github.com/sberex/go-sberex@v1.8.2-0.20181113200658-ed96ac38f7d7/trie/encoding.go (about)

     1  // This file is part of the go-sberex library. The go-sberex library is 
     2  // free software: you can redistribute it and/or modify it under the terms 
     3  // of the GNU Lesser General Public License as published by the Free 
     4  // Software Foundation, either version 3 of the License, or (at your option)
     5  // any later version.
     6  //
     7  // The go-sberex library is distributed in the hope that it will be useful, 
     8  // but WITHOUT ANY WARRANTY; without even the implied warranty of
     9  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser 
    10  // General Public License <http://www.gnu.org/licenses/> for more details.
    11  
    12  package trie
    13  
    14  // Trie keys are dealt with in three distinct encodings:
    15  //
    16  // KEYBYTES encoding contains the actual key and nothing else. This encoding is the
    17  // input to most API functions.
    18  //
    19  // HEX encoding contains one byte for each nibble of the key and an optional trailing
    20  // 'terminator' byte of value 0x10 which indicates whether or not the node at the key
    21  // contains a value. Hex key encoding is used for nodes loaded in memory because it's
    22  // convenient to access.
    23  //
    24  // COMPACT encoding is defined by the Yellow Paper (it's called "hex prefix
    25  // encoding" there) and contains the bytes of the key and a flag. The high nibble of the
    26  // first byte contains the flag; the lowest bit encoding the oddness of the length and
    27  // the second-lowest encoding whether the node at the key is a value node. The low nibble
    28  // of the first byte is zero in the case of an even number of nibbles and the first nibble
    29  // in the case of an odd number. All remaining nibbles (now an even number) fit properly
    30  // into the remaining bytes. Compact encoding is used for nodes stored on disk.
    31  
    32  func hexToCompact(hex []byte) []byte {
    33  	terminator := byte(0)
    34  	if hasTerm(hex) {
    35  		terminator = 1
    36  		hex = hex[:len(hex)-1]
    37  	}
    38  	buf := make([]byte, len(hex)/2+1)
    39  	buf[0] = terminator << 5 // the flag byte
    40  	if len(hex)&1 == 1 {
    41  		buf[0] |= 1 << 4 // odd flag
    42  		buf[0] |= hex[0] // first nibble is contained in the first byte
    43  		hex = hex[1:]
    44  	}
    45  	decodeNibbles(hex, buf[1:])
    46  	return buf
    47  }
    48  
    49  func compactToHex(compact []byte) []byte {
    50  	base := keybytesToHex(compact)
    51  	base = base[:len(base)-1]
    52  	// apply terminator flag
    53  	if base[0] >= 2 {
    54  		base = append(base, 16)
    55  	}
    56  	// apply odd flag
    57  	chop := 2 - base[0]&1
    58  	return base[chop:]
    59  }
    60  
    61  func keybytesToHex(str []byte) []byte {
    62  	l := len(str)*2 + 1
    63  	var nibbles = make([]byte, l)
    64  	for i, b := range str {
    65  		nibbles[i*2] = b / 16
    66  		nibbles[i*2+1] = b % 16
    67  	}
    68  	nibbles[l-1] = 16
    69  	return nibbles
    70  }
    71  
    72  // hexToKeybytes turns hex nibbles into key bytes.
    73  // This can only be used for keys of even length.
    74  func hexToKeybytes(hex []byte) []byte {
    75  	if hasTerm(hex) {
    76  		hex = hex[:len(hex)-1]
    77  	}
    78  	if len(hex)&1 != 0 {
    79  		panic("can't convert hex key of odd length")
    80  	}
    81  	key := make([]byte, (len(hex)+1)/2)
    82  	decodeNibbles(hex, key)
    83  	return key
    84  }
    85  
    86  func decodeNibbles(nibbles []byte, bytes []byte) {
    87  	for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
    88  		bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
    89  	}
    90  }
    91  
    92  // prefixLen returns the length of the common prefix of a and b.
    93  func prefixLen(a, b []byte) int {
    94  	var i, length = 0, len(a)
    95  	if len(b) < length {
    96  		length = len(b)
    97  	}
    98  	for ; i < length; i++ {
    99  		if a[i] != b[i] {
   100  			break
   101  		}
   102  	}
   103  	return i
   104  }
   105  
   106  // hasTerm returns whether a hex key has the terminator flag.
   107  func hasTerm(s []byte) bool {
   108  	return len(s) > 0 && s[len(s)-1] == 16
   109  }