pairing for a set of points.
   383  func PairingCheck(a []*G1, b []*G2) bool {
   384  	pool := new(bnPool)
   385  
   386  	acc := newGFp12(pool)
   387  	acc.SetOne()
   388  
   389  	for i := 0; i < len(a); i++ {
   390  		if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
   391  			continue
   392  		}
   393  		acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool)
   394  	}
   395  	ret := finalExponentiation(acc, pool)
   396  	acc.Put(pool)
   397  
   398  	return ret.IsOne()
   399  }
   400  
   401  // bnPool implements a tiny cache of *big.Int objects that's used to reduce the
   402  // number of allocations made during processing.
   403  type bnPool struct {
   404  	bns   []*big.Int
   405  	count int
   406  }
   407  
   408  func (pool *bnPool) Get() *big.Int {
   409  	if pool == nil {
   410  		return new(big.Int)
   411  	}
   412  
   413  	pool.count++
   414  	l := len(pool.bns)
   415  	if l == 0 {
   416  		return new(big.Int)
   417  	}
   418  
   419  	bn := pool.bns[l-1]
   420  	pool.bns = pool.bns[:l-1]
   421  	return bn
   422  }
   423  
   424  func (pool *bnPool) Put(bn *big.Int) {
   425  	if pool == nil {
   426  		return
   427  	}
   428  	pool.bns = append(pool.bns, bn)
   429  	pool.count--
   430  }
   431  
   432  func (pool *bnPool) Count() int {
   433  	return pool.count
   434  }