github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/cmd/compile/internal/gc/obj.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "cmd/internal/bio" 9 "cmd/internal/obj" 10 "crypto/sha256" 11 "fmt" 12 "io" 13 "strconv" 14 ) 15 16 // architecture-independent object file output 17 const ( 18 ArhdrSize = 60 19 ) 20 21 func formathdr(arhdr []byte, name string, size int64) { 22 copy(arhdr[:], fmt.Sprintf("%-16s%-12d%-6d%-6d%-8o%-10d`\n", name, 0, 0, 0, 0644, size)) 23 } 24 25 // These modes say which kind of object file to generate. 26 // The default use of the toolchain is to set both bits, 27 // generating a combined compiler+linker object, one that 28 // serves to describe the package to both the compiler and the linker. 29 // In fact the compiler and linker read nearly disjoint sections of 30 // that file, though, so in a distributed build setting it can be more 31 // efficient to split the output into two files, supplying the compiler 32 // object only to future compilations and the linker object only to 33 // future links. 34 // 35 // By default a combined object is written, but if -linkobj is specified 36 // on the command line then the default -o output is a compiler object 37 // and the -linkobj output is a linker object. 38 const ( 39 modeCompilerObj = 1 << iota 40 modeLinkerObj 41 ) 42 43 func dumpobj() { 44 if linkobj == "" { 45 dumpobj1(outfile, modeCompilerObj|modeLinkerObj) 46 } else { 47 dumpobj1(outfile, modeCompilerObj) 48 dumpobj1(linkobj, modeLinkerObj) 49 } 50 } 51 52 func dumpobj1(outfile string, mode int) { 53 var err error 54 bout, err = bio.Create(outfile) 55 if err != nil { 56 Flusherrors() 57 fmt.Printf("can't create %s: %v\n", outfile, err) 58 errorexit() 59 } 60 61 startobj := int64(0) 62 var arhdr [ArhdrSize]byte 63 if writearchive { 64 bout.WriteString("!<arch>\n") 65 arhdr = [ArhdrSize]byte{} 66 bout.Write(arhdr[:]) 67 startobj = bout.Offset() 68 } 69 70 printheader := func() { 71 fmt.Fprintf(bout, "go object %s %s %s %s\n", obj.Getgoos(), obj.Getgoarch(), obj.Getgoversion(), obj.Expstring()) 72 if buildid != "" { 73 fmt.Fprintf(bout, "build id %q\n", buildid) 74 } 75 if localpkg.Name == "main" { 76 fmt.Fprintf(bout, "main\n") 77 } 78 if safemode { 79 fmt.Fprintf(bout, "safe\n") 80 } else { 81 fmt.Fprintf(bout, "----\n") // room for some other tool to write "safe" 82 } 83 fmt.Fprintf(bout, "\n") // header ends with blank line 84 } 85 86 printheader() 87 88 if mode&modeCompilerObj != 0 { 89 dumpexport() 90 } 91 92 if writearchive { 93 bout.Flush() 94 size := bout.Offset() - startobj 95 if size&1 != 0 { 96 bout.WriteByte(0) 97 } 98 bout.Seek(startobj-ArhdrSize, 0) 99 formathdr(arhdr[:], "__.PKGDEF", size) 100 bout.Write(arhdr[:]) 101 bout.Flush() 102 bout.Seek(startobj+size+(size&1), 0) 103 } 104 105 if mode&modeLinkerObj == 0 { 106 bout.Close() 107 return 108 } 109 110 if writearchive { 111 // start object file 112 arhdr = [ArhdrSize]byte{} 113 bout.Write(arhdr[:]) 114 startobj = bout.Offset() 115 printheader() 116 } 117 118 if pragcgobuf != "" { 119 if writearchive { 120 // write empty export section; must be before cgo section 121 fmt.Fprintf(bout, "\n$$\n\n$$\n\n") 122 } 123 124 fmt.Fprintf(bout, "\n$$ // cgo\n") 125 fmt.Fprintf(bout, "%s\n$$\n\n", pragcgobuf) 126 } 127 128 fmt.Fprintf(bout, "\n!\n") 129 130 externs := len(externdcl) 131 132 dumpglobls() 133 dumptypestructs() 134 135 // Dump extra globals. 136 tmp := externdcl 137 138 if externdcl != nil { 139 externdcl = externdcl[externs:] 140 } 141 dumpglobls() 142 externdcl = tmp 143 144 if zerosize > 0 { 145 zero := Pkglookup("zero", mappkg) 146 ggloblsym(zero, int32(zerosize), obj.DUPOK|obj.RODATA) 147 } 148 149 dumpdata() 150 obj.Writeobjdirect(Ctxt, bout.Writer) 151 152 if writearchive { 153 bout.Flush() 154 size := bout.Offset() - startobj 155 if size&1 != 0 { 156 bout.WriteByte(0) 157 } 158 bout.Seek(startobj-ArhdrSize, 0) 159 formathdr(arhdr[:], "_go_.o", size) 160 bout.Write(arhdr[:]) 161 } 162 163 bout.Close() 164 } 165 166 func dumpglobls() { 167 // add globals 168 for _, n := range externdcl { 169 if n.Op != ONAME { 170 continue 171 } 172 173 if n.Type == nil { 174 Fatalf("external %v nil type\n", n) 175 } 176 if n.Class == PFUNC { 177 continue 178 } 179 if n.Sym.Pkg != localpkg { 180 continue 181 } 182 dowidth(n.Type) 183 ggloblnod(n) 184 } 185 186 for _, n := range funcsyms { 187 dsymptr(n.Sym, 0, n.Sym.Def.Func.Shortname.Sym, 0) 188 ggloblsym(n.Sym, int32(Widthptr), obj.DUPOK|obj.RODATA) 189 } 190 191 // Do not reprocess funcsyms on next dumpglobls call. 192 funcsyms = nil 193 } 194 195 func Linksym(s *Sym) *obj.LSym { 196 if s == nil { 197 return nil 198 } 199 if s.Lsym != nil { 200 return s.Lsym 201 } 202 var name string 203 if isblanksym(s) { 204 name = "_" 205 } else if s.Linkname != "" { 206 name = s.Linkname 207 } else { 208 name = s.Pkg.Prefix + "." + s.Name 209 } 210 211 ls := obj.Linklookup(Ctxt, name, 0) 212 s.Lsym = ls 213 return ls 214 } 215 216 func duintxx(s *Sym, off int, v uint64, wid int) int { 217 return duintxxLSym(Linksym(s), off, v, wid) 218 } 219 220 func duintxxLSym(s *obj.LSym, off int, v uint64, wid int) int { 221 // Update symbol data directly instead of generating a 222 // DATA instruction that liblink will have to interpret later. 223 // This reduces compilation time and memory usage. 224 off = int(Rnd(int64(off), int64(wid))) 225 226 return int(obj.Setuintxx(Ctxt, s, int64(off), v, int64(wid))) 227 } 228 229 func duint8(s *Sym, off int, v uint8) int { 230 return duintxx(s, off, uint64(v), 1) 231 } 232 233 func duint16(s *Sym, off int, v uint16) int { 234 return duintxx(s, off, uint64(v), 2) 235 } 236 237 func duint32(s *Sym, off int, v uint32) int { 238 return duintxx(s, off, uint64(v), 4) 239 } 240 241 func duintptr(s *Sym, off int, v uint64) int { 242 return duintxx(s, off, v, Widthptr) 243 } 244 245 // stringConstantSyms holds the pair of symbols we create for a 246 // constant string. 247 type stringConstantSyms struct { 248 hdr *obj.LSym // string header 249 data *obj.LSym // actual string data 250 } 251 252 // stringConstants maps from the symbol name we use for the string 253 // contents to the pair of linker symbols for that string. 254 var stringConstants = make(map[string]stringConstantSyms, 100) 255 256 func stringsym(s string) (hdr, data *obj.LSym) { 257 var symname string 258 if len(s) > 100 { 259 // Huge strings are hashed to avoid long names in object files. 260 // Indulge in some paranoia by writing the length of s, too, 261 // as protection against length extension attacks. 262 h := sha256.New() 263 io.WriteString(h, s) 264 symname = fmt.Sprintf(".gostring.%d.%x", len(s), h.Sum(nil)) 265 } else { 266 // Small strings get named directly by their contents. 267 symname = strconv.Quote(s) 268 } 269 270 const prefix = "go.string." 271 symdataname := prefix + symname 272 273 // All the strings have the same prefix, so ignore it for map 274 // purposes, but use a slice of the symbol name string to 275 // reduce long-term memory overhead. 276 key := symdataname[len(prefix):] 277 278 if syms, ok := stringConstants[key]; ok { 279 return syms.hdr, syms.data 280 } 281 282 symhdrname := "go.string.hdr." + symname 283 284 symhdr := obj.Linklookup(Ctxt, symhdrname, 0) 285 symdata := obj.Linklookup(Ctxt, symdataname, 0) 286 287 stringConstants[key] = stringConstantSyms{symhdr, symdata} 288 289 // string header 290 off := 0 291 off = dsymptrLSym(symhdr, off, symdata, 0) 292 off = duintxxLSym(symhdr, off, uint64(len(s)), Widthint) 293 ggloblLSym(symhdr, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL) 294 295 // string data 296 off = dsnameLSym(symdata, 0, s) 297 ggloblLSym(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL) 298 299 return symhdr, symdata 300 } 301 302 var slicebytes_gen int 303 304 func slicebytes(nam *Node, s string, len int) { 305 slicebytes_gen++ 306 symname := fmt.Sprintf(".gobytes.%d", slicebytes_gen) 307 sym := Pkglookup(symname, localpkg) 308 sym.Def = newname(sym) 309 310 off := dsname(sym, 0, s) 311 ggloblsym(sym, int32(off), obj.NOPTR|obj.LOCAL) 312 313 if nam.Op != ONAME { 314 Fatalf("slicebytes %v", nam) 315 } 316 off = int(nam.Xoffset) 317 off = dsymptr(nam.Sym, off, sym, 0) 318 off = duintxx(nam.Sym, off, uint64(len), Widthint) 319 duintxx(nam.Sym, off, uint64(len), Widthint) 320 } 321 322 func Datastring(s string, a *obj.Addr) { 323 _, symdata := stringsym(s) 324 a.Type = obj.TYPE_MEM 325 a.Name = obj.NAME_EXTERN 326 a.Sym = symdata 327 a.Offset = 0 328 a.Etype = uint8(Simtype[TINT]) 329 } 330 331 func datagostring(sval string, a *obj.Addr) { 332 symhdr, _ := stringsym(sval) 333 a.Type = obj.TYPE_MEM 334 a.Name = obj.NAME_EXTERN 335 a.Sym = symhdr 336 a.Offset = 0 337 a.Etype = uint8(TSTRING) 338 } 339 340 func dsname(s *Sym, off int, t string) int { 341 return dsnameLSym(Linksym(s), off, t) 342 } 343 344 func dsnameLSym(s *obj.LSym, off int, t string) int { 345 s.WriteString(Ctxt, int64(off), len(t), t) 346 return off + len(t) 347 } 348 349 func dsymptr(s *Sym, off int, x *Sym, xoff int) int { 350 return dsymptrLSym(Linksym(s), off, Linksym(x), xoff) 351 } 352 353 func dsymptrLSym(s *obj.LSym, off int, x *obj.LSym, xoff int) int { 354 off = int(Rnd(int64(off), int64(Widthptr))) 355 s.WriteAddr(Ctxt, int64(off), Widthptr, x, int64(xoff)) 356 off += Widthptr 357 return off 358 } 359 360 func dsymptrOffLSym(s *obj.LSym, off int, x *obj.LSym, xoff int) int { 361 s.WriteOff(Ctxt, int64(off), x, int64(xoff)) 362 off += 4 363 return off 364 } 365 366 func gdata(nam *Node, nr *Node, wid int) { 367 if nam.Op != ONAME { 368 Fatalf("gdata nam op %v", nam.Op) 369 } 370 if nam.Sym == nil { 371 Fatalf("gdata nil nam sym") 372 } 373 374 switch nr.Op { 375 case OLITERAL: 376 switch u := nr.Val().U.(type) { 377 case *Mpcplx: 378 gdatacomplex(nam, u) 379 380 case string: 381 gdatastring(nam, u) 382 383 case bool: 384 i := int64(obj.Bool2int(u)) 385 Linksym(nam.Sym).WriteInt(Ctxt, nam.Xoffset, wid, i) 386 387 case *Mpint: 388 Linksym(nam.Sym).WriteInt(Ctxt, nam.Xoffset, wid, u.Int64()) 389 390 case *Mpflt: 391 s := Linksym(nam.Sym) 392 f := u.Float64() 393 switch nam.Type.Etype { 394 case TFLOAT32: 395 s.WriteFloat32(Ctxt, nam.Xoffset, float32(f)) 396 case TFLOAT64: 397 s.WriteFloat64(Ctxt, nam.Xoffset, f) 398 } 399 400 default: 401 Fatalf("gdata unhandled OLITERAL %v", nr) 402 } 403 404 case OADDR: 405 if nr.Left.Op != ONAME { 406 Fatalf("gdata ADDR left op %s", nr.Left.Op) 407 } 408 to := nr.Left 409 Linksym(nam.Sym).WriteAddr(Ctxt, nam.Xoffset, wid, Linksym(to.Sym), to.Xoffset) 410 411 case ONAME: 412 if nr.Class != PFUNC { 413 Fatalf("gdata NAME not PFUNC %d", nr.Class) 414 } 415 Linksym(nam.Sym).WriteAddr(Ctxt, nam.Xoffset, wid, Linksym(funcsym(nr.Sym)), nr.Xoffset) 416 417 default: 418 Fatalf("gdata unhandled op %v %v\n", nr, nr.Op) 419 } 420 } 421 422 func gdatacomplex(nam *Node, cval *Mpcplx) { 423 t := Types[cplxsubtype(nam.Type.Etype)] 424 r := cval.Real.Float64() 425 i := cval.Imag.Float64() 426 s := Linksym(nam.Sym) 427 428 switch t.Etype { 429 case TFLOAT32: 430 s.WriteFloat32(Ctxt, nam.Xoffset, float32(r)) 431 s.WriteFloat32(Ctxt, nam.Xoffset+4, float32(i)) 432 case TFLOAT64: 433 s.WriteFloat64(Ctxt, nam.Xoffset, r) 434 s.WriteFloat64(Ctxt, nam.Xoffset+8, i) 435 } 436 } 437 438 func gdatastring(nam *Node, sval string) { 439 s := Linksym(nam.Sym) 440 _, symdata := stringsym(sval) 441 s.WriteAddr(Ctxt, nam.Xoffset, Widthptr, symdata, 0) 442 s.WriteInt(Ctxt, nam.Xoffset+int64(Widthptr), Widthint, int64(len(sval))) 443 }