github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/cmd/compile/internal/gc/ssa.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "bytes" 9 "fmt" 10 "html" 11 "os" 12 "strings" 13 14 "cmd/compile/internal/ssa" 15 "cmd/internal/obj" 16 "cmd/internal/sys" 17 ) 18 19 var ssaEnabled = true 20 21 var ssaConfig *ssa.Config 22 var ssaExp ssaExport 23 24 func initssa() *ssa.Config { 25 ssaExp.unimplemented = false 26 ssaExp.mustImplement = true 27 if ssaConfig == nil { 28 ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0) 29 if Thearch.LinkArch.Name == "386" { 30 ssaConfig.Set387(Thearch.Use387) 31 } 32 } 33 return ssaConfig 34 } 35 36 func shouldssa(fn *Node) bool { 37 switch Thearch.LinkArch.Name { 38 default: 39 // Only available for testing. 40 if os.Getenv("SSATEST") == "" { 41 return false 42 } 43 case "amd64", "amd64p32", "arm", "386", "arm64", "ppc64le", "mips64", "mips64le": 44 // Generally available. 45 } 46 if !ssaEnabled { 47 return false 48 } 49 50 // Environment variable control of SSA CG 51 // 1. IF GOSSAFUNC == current function name THEN 52 // compile this function with SSA and log output to ssa.html 53 54 // 2. IF GOSSAHASH == "" THEN 55 // compile this function (and everything else) with SSA 56 57 // 3. IF GOSSAHASH == "n" or "N" 58 // IF GOSSAPKG == current package name THEN 59 // compile this function (and everything in this package) with SSA 60 // ELSE 61 // use the old back end for this function. 62 // This is for compatibility with existing test harness and should go away. 63 64 // 4. IF GOSSAHASH is a suffix of the binary-rendered SHA1 hash of the function name THEN 65 // compile this function with SSA 66 // ELSE 67 // compile this function with the old back end. 68 69 // Plan is for 3 to be removed when the tests are revised. 70 // SSA is now default, and is disabled by setting 71 // GOSSAHASH to n or N, or selectively with strings of 72 // 0 and 1. 73 74 name := fn.Func.Nname.Sym.Name 75 76 funcname := os.Getenv("GOSSAFUNC") 77 if funcname != "" { 78 // If GOSSAFUNC is set, compile only that function. 79 return name == funcname 80 } 81 82 pkg := os.Getenv("GOSSAPKG") 83 if pkg != "" { 84 // If GOSSAPKG is set, compile only that package. 85 return localpkg.Name == pkg 86 } 87 88 return initssa().DebugHashMatch("GOSSAHASH", name) 89 } 90 91 // buildssa builds an SSA function. 92 func buildssa(fn *Node) *ssa.Func { 93 name := fn.Func.Nname.Sym.Name 94 printssa := name == os.Getenv("GOSSAFUNC") 95 if printssa { 96 fmt.Println("generating SSA for", name) 97 dumplist("buildssa-enter", fn.Func.Enter) 98 dumplist("buildssa-body", fn.Nbody) 99 dumplist("buildssa-exit", fn.Func.Exit) 100 } 101 102 var s state 103 s.pushLine(fn.Lineno) 104 defer s.popLine() 105 106 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 107 s.cgoUnsafeArgs = true 108 } 109 if fn.Func.Pragma&Nowritebarrier != 0 { 110 s.noWB = true 111 } 112 defer func() { 113 if s.WBLineno != 0 { 114 fn.Func.WBLineno = s.WBLineno 115 } 116 }() 117 // TODO(khr): build config just once at the start of the compiler binary 118 119 ssaExp.log = printssa 120 121 s.config = initssa() 122 s.f = s.config.NewFunc() 123 s.f.Name = name 124 s.exitCode = fn.Func.Exit 125 s.panics = map[funcLine]*ssa.Block{} 126 127 if name == os.Getenv("GOSSAFUNC") { 128 // TODO: tempfile? it is handy to have the location 129 // of this file be stable, so you can just reload in the browser. 130 s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name) 131 // TODO: generate and print a mapping from nodes to values and blocks 132 } 133 defer func() { 134 if !printssa { 135 s.config.HTML.Close() 136 } 137 }() 138 139 // Allocate starting block 140 s.f.Entry = s.f.NewBlock(ssa.BlockPlain) 141 142 // Allocate starting values 143 s.labels = map[string]*ssaLabel{} 144 s.labeledNodes = map[*Node]*ssaLabel{} 145 s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem) 146 s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead 147 s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR]) 148 149 s.startBlock(s.f.Entry) 150 s.vars[&memVar] = s.startmem 151 152 s.varsyms = map[*Node]interface{}{} 153 154 // Generate addresses of local declarations 155 s.decladdrs = map[*Node]*ssa.Value{} 156 for _, n := range fn.Func.Dcl { 157 switch n.Class { 158 case PPARAM, PPARAMOUT: 159 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) 160 s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) 161 if n.Class == PPARAMOUT && s.canSSA(n) { 162 // Save ssa-able PPARAMOUT variables so we can 163 // store them back to the stack at the end of 164 // the function. 165 s.returns = append(s.returns, n) 166 } 167 if n.Class == PPARAM && s.canSSA(n) && n.Type.IsPtrShaped() { 168 s.ptrargs = append(s.ptrargs, n) 169 n.SetNotLiveAtEnd(true) // SSA takes care of this explicitly 170 } 171 case PAUTO: 172 // processed at each use, to prevent Addr coming 173 // before the decl. 174 case PAUTOHEAP: 175 // moved to heap - already handled by frontend 176 case PFUNC: 177 // local function - already handled by frontend 178 default: 179 s.Unimplementedf("local variable with class %s unimplemented", classnames[n.Class]) 180 } 181 } 182 183 // Convert the AST-based IR to the SSA-based IR 184 s.stmts(fn.Func.Enter) 185 s.stmts(fn.Nbody) 186 187 // fallthrough to exit 188 if s.curBlock != nil { 189 s.pushLine(fn.Func.Endlineno) 190 s.exit() 191 s.popLine() 192 } 193 194 // Check that we used all labels 195 for name, lab := range s.labels { 196 if !lab.used() && !lab.reported && !lab.defNode.Used { 197 yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name) 198 lab.reported = true 199 } 200 if lab.used() && !lab.defined() && !lab.reported { 201 yyerrorl(lab.useNode.Lineno, "label %v not defined", name) 202 lab.reported = true 203 } 204 } 205 206 // Check any forward gotos. Non-forward gotos have already been checked. 207 for _, n := range s.fwdGotos { 208 lab := s.labels[n.Left.Sym.Name] 209 // If the label is undefined, we have already have printed an error. 210 if lab.defined() { 211 s.checkgoto(n, lab.defNode) 212 } 213 } 214 215 if nerrors > 0 { 216 s.f.Free() 217 return nil 218 } 219 220 prelinkNumvars := s.f.NumValues() 221 sparseDefState := s.locatePotentialPhiFunctions(fn) 222 223 // Link up variable uses to variable definitions 224 s.linkForwardReferences(sparseDefState) 225 226 if ssa.BuildStats > 0 { 227 s.f.LogStat("build", s.f.NumBlocks(), "blocks", prelinkNumvars, "vars_before", 228 s.f.NumValues(), "vars_after", prelinkNumvars*s.f.NumBlocks(), "ssa_phi_loc_cutoff_score") 229 } 230 231 // Don't carry reference this around longer than necessary 232 s.exitCode = Nodes{} 233 234 // Main call to ssa package to compile function 235 ssa.Compile(s.f) 236 237 return s.f 238 } 239 240 type state struct { 241 // configuration (arch) information 242 config *ssa.Config 243 244 // function we're building 245 f *ssa.Func 246 247 // labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f 248 labels map[string]*ssaLabel 249 labeledNodes map[*Node]*ssaLabel 250 251 // gotos that jump forward; required for deferred checkgoto calls 252 fwdGotos []*Node 253 // Code that must precede any return 254 // (e.g., copying value of heap-escaped paramout back to true paramout) 255 exitCode Nodes 256 257 // unlabeled break and continue statement tracking 258 breakTo *ssa.Block // current target for plain break statement 259 continueTo *ssa.Block // current target for plain continue statement 260 261 // current location where we're interpreting the AST 262 curBlock *ssa.Block 263 264 // variable assignments in the current block (map from variable symbol to ssa value) 265 // *Node is the unique identifier (an ONAME Node) for the variable. 266 vars map[*Node]*ssa.Value 267 268 // all defined variables at the end of each block. Indexed by block ID. 269 defvars []map[*Node]*ssa.Value 270 271 // addresses of PPARAM and PPARAMOUT variables. 272 decladdrs map[*Node]*ssa.Value 273 274 // symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused. 275 varsyms map[*Node]interface{} 276 277 // starting values. Memory, stack pointer, and globals pointer 278 startmem *ssa.Value 279 sp *ssa.Value 280 sb *ssa.Value 281 282 // line number stack. The current line number is top of stack 283 line []int32 284 285 // list of panic calls by function name and line number. 286 // Used to deduplicate panic calls. 287 panics map[funcLine]*ssa.Block 288 289 // list of FwdRef values. 290 fwdRefs []*ssa.Value 291 292 // list of PPARAMOUT (return) variables. 293 returns []*Node 294 295 // list of PPARAM SSA-able pointer-shaped args. We ensure these are live 296 // throughout the function to help users avoid premature finalizers. 297 ptrargs []*Node 298 299 cgoUnsafeArgs bool 300 noWB bool 301 WBLineno int32 // line number of first write barrier. 0=no write barriers 302 } 303 304 type funcLine struct { 305 f *Node 306 line int32 307 } 308 309 type ssaLabel struct { 310 target *ssa.Block // block identified by this label 311 breakTarget *ssa.Block // block to break to in control flow node identified by this label 312 continueTarget *ssa.Block // block to continue to in control flow node identified by this label 313 defNode *Node // label definition Node (OLABEL) 314 // Label use Node (OGOTO, OBREAK, OCONTINUE). 315 // Used only for error detection and reporting. 316 // There might be multiple uses, but we only need to track one. 317 useNode *Node 318 reported bool // reported indicates whether an error has already been reported for this label 319 } 320 321 // defined reports whether the label has a definition (OLABEL node). 322 func (l *ssaLabel) defined() bool { return l.defNode != nil } 323 324 // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node). 325 func (l *ssaLabel) used() bool { return l.useNode != nil } 326 327 // label returns the label associated with sym, creating it if necessary. 328 func (s *state) label(sym *Sym) *ssaLabel { 329 lab := s.labels[sym.Name] 330 if lab == nil { 331 lab = new(ssaLabel) 332 s.labels[sym.Name] = lab 333 } 334 return lab 335 } 336 337 func (s *state) Logf(msg string, args ...interface{}) { s.config.Logf(msg, args...) } 338 func (s *state) Log() bool { return s.config.Log() } 339 func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) } 340 func (s *state) Unimplementedf(msg string, args ...interface{}) { 341 s.config.Unimplementedf(s.peekLine(), msg, args...) 342 } 343 func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) } 344 func (s *state) Debug_checknil() bool { return s.config.Debug_checknil() } 345 346 var ( 347 // dummy node for the memory variable 348 memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}} 349 350 // dummy nodes for temporary variables 351 ptrVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}} 352 lenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}} 353 newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}} 354 capVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}} 355 typVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}} 356 idataVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}} 357 okVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}} 358 deltaVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "delta"}} 359 ) 360 361 // startBlock sets the current block we're generating code in to b. 362 func (s *state) startBlock(b *ssa.Block) { 363 if s.curBlock != nil { 364 s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) 365 } 366 s.curBlock = b 367 s.vars = map[*Node]*ssa.Value{} 368 } 369 370 // endBlock marks the end of generating code for the current block. 371 // Returns the (former) current block. Returns nil if there is no current 372 // block, i.e. if no code flows to the current execution point. 373 func (s *state) endBlock() *ssa.Block { 374 b := s.curBlock 375 if b == nil { 376 return nil 377 } 378 for len(s.defvars) <= int(b.ID) { 379 s.defvars = append(s.defvars, nil) 380 } 381 s.defvars[b.ID] = s.vars 382 s.curBlock = nil 383 s.vars = nil 384 b.Line = s.peekLine() 385 return b 386 } 387 388 // pushLine pushes a line number on the line number stack. 389 func (s *state) pushLine(line int32) { 390 if line == 0 { 391 // the frontend may emit node with line number missing, 392 // use the parent line number in this case. 393 line = s.peekLine() 394 if Debug['K'] != 0 { 395 Warn("buildssa: line 0") 396 } 397 } 398 s.line = append(s.line, line) 399 } 400 401 // popLine pops the top of the line number stack. 402 func (s *state) popLine() { 403 s.line = s.line[:len(s.line)-1] 404 } 405 406 // peekLine peek the top of the line number stack. 407 func (s *state) peekLine() int32 { 408 return s.line[len(s.line)-1] 409 } 410 411 func (s *state) Error(msg string, args ...interface{}) { 412 yyerrorl(s.peekLine(), msg, args...) 413 } 414 415 // newValue0 adds a new value with no arguments to the current block. 416 func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value { 417 return s.curBlock.NewValue0(s.peekLine(), op, t) 418 } 419 420 // newValue0A adds a new value with no arguments and an aux value to the current block. 421 func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { 422 return s.curBlock.NewValue0A(s.peekLine(), op, t, aux) 423 } 424 425 // newValue0I adds a new value with no arguments and an auxint value to the current block. 426 func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { 427 return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint) 428 } 429 430 // newValue1 adds a new value with one argument to the current block. 431 func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { 432 return s.curBlock.NewValue1(s.peekLine(), op, t, arg) 433 } 434 435 // newValue1A adds a new value with one argument and an aux value to the current block. 436 func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 437 return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg) 438 } 439 440 // newValue1I adds a new value with one argument and an auxint value to the current block. 441 func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value { 442 return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg) 443 } 444 445 // newValue2 adds a new value with two arguments to the current block. 446 func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { 447 return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1) 448 } 449 450 // newValue2I adds a new value with two arguments and an auxint value to the current block. 451 func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { 452 return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1) 453 } 454 455 // newValue3 adds a new value with three arguments to the current block. 456 func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 457 return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2) 458 } 459 460 // newValue3I adds a new value with three arguments and an auxint value to the current block. 461 func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 462 return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2) 463 } 464 465 // entryNewValue0 adds a new value with no arguments to the entry block. 466 func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value { 467 return s.f.Entry.NewValue0(s.peekLine(), op, t) 468 } 469 470 // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. 471 func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { 472 return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux) 473 } 474 475 // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block. 476 func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { 477 return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint) 478 } 479 480 // entryNewValue1 adds a new value with one argument to the entry block. 481 func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { 482 return s.f.Entry.NewValue1(s.peekLine(), op, t, arg) 483 } 484 485 // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. 486 func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value { 487 return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg) 488 } 489 490 // entryNewValue1A adds a new value with one argument and an aux value to the entry block. 491 func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 492 return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg) 493 } 494 495 // entryNewValue2 adds a new value with two arguments to the entry block. 496 func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { 497 return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1) 498 } 499 500 // const* routines add a new const value to the entry block. 501 func (s *state) constSlice(t ssa.Type) *ssa.Value { return s.f.ConstSlice(s.peekLine(), t) } 502 func (s *state) constInterface(t ssa.Type) *ssa.Value { return s.f.ConstInterface(s.peekLine(), t) } 503 func (s *state) constNil(t ssa.Type) *ssa.Value { return s.f.ConstNil(s.peekLine(), t) } 504 func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) } 505 func (s *state) constBool(c bool) *ssa.Value { 506 return s.f.ConstBool(s.peekLine(), Types[TBOOL], c) 507 } 508 func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value { 509 return s.f.ConstInt8(s.peekLine(), t, c) 510 } 511 func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value { 512 return s.f.ConstInt16(s.peekLine(), t, c) 513 } 514 func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value { 515 return s.f.ConstInt32(s.peekLine(), t, c) 516 } 517 func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value { 518 return s.f.ConstInt64(s.peekLine(), t, c) 519 } 520 func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value { 521 return s.f.ConstFloat32(s.peekLine(), t, c) 522 } 523 func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value { 524 return s.f.ConstFloat64(s.peekLine(), t, c) 525 } 526 func (s *state) constInt(t ssa.Type, c int64) *ssa.Value { 527 if s.config.IntSize == 8 { 528 return s.constInt64(t, c) 529 } 530 if int64(int32(c)) != c { 531 s.Fatalf("integer constant too big %d", c) 532 } 533 return s.constInt32(t, int32(c)) 534 } 535 536 func (s *state) stmts(a Nodes) { 537 for _, x := range a.Slice() { 538 s.stmt(x) 539 } 540 } 541 542 // ssaStmtList converts the statement n to SSA and adds it to s. 543 func (s *state) stmtList(l Nodes) { 544 for _, n := range l.Slice() { 545 s.stmt(n) 546 } 547 } 548 549 // ssaStmt converts the statement n to SSA and adds it to s. 550 func (s *state) stmt(n *Node) { 551 s.pushLine(n.Lineno) 552 defer s.popLine() 553 554 // If s.curBlock is nil, then we're about to generate dead code. 555 // We can't just short-circuit here, though, 556 // because we check labels and gotos as part of SSA generation. 557 // Provide a block for the dead code so that we don't have 558 // to add special cases everywhere else. 559 if s.curBlock == nil { 560 dead := s.f.NewBlock(ssa.BlockPlain) 561 s.startBlock(dead) 562 } 563 564 s.stmtList(n.Ninit) 565 switch n.Op { 566 567 case OBLOCK: 568 s.stmtList(n.List) 569 570 // No-ops 571 case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: 572 573 // Expression statements 574 case OCALLFUNC: 575 if isIntrinsicCall(n) { 576 s.intrinsicCall(n) 577 return 578 } 579 fallthrough 580 581 case OCALLMETH, OCALLINTER: 582 s.call(n, callNormal) 583 if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC && 584 (compiling_runtime && n.Left.Sym.Name == "throw" || 585 n.Left.Sym.Pkg == Runtimepkg && (n.Left.Sym.Name == "gopanic" || n.Left.Sym.Name == "selectgo" || n.Left.Sym.Name == "block")) { 586 m := s.mem() 587 b := s.endBlock() 588 b.Kind = ssa.BlockExit 589 b.SetControl(m) 590 // TODO: never rewrite OPANIC to OCALLFUNC in the 591 // first place. Need to wait until all backends 592 // go through SSA. 593 } 594 case ODEFER: 595 s.call(n.Left, callDefer) 596 case OPROC: 597 s.call(n.Left, callGo) 598 599 case OAS2DOTTYPE: 600 res, resok := s.dottype(n.Rlist.First(), true) 601 s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), false, n.Lineno, 0, false) 602 s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false) 603 return 604 605 case ODCL: 606 if n.Left.Class == PAUTOHEAP { 607 Fatalf("DCL %v", n) 608 } 609 610 case OLABEL: 611 sym := n.Left.Sym 612 613 if isblanksym(sym) { 614 // Empty identifier is valid but useless. 615 // See issues 11589, 11593. 616 return 617 } 618 619 lab := s.label(sym) 620 621 // Associate label with its control flow node, if any 622 if ctl := n.Name.Defn; ctl != nil { 623 switch ctl.Op { 624 case OFOR, OSWITCH, OSELECT: 625 s.labeledNodes[ctl] = lab 626 } 627 } 628 629 if !lab.defined() { 630 lab.defNode = n 631 } else { 632 s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno)) 633 lab.reported = true 634 } 635 // The label might already have a target block via a goto. 636 if lab.target == nil { 637 lab.target = s.f.NewBlock(ssa.BlockPlain) 638 } 639 640 // go to that label (we pretend "label:" is preceded by "goto label") 641 b := s.endBlock() 642 b.AddEdgeTo(lab.target) 643 s.startBlock(lab.target) 644 645 case OGOTO: 646 sym := n.Left.Sym 647 648 lab := s.label(sym) 649 if lab.target == nil { 650 lab.target = s.f.NewBlock(ssa.BlockPlain) 651 } 652 if !lab.used() { 653 lab.useNode = n 654 } 655 656 if lab.defined() { 657 s.checkgoto(n, lab.defNode) 658 } else { 659 s.fwdGotos = append(s.fwdGotos, n) 660 } 661 662 b := s.endBlock() 663 b.AddEdgeTo(lab.target) 664 665 case OAS, OASWB: 666 // Check whether we can generate static data rather than code. 667 // If so, ignore n and defer data generation until codegen. 668 // Failure to do this causes writes to readonly symbols. 669 if gen_as_init(n, true) { 670 var data []*Node 671 if s.f.StaticData != nil { 672 data = s.f.StaticData.([]*Node) 673 } 674 s.f.StaticData = append(data, n) 675 return 676 } 677 678 if n.Left == n.Right && n.Left.Op == ONAME { 679 // An x=x assignment. No point in doing anything 680 // here. In addition, skipping this assignment 681 // prevents generating: 682 // VARDEF x 683 // COPY x -> x 684 // which is bad because x is incorrectly considered 685 // dead before the vardef. See issue #14904. 686 return 687 } 688 689 var t *Type 690 if n.Right != nil { 691 t = n.Right.Type 692 } else { 693 t = n.Left.Type 694 } 695 696 // Evaluate RHS. 697 rhs := n.Right 698 if rhs != nil { 699 switch rhs.Op { 700 case OSTRUCTLIT, OARRAYLIT: 701 // All literals with nonzero fields have already been 702 // rewritten during walk. Any that remain are just T{} 703 // or equivalents. Use the zero value. 704 if !iszero(rhs) { 705 Fatalf("literal with nonzero value in SSA: %v", rhs) 706 } 707 rhs = nil 708 case OAPPEND: 709 // If we're writing the result of an append back to the same slice, 710 // handle it specially to avoid write barriers on the fast (non-growth) path. 711 // If the slice can be SSA'd, it'll be on the stack, 712 // so there will be no write barriers, 713 // so there's no need to attempt to prevent them. 714 if samesafeexpr(n.Left, rhs.List.First()) && !s.canSSA(n.Left) { 715 s.append(rhs, true) 716 return 717 } 718 } 719 } 720 var r *ssa.Value 721 var isVolatile bool 722 needwb := n.Op == OASWB && rhs != nil 723 deref := !canSSAType(t) 724 if deref { 725 if rhs == nil { 726 r = nil // Signal assign to use OpZero. 727 } else { 728 r, isVolatile = s.addr(rhs, false) 729 } 730 } else { 731 if rhs == nil { 732 r = s.zeroVal(t) 733 } else { 734 r = s.expr(rhs) 735 } 736 } 737 if rhs != nil && rhs.Op == OAPPEND { 738 // The frontend gets rid of the write barrier to enable the special OAPPEND 739 // handling above, but since this is not a special case, we need it. 740 // TODO: just add a ptr graying to the end of growslice? 741 // TODO: check whether we need to provide special handling and a write barrier 742 // for ODOTTYPE and ORECV also. 743 // They get similar wb-removal treatment in walk.go:OAS. 744 needwb = true 745 } 746 747 var skip skipMask 748 if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) { 749 // We're assigning a slicing operation back to its source. 750 // Don't write back fields we aren't changing. See issue #14855. 751 i, j, k := rhs.SliceBounds() 752 if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) { 753 // [0:...] is the same as [:...] 754 i = nil 755 } 756 // TODO: detect defaults for len/cap also. 757 // Currently doesn't really work because (*p)[:len(*p)] appears here as: 758 // tmp = len(*p) 759 // (*p)[:tmp] 760 //if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) { 761 // j = nil 762 //} 763 //if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) { 764 // k = nil 765 //} 766 if i == nil { 767 skip |= skipPtr 768 if j == nil { 769 skip |= skipLen 770 } 771 if k == nil { 772 skip |= skipCap 773 } 774 } 775 } 776 777 s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile) 778 779 case OIF: 780 bThen := s.f.NewBlock(ssa.BlockPlain) 781 bEnd := s.f.NewBlock(ssa.BlockPlain) 782 var bElse *ssa.Block 783 if n.Rlist.Len() != 0 { 784 bElse = s.f.NewBlock(ssa.BlockPlain) 785 s.condBranch(n.Left, bThen, bElse, n.Likely) 786 } else { 787 s.condBranch(n.Left, bThen, bEnd, n.Likely) 788 } 789 790 s.startBlock(bThen) 791 s.stmts(n.Nbody) 792 if b := s.endBlock(); b != nil { 793 b.AddEdgeTo(bEnd) 794 } 795 796 if n.Rlist.Len() != 0 { 797 s.startBlock(bElse) 798 s.stmtList(n.Rlist) 799 if b := s.endBlock(); b != nil { 800 b.AddEdgeTo(bEnd) 801 } 802 } 803 s.startBlock(bEnd) 804 805 case ORETURN: 806 s.stmtList(n.List) 807 s.exit() 808 case ORETJMP: 809 s.stmtList(n.List) 810 b := s.exit() 811 b.Kind = ssa.BlockRetJmp // override BlockRet 812 b.Aux = n.Left.Sym 813 814 case OCONTINUE, OBREAK: 815 var op string 816 var to *ssa.Block 817 switch n.Op { 818 case OCONTINUE: 819 op = "continue" 820 to = s.continueTo 821 case OBREAK: 822 op = "break" 823 to = s.breakTo 824 } 825 if n.Left == nil { 826 // plain break/continue 827 if to == nil { 828 s.Error("%s is not in a loop", op) 829 return 830 } 831 // nothing to do; "to" is already the correct target 832 } else { 833 // labeled break/continue; look up the target 834 sym := n.Left.Sym 835 lab := s.label(sym) 836 if !lab.used() { 837 lab.useNode = n.Left 838 } 839 if !lab.defined() { 840 s.Error("%s label not defined: %v", op, sym) 841 lab.reported = true 842 return 843 } 844 switch n.Op { 845 case OCONTINUE: 846 to = lab.continueTarget 847 case OBREAK: 848 to = lab.breakTarget 849 } 850 if to == nil { 851 // Valid label but not usable with a break/continue here, e.g.: 852 // for { 853 // continue abc 854 // } 855 // abc: 856 // for {} 857 s.Error("invalid %s label %v", op, sym) 858 lab.reported = true 859 return 860 } 861 } 862 863 b := s.endBlock() 864 b.AddEdgeTo(to) 865 866 case OFOR: 867 // OFOR: for Ninit; Left; Right { Nbody } 868 bCond := s.f.NewBlock(ssa.BlockPlain) 869 bBody := s.f.NewBlock(ssa.BlockPlain) 870 bIncr := s.f.NewBlock(ssa.BlockPlain) 871 bEnd := s.f.NewBlock(ssa.BlockPlain) 872 873 // first, jump to condition test 874 b := s.endBlock() 875 b.AddEdgeTo(bCond) 876 877 // generate code to test condition 878 s.startBlock(bCond) 879 if n.Left != nil { 880 s.condBranch(n.Left, bBody, bEnd, 1) 881 } else { 882 b := s.endBlock() 883 b.Kind = ssa.BlockPlain 884 b.AddEdgeTo(bBody) 885 } 886 887 // set up for continue/break in body 888 prevContinue := s.continueTo 889 prevBreak := s.breakTo 890 s.continueTo = bIncr 891 s.breakTo = bEnd 892 lab := s.labeledNodes[n] 893 if lab != nil { 894 // labeled for loop 895 lab.continueTarget = bIncr 896 lab.breakTarget = bEnd 897 } 898 899 // generate body 900 s.startBlock(bBody) 901 s.stmts(n.Nbody) 902 903 // tear down continue/break 904 s.continueTo = prevContinue 905 s.breakTo = prevBreak 906 if lab != nil { 907 lab.continueTarget = nil 908 lab.breakTarget = nil 909 } 910 911 // done with body, goto incr 912 if b := s.endBlock(); b != nil { 913 b.AddEdgeTo(bIncr) 914 } 915 916 // generate incr 917 s.startBlock(bIncr) 918 if n.Right != nil { 919 s.stmt(n.Right) 920 } 921 if b := s.endBlock(); b != nil { 922 b.AddEdgeTo(bCond) 923 } 924 s.startBlock(bEnd) 925 926 case OSWITCH, OSELECT: 927 // These have been mostly rewritten by the front end into their Nbody fields. 928 // Our main task is to correctly hook up any break statements. 929 bEnd := s.f.NewBlock(ssa.BlockPlain) 930 931 prevBreak := s.breakTo 932 s.breakTo = bEnd 933 lab := s.labeledNodes[n] 934 if lab != nil { 935 // labeled 936 lab.breakTarget = bEnd 937 } 938 939 // generate body code 940 s.stmts(n.Nbody) 941 942 s.breakTo = prevBreak 943 if lab != nil { 944 lab.breakTarget = nil 945 } 946 947 // OSWITCH never falls through (s.curBlock == nil here). 948 // OSELECT does not fall through if we're calling selectgo. 949 // OSELECT does fall through if we're calling selectnb{send,recv}[2]. 950 // In those latter cases, go to the code after the select. 951 if b := s.endBlock(); b != nil { 952 b.AddEdgeTo(bEnd) 953 } 954 s.startBlock(bEnd) 955 956 case OVARKILL: 957 // Insert a varkill op to record that a variable is no longer live. 958 // We only care about liveness info at call sites, so putting the 959 // varkill in the store chain is enough to keep it correctly ordered 960 // with respect to call ops. 961 if !s.canSSA(n.Left) { 962 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem()) 963 } 964 965 case OVARLIVE: 966 // Insert a varlive op to record that a variable is still live. 967 if !n.Left.Addrtaken { 968 s.Fatalf("VARLIVE variable %s must have Addrtaken set", n.Left) 969 } 970 s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem()) 971 972 case OCHECKNIL: 973 p := s.expr(n.Left) 974 s.nilCheck(p) 975 976 case OSQRT: 977 s.expr(n.Left) 978 979 default: 980 s.Unimplementedf("unhandled stmt %s", n.Op) 981 } 982 } 983 984 // exit processes any code that needs to be generated just before returning. 985 // It returns a BlockRet block that ends the control flow. Its control value 986 // will be set to the final memory state. 987 func (s *state) exit() *ssa.Block { 988 if hasdefer { 989 s.rtcall(Deferreturn, true, nil) 990 } 991 992 // Run exit code. Typically, this code copies heap-allocated PPARAMOUT 993 // variables back to the stack. 994 s.stmts(s.exitCode) 995 996 // Store SSAable PPARAMOUT variables back to stack locations. 997 for _, n := range s.returns { 998 addr := s.decladdrs[n] 999 val := s.variable(n, n.Type) 1000 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem()) 1001 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem()) 1002 // TODO: if val is ever spilled, we'd like to use the 1003 // PPARAMOUT slot for spilling it. That won't happen 1004 // currently. 1005 } 1006 1007 // Keep input pointer args live until the return. This is a bandaid 1008 // fix for 1.7 for what will become in 1.8 explicit runtime.KeepAlive calls. 1009 // For <= 1.7 we guarantee that pointer input arguments live to the end of 1010 // the function to prevent premature (from the user's point of view) 1011 // execution of finalizers. See issue 15277. 1012 // TODO: remove for 1.8? 1013 for _, n := range s.ptrargs { 1014 s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem()) 1015 } 1016 1017 // Do actual return. 1018 m := s.mem() 1019 b := s.endBlock() 1020 b.Kind = ssa.BlockRet 1021 b.SetControl(m) 1022 return b 1023 } 1024 1025 type opAndType struct { 1026 op Op 1027 etype EType 1028 } 1029 1030 var opToSSA = map[opAndType]ssa.Op{ 1031 opAndType{OADD, TINT8}: ssa.OpAdd8, 1032 opAndType{OADD, TUINT8}: ssa.OpAdd8, 1033 opAndType{OADD, TINT16}: ssa.OpAdd16, 1034 opAndType{OADD, TUINT16}: ssa.OpAdd16, 1035 opAndType{OADD, TINT32}: ssa.OpAdd32, 1036 opAndType{OADD, TUINT32}: ssa.OpAdd32, 1037 opAndType{OADD, TPTR32}: ssa.OpAdd32, 1038 opAndType{OADD, TINT64}: ssa.OpAdd64, 1039 opAndType{OADD, TUINT64}: ssa.OpAdd64, 1040 opAndType{OADD, TPTR64}: ssa.OpAdd64, 1041 opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, 1042 opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, 1043 1044 opAndType{OSUB, TINT8}: ssa.OpSub8, 1045 opAndType{OSUB, TUINT8}: ssa.OpSub8, 1046 opAndType{OSUB, TINT16}: ssa.OpSub16, 1047 opAndType{OSUB, TUINT16}: ssa.OpSub16, 1048 opAndType{OSUB, TINT32}: ssa.OpSub32, 1049 opAndType{OSUB, TUINT32}: ssa.OpSub32, 1050 opAndType{OSUB, TINT64}: ssa.OpSub64, 1051 opAndType{OSUB, TUINT64}: ssa.OpSub64, 1052 opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, 1053 opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, 1054 1055 opAndType{ONOT, TBOOL}: ssa.OpNot, 1056 1057 opAndType{OMINUS, TINT8}: ssa.OpNeg8, 1058 opAndType{OMINUS, TUINT8}: ssa.OpNeg8, 1059 opAndType{OMINUS, TINT16}: ssa.OpNeg16, 1060 opAndType{OMINUS, TUINT16}: ssa.OpNeg16, 1061 opAndType{OMINUS, TINT32}: ssa.OpNeg32, 1062 opAndType{OMINUS, TUINT32}: ssa.OpNeg32, 1063 opAndType{OMINUS, TINT64}: ssa.OpNeg64, 1064 opAndType{OMINUS, TUINT64}: ssa.OpNeg64, 1065 opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F, 1066 opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F, 1067 1068 opAndType{OCOM, TINT8}: ssa.OpCom8, 1069 opAndType{OCOM, TUINT8}: ssa.OpCom8, 1070 opAndType{OCOM, TINT16}: ssa.OpCom16, 1071 opAndType{OCOM, TUINT16}: ssa.OpCom16, 1072 opAndType{OCOM, TINT32}: ssa.OpCom32, 1073 opAndType{OCOM, TUINT32}: ssa.OpCom32, 1074 opAndType{OCOM, TINT64}: ssa.OpCom64, 1075 opAndType{OCOM, TUINT64}: ssa.OpCom64, 1076 1077 opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, 1078 opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, 1079 opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, 1080 opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, 1081 1082 opAndType{OMUL, TINT8}: ssa.OpMul8, 1083 opAndType{OMUL, TUINT8}: ssa.OpMul8, 1084 opAndType{OMUL, TINT16}: ssa.OpMul16, 1085 opAndType{OMUL, TUINT16}: ssa.OpMul16, 1086 opAndType{OMUL, TINT32}: ssa.OpMul32, 1087 opAndType{OMUL, TUINT32}: ssa.OpMul32, 1088 opAndType{OMUL, TINT64}: ssa.OpMul64, 1089 opAndType{OMUL, TUINT64}: ssa.OpMul64, 1090 opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, 1091 opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, 1092 1093 opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, 1094 opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, 1095 1096 opAndType{OHMUL, TINT8}: ssa.OpHmul8, 1097 opAndType{OHMUL, TUINT8}: ssa.OpHmul8u, 1098 opAndType{OHMUL, TINT16}: ssa.OpHmul16, 1099 opAndType{OHMUL, TUINT16}: ssa.OpHmul16u, 1100 opAndType{OHMUL, TINT32}: ssa.OpHmul32, 1101 opAndType{OHMUL, TUINT32}: ssa.OpHmul32u, 1102 1103 opAndType{ODIV, TINT8}: ssa.OpDiv8, 1104 opAndType{ODIV, TUINT8}: ssa.OpDiv8u, 1105 opAndType{ODIV, TINT16}: ssa.OpDiv16, 1106 opAndType{ODIV, TUINT16}: ssa.OpDiv16u, 1107 opAndType{ODIV, TINT32}: ssa.OpDiv32, 1108 opAndType{ODIV, TUINT32}: ssa.OpDiv32u, 1109 opAndType{ODIV, TINT64}: ssa.OpDiv64, 1110 opAndType{ODIV, TUINT64}: ssa.OpDiv64u, 1111 1112 opAndType{OMOD, TINT8}: ssa.OpMod8, 1113 opAndType{OMOD, TUINT8}: ssa.OpMod8u, 1114 opAndType{OMOD, TINT16}: ssa.OpMod16, 1115 opAndType{OMOD, TUINT16}: ssa.OpMod16u, 1116 opAndType{OMOD, TINT32}: ssa.OpMod32, 1117 opAndType{OMOD, TUINT32}: ssa.OpMod32u, 1118 opAndType{OMOD, TINT64}: ssa.OpMod64, 1119 opAndType{OMOD, TUINT64}: ssa.OpMod64u, 1120 1121 opAndType{OAND, TINT8}: ssa.OpAnd8, 1122 opAndType{OAND, TUINT8}: ssa.OpAnd8, 1123 opAndType{OAND, TINT16}: ssa.OpAnd16, 1124 opAndType{OAND, TUINT16}: ssa.OpAnd16, 1125 opAndType{OAND, TINT32}: ssa.OpAnd32, 1126 opAndType{OAND, TUINT32}: ssa.OpAnd32, 1127 opAndType{OAND, TINT64}: ssa.OpAnd64, 1128 opAndType{OAND, TUINT64}: ssa.OpAnd64, 1129 1130 opAndType{OOR, TINT8}: ssa.OpOr8, 1131 opAndType{OOR, TUINT8}: ssa.OpOr8, 1132 opAndType{OOR, TINT16}: ssa.OpOr16, 1133 opAndType{OOR, TUINT16}: ssa.OpOr16, 1134 opAndType{OOR, TINT32}: ssa.OpOr32, 1135 opAndType{OOR, TUINT32}: ssa.OpOr32, 1136 opAndType{OOR, TINT64}: ssa.OpOr64, 1137 opAndType{OOR, TUINT64}: ssa.OpOr64, 1138 1139 opAndType{OXOR, TINT8}: ssa.OpXor8, 1140 opAndType{OXOR, TUINT8}: ssa.OpXor8, 1141 opAndType{OXOR, TINT16}: ssa.OpXor16, 1142 opAndType{OXOR, TUINT16}: ssa.OpXor16, 1143 opAndType{OXOR, TINT32}: ssa.OpXor32, 1144 opAndType{OXOR, TUINT32}: ssa.OpXor32, 1145 opAndType{OXOR, TINT64}: ssa.OpXor64, 1146 opAndType{OXOR, TUINT64}: ssa.OpXor64, 1147 1148 opAndType{OEQ, TBOOL}: ssa.OpEqB, 1149 opAndType{OEQ, TINT8}: ssa.OpEq8, 1150 opAndType{OEQ, TUINT8}: ssa.OpEq8, 1151 opAndType{OEQ, TINT16}: ssa.OpEq16, 1152 opAndType{OEQ, TUINT16}: ssa.OpEq16, 1153 opAndType{OEQ, TINT32}: ssa.OpEq32, 1154 opAndType{OEQ, TUINT32}: ssa.OpEq32, 1155 opAndType{OEQ, TINT64}: ssa.OpEq64, 1156 opAndType{OEQ, TUINT64}: ssa.OpEq64, 1157 opAndType{OEQ, TINTER}: ssa.OpEqInter, 1158 opAndType{OEQ, TSLICE}: ssa.OpEqSlice, 1159 opAndType{OEQ, TFUNC}: ssa.OpEqPtr, 1160 opAndType{OEQ, TMAP}: ssa.OpEqPtr, 1161 opAndType{OEQ, TCHAN}: ssa.OpEqPtr, 1162 opAndType{OEQ, TPTR32}: ssa.OpEqPtr, 1163 opAndType{OEQ, TPTR64}: ssa.OpEqPtr, 1164 opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, 1165 opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, 1166 opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, 1167 opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, 1168 1169 opAndType{ONE, TBOOL}: ssa.OpNeqB, 1170 opAndType{ONE, TINT8}: ssa.OpNeq8, 1171 opAndType{ONE, TUINT8}: ssa.OpNeq8, 1172 opAndType{ONE, TINT16}: ssa.OpNeq16, 1173 opAndType{ONE, TUINT16}: ssa.OpNeq16, 1174 opAndType{ONE, TINT32}: ssa.OpNeq32, 1175 opAndType{ONE, TUINT32}: ssa.OpNeq32, 1176 opAndType{ONE, TINT64}: ssa.OpNeq64, 1177 opAndType{ONE, TUINT64}: ssa.OpNeq64, 1178 opAndType{ONE, TINTER}: ssa.OpNeqInter, 1179 opAndType{ONE, TSLICE}: ssa.OpNeqSlice, 1180 opAndType{ONE, TFUNC}: ssa.OpNeqPtr, 1181 opAndType{ONE, TMAP}: ssa.OpNeqPtr, 1182 opAndType{ONE, TCHAN}: ssa.OpNeqPtr, 1183 opAndType{ONE, TPTR32}: ssa.OpNeqPtr, 1184 opAndType{ONE, TPTR64}: ssa.OpNeqPtr, 1185 opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, 1186 opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, 1187 opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, 1188 opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, 1189 1190 opAndType{OLT, TINT8}: ssa.OpLess8, 1191 opAndType{OLT, TUINT8}: ssa.OpLess8U, 1192 opAndType{OLT, TINT16}: ssa.OpLess16, 1193 opAndType{OLT, TUINT16}: ssa.OpLess16U, 1194 opAndType{OLT, TINT32}: ssa.OpLess32, 1195 opAndType{OLT, TUINT32}: ssa.OpLess32U, 1196 opAndType{OLT, TINT64}: ssa.OpLess64, 1197 opAndType{OLT, TUINT64}: ssa.OpLess64U, 1198 opAndType{OLT, TFLOAT64}: ssa.OpLess64F, 1199 opAndType{OLT, TFLOAT32}: ssa.OpLess32F, 1200 1201 opAndType{OGT, TINT8}: ssa.OpGreater8, 1202 opAndType{OGT, TUINT8}: ssa.OpGreater8U, 1203 opAndType{OGT, TINT16}: ssa.OpGreater16, 1204 opAndType{OGT, TUINT16}: ssa.OpGreater16U, 1205 opAndType{OGT, TINT32}: ssa.OpGreater32, 1206 opAndType{OGT, TUINT32}: ssa.OpGreater32U, 1207 opAndType{OGT, TINT64}: ssa.OpGreater64, 1208 opAndType{OGT, TUINT64}: ssa.OpGreater64U, 1209 opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, 1210 opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, 1211 1212 opAndType{OLE, TINT8}: ssa.OpLeq8, 1213 opAndType{OLE, TUINT8}: ssa.OpLeq8U, 1214 opAndType{OLE, TINT16}: ssa.OpLeq16, 1215 opAndType{OLE, TUINT16}: ssa.OpLeq16U, 1216 opAndType{OLE, TINT32}: ssa.OpLeq32, 1217 opAndType{OLE, TUINT32}: ssa.OpLeq32U, 1218 opAndType{OLE, TINT64}: ssa.OpLeq64, 1219 opAndType{OLE, TUINT64}: ssa.OpLeq64U, 1220 opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, 1221 opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, 1222 1223 opAndType{OGE, TINT8}: ssa.OpGeq8, 1224 opAndType{OGE, TUINT8}: ssa.OpGeq8U, 1225 opAndType{OGE, TINT16}: ssa.OpGeq16, 1226 opAndType{OGE, TUINT16}: ssa.OpGeq16U, 1227 opAndType{OGE, TINT32}: ssa.OpGeq32, 1228 opAndType{OGE, TUINT32}: ssa.OpGeq32U, 1229 opAndType{OGE, TINT64}: ssa.OpGeq64, 1230 opAndType{OGE, TUINT64}: ssa.OpGeq64U, 1231 opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, 1232 opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, 1233 1234 opAndType{OLROT, TUINT8}: ssa.OpLrot8, 1235 opAndType{OLROT, TUINT16}: ssa.OpLrot16, 1236 opAndType{OLROT, TUINT32}: ssa.OpLrot32, 1237 opAndType{OLROT, TUINT64}: ssa.OpLrot64, 1238 1239 opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt, 1240 } 1241 1242 func (s *state) concreteEtype(t *Type) EType { 1243 e := t.Etype 1244 switch e { 1245 default: 1246 return e 1247 case TINT: 1248 if s.config.IntSize == 8 { 1249 return TINT64 1250 } 1251 return TINT32 1252 case TUINT: 1253 if s.config.IntSize == 8 { 1254 return TUINT64 1255 } 1256 return TUINT32 1257 case TUINTPTR: 1258 if s.config.PtrSize == 8 { 1259 return TUINT64 1260 } 1261 return TUINT32 1262 } 1263 } 1264 1265 func (s *state) ssaOp(op Op, t *Type) ssa.Op { 1266 etype := s.concreteEtype(t) 1267 x, ok := opToSSA[opAndType{op, etype}] 1268 if !ok { 1269 s.Unimplementedf("unhandled binary op %s %s", op, etype) 1270 } 1271 return x 1272 } 1273 1274 func floatForComplex(t *Type) *Type { 1275 if t.Size() == 8 { 1276 return Types[TFLOAT32] 1277 } else { 1278 return Types[TFLOAT64] 1279 } 1280 } 1281 1282 type opAndTwoTypes struct { 1283 op Op 1284 etype1 EType 1285 etype2 EType 1286 } 1287 1288 type twoTypes struct { 1289 etype1 EType 1290 etype2 EType 1291 } 1292 1293 type twoOpsAndType struct { 1294 op1 ssa.Op 1295 op2 ssa.Op 1296 intermediateType EType 1297 } 1298 1299 var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1300 1301 twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, 1302 twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, 1303 twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, 1304 twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, 1305 1306 twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, 1307 twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, 1308 twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, 1309 twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, 1310 1311 twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1312 twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1313 twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, 1314 twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, 1315 1316 twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1317 twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1318 twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, 1319 twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, 1320 // unsigned 1321 twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, 1322 twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, 1323 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned 1324 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead 1325 1326 twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, 1327 twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, 1328 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned 1329 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead 1330 1331 twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1332 twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1333 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1334 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead 1335 1336 twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1337 twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1338 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1339 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead 1340 1341 // float 1342 twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, 1343 twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64}, 1344 twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32}, 1345 twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, 1346 } 1347 1348 // this map is used only for 32-bit arch, and only includes the difference 1349 // on 32-bit arch, don't use int64<->float conversion for uint32 1350 var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ 1351 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32}, 1352 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32}, 1353 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32}, 1354 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32}, 1355 } 1356 1357 // uint64<->float conversions, only on machines that have intructions for that 1358 var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1359 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64}, 1360 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64}, 1361 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64}, 1362 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64}, 1363 } 1364 1365 var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ 1366 opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, 1367 opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, 1368 opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, 1369 opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, 1370 opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, 1371 opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, 1372 opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, 1373 opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, 1374 1375 opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, 1376 opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, 1377 opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, 1378 opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, 1379 opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, 1380 opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, 1381 opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, 1382 opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, 1383 1384 opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, 1385 opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, 1386 opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, 1387 opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, 1388 opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, 1389 opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, 1390 opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, 1391 opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, 1392 1393 opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, 1394 opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, 1395 opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, 1396 opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, 1397 opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, 1398 opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, 1399 opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, 1400 opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, 1401 1402 opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, 1403 opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, 1404 opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, 1405 opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, 1406 opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, 1407 opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, 1408 opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, 1409 opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, 1410 1411 opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, 1412 opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, 1413 opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, 1414 opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, 1415 opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, 1416 opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, 1417 opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, 1418 opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, 1419 1420 opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, 1421 opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, 1422 opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, 1423 opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, 1424 opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, 1425 opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, 1426 opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, 1427 opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, 1428 1429 opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, 1430 opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, 1431 opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, 1432 opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, 1433 opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, 1434 opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, 1435 opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, 1436 opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, 1437 } 1438 1439 func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op { 1440 etype1 := s.concreteEtype(t) 1441 etype2 := s.concreteEtype(u) 1442 x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] 1443 if !ok { 1444 s.Unimplementedf("unhandled shift op %s etype=%s/%s", op, etype1, etype2) 1445 } 1446 return x 1447 } 1448 1449 func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op { 1450 etype1 := s.concreteEtype(t) 1451 x, ok := opToSSA[opAndType{op, etype1}] 1452 if !ok { 1453 s.Unimplementedf("unhandled rotate op %s etype=%s", op, etype1) 1454 } 1455 return x 1456 } 1457 1458 // expr converts the expression n to ssa, adds it to s and returns the ssa result. 1459 func (s *state) expr(n *Node) *ssa.Value { 1460 if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) { 1461 // ONAMEs and named OLITERALs have the line number 1462 // of the decl, not the use. See issue 14742. 1463 s.pushLine(n.Lineno) 1464 defer s.popLine() 1465 } 1466 1467 s.stmtList(n.Ninit) 1468 switch n.Op { 1469 case OCFUNC: 1470 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym}) 1471 return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) 1472 case ONAME: 1473 if n.Class == PFUNC { 1474 // "value" of a function is the address of the function's closure 1475 sym := funcsym(n.Sym) 1476 aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym} 1477 return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb) 1478 } 1479 if s.canSSA(n) { 1480 return s.variable(n, n.Type) 1481 } 1482 addr, _ := s.addr(n, false) 1483 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1484 case OCLOSUREVAR: 1485 addr, _ := s.addr(n, false) 1486 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1487 case OLITERAL: 1488 switch u := n.Val().U.(type) { 1489 case *Mpint: 1490 i := u.Int64() 1491 switch n.Type.Size() { 1492 case 1: 1493 return s.constInt8(n.Type, int8(i)) 1494 case 2: 1495 return s.constInt16(n.Type, int16(i)) 1496 case 4: 1497 return s.constInt32(n.Type, int32(i)) 1498 case 8: 1499 return s.constInt64(n.Type, i) 1500 default: 1501 s.Fatalf("bad integer size %d", n.Type.Size()) 1502 return nil 1503 } 1504 case string: 1505 if u == "" { 1506 return s.constEmptyString(n.Type) 1507 } 1508 return s.entryNewValue0A(ssa.OpConstString, n.Type, u) 1509 case bool: 1510 return s.constBool(u) 1511 case *NilVal: 1512 t := n.Type 1513 switch { 1514 case t.IsSlice(): 1515 return s.constSlice(t) 1516 case t.IsInterface(): 1517 return s.constInterface(t) 1518 default: 1519 return s.constNil(t) 1520 } 1521 case *Mpflt: 1522 switch n.Type.Size() { 1523 case 4: 1524 return s.constFloat32(n.Type, u.Float32()) 1525 case 8: 1526 return s.constFloat64(n.Type, u.Float64()) 1527 default: 1528 s.Fatalf("bad float size %d", n.Type.Size()) 1529 return nil 1530 } 1531 case *Mpcplx: 1532 r := &u.Real 1533 i := &u.Imag 1534 switch n.Type.Size() { 1535 case 8: 1536 pt := Types[TFLOAT32] 1537 return s.newValue2(ssa.OpComplexMake, n.Type, 1538 s.constFloat32(pt, r.Float32()), 1539 s.constFloat32(pt, i.Float32())) 1540 case 16: 1541 pt := Types[TFLOAT64] 1542 return s.newValue2(ssa.OpComplexMake, n.Type, 1543 s.constFloat64(pt, r.Float64()), 1544 s.constFloat64(pt, i.Float64())) 1545 default: 1546 s.Fatalf("bad float size %d", n.Type.Size()) 1547 return nil 1548 } 1549 1550 default: 1551 s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype()) 1552 return nil 1553 } 1554 case OCONVNOP: 1555 to := n.Type 1556 from := n.Left.Type 1557 1558 // Assume everything will work out, so set up our return value. 1559 // Anything interesting that happens from here is a fatal. 1560 x := s.expr(n.Left) 1561 1562 // Special case for not confusing GC and liveness. 1563 // We don't want pointers accidentally classified 1564 // as not-pointers or vice-versa because of copy 1565 // elision. 1566 if to.IsPtrShaped() != from.IsPtrShaped() { 1567 return s.newValue2(ssa.OpConvert, to, x, s.mem()) 1568 } 1569 1570 v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type 1571 1572 // CONVNOP closure 1573 if to.Etype == TFUNC && from.IsPtrShaped() { 1574 return v 1575 } 1576 1577 // named <--> unnamed type or typed <--> untyped const 1578 if from.Etype == to.Etype { 1579 return v 1580 } 1581 1582 // unsafe.Pointer <--> *T 1583 if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() { 1584 return v 1585 } 1586 1587 dowidth(from) 1588 dowidth(to) 1589 if from.Width != to.Width { 1590 s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) 1591 return nil 1592 } 1593 if etypesign(from.Etype) != etypesign(to.Etype) { 1594 s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype) 1595 return nil 1596 } 1597 1598 if instrumenting { 1599 // These appear to be fine, but they fail the 1600 // integer constraint below, so okay them here. 1601 // Sample non-integer conversion: map[string]string -> *uint8 1602 return v 1603 } 1604 1605 if etypesign(from.Etype) == 0 { 1606 s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) 1607 return nil 1608 } 1609 1610 // integer, same width, same sign 1611 return v 1612 1613 case OCONV: 1614 x := s.expr(n.Left) 1615 ft := n.Left.Type // from type 1616 tt := n.Type // to type 1617 if ft.IsInteger() && tt.IsInteger() { 1618 var op ssa.Op 1619 if tt.Size() == ft.Size() { 1620 op = ssa.OpCopy 1621 } else if tt.Size() < ft.Size() { 1622 // truncation 1623 switch 10*ft.Size() + tt.Size() { 1624 case 21: 1625 op = ssa.OpTrunc16to8 1626 case 41: 1627 op = ssa.OpTrunc32to8 1628 case 42: 1629 op = ssa.OpTrunc32to16 1630 case 81: 1631 op = ssa.OpTrunc64to8 1632 case 82: 1633 op = ssa.OpTrunc64to16 1634 case 84: 1635 op = ssa.OpTrunc64to32 1636 default: 1637 s.Fatalf("weird integer truncation %s -> %s", ft, tt) 1638 } 1639 } else if ft.IsSigned() { 1640 // sign extension 1641 switch 10*ft.Size() + tt.Size() { 1642 case 12: 1643 op = ssa.OpSignExt8to16 1644 case 14: 1645 op = ssa.OpSignExt8to32 1646 case 18: 1647 op = ssa.OpSignExt8to64 1648 case 24: 1649 op = ssa.OpSignExt16to32 1650 case 28: 1651 op = ssa.OpSignExt16to64 1652 case 48: 1653 op = ssa.OpSignExt32to64 1654 default: 1655 s.Fatalf("bad integer sign extension %s -> %s", ft, tt) 1656 } 1657 } else { 1658 // zero extension 1659 switch 10*ft.Size() + tt.Size() { 1660 case 12: 1661 op = ssa.OpZeroExt8to16 1662 case 14: 1663 op = ssa.OpZeroExt8to32 1664 case 18: 1665 op = ssa.OpZeroExt8to64 1666 case 24: 1667 op = ssa.OpZeroExt16to32 1668 case 28: 1669 op = ssa.OpZeroExt16to64 1670 case 48: 1671 op = ssa.OpZeroExt32to64 1672 default: 1673 s.Fatalf("weird integer sign extension %s -> %s", ft, tt) 1674 } 1675 } 1676 return s.newValue1(op, n.Type, x) 1677 } 1678 1679 if ft.IsFloat() || tt.IsFloat() { 1680 conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] 1681 if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" { 1682 if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1683 conv = conv1 1684 } 1685 } 1686 if Thearch.LinkArch.Name == "arm64" { 1687 if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1688 conv = conv1 1689 } 1690 } 1691 if !ok { 1692 s.Fatalf("weird float conversion %s -> %s", ft, tt) 1693 } 1694 op1, op2, it := conv.op1, conv.op2, conv.intermediateType 1695 1696 if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { 1697 // normal case, not tripping over unsigned 64 1698 if op1 == ssa.OpCopy { 1699 if op2 == ssa.OpCopy { 1700 return x 1701 } 1702 return s.newValue1(op2, n.Type, x) 1703 } 1704 if op2 == ssa.OpCopy { 1705 return s.newValue1(op1, n.Type, x) 1706 } 1707 return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x)) 1708 } 1709 // Tricky 64-bit unsigned cases. 1710 if ft.IsInteger() { 1711 // therefore tt is float32 or float64, and ft is also unsigned 1712 if tt.Size() == 4 { 1713 return s.uint64Tofloat32(n, x, ft, tt) 1714 } 1715 if tt.Size() == 8 { 1716 return s.uint64Tofloat64(n, x, ft, tt) 1717 } 1718 s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt) 1719 } 1720 // therefore ft is float32 or float64, and tt is unsigned integer 1721 if ft.Size() == 4 { 1722 return s.float32ToUint64(n, x, ft, tt) 1723 } 1724 if ft.Size() == 8 { 1725 return s.float64ToUint64(n, x, ft, tt) 1726 } 1727 s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt) 1728 return nil 1729 } 1730 1731 if ft.IsComplex() && tt.IsComplex() { 1732 var op ssa.Op 1733 if ft.Size() == tt.Size() { 1734 op = ssa.OpCopy 1735 } else if ft.Size() == 8 && tt.Size() == 16 { 1736 op = ssa.OpCvt32Fto64F 1737 } else if ft.Size() == 16 && tt.Size() == 8 { 1738 op = ssa.OpCvt64Fto32F 1739 } else { 1740 s.Fatalf("weird complex conversion %s -> %s", ft, tt) 1741 } 1742 ftp := floatForComplex(ft) 1743 ttp := floatForComplex(tt) 1744 return s.newValue2(ssa.OpComplexMake, tt, 1745 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), 1746 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) 1747 } 1748 1749 s.Unimplementedf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype) 1750 return nil 1751 1752 case ODOTTYPE: 1753 res, _ := s.dottype(n, false) 1754 return res 1755 1756 // binary ops 1757 case OLT, OEQ, ONE, OLE, OGE, OGT: 1758 a := s.expr(n.Left) 1759 b := s.expr(n.Right) 1760 if n.Left.Type.IsComplex() { 1761 pt := floatForComplex(n.Left.Type) 1762 op := s.ssaOp(OEQ, pt) 1763 r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) 1764 i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) 1765 c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i) 1766 switch n.Op { 1767 case OEQ: 1768 return c 1769 case ONE: 1770 return s.newValue1(ssa.OpNot, Types[TBOOL], c) 1771 default: 1772 s.Fatalf("ordered complex compare %s", n.Op) 1773 } 1774 } 1775 return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b) 1776 case OMUL: 1777 a := s.expr(n.Left) 1778 b := s.expr(n.Right) 1779 if n.Type.IsComplex() { 1780 mulop := ssa.OpMul64F 1781 addop := ssa.OpAdd64F 1782 subop := ssa.OpSub64F 1783 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1784 wt := Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 1785 1786 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1787 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1788 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1789 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1790 1791 if pt != wt { // Widen for calculation 1792 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1793 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1794 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1795 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1796 } 1797 1798 xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1799 ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal)) 1800 1801 if pt != wt { // Narrow to store back 1802 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1803 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1804 } 1805 1806 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1807 } 1808 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1809 1810 case ODIV: 1811 a := s.expr(n.Left) 1812 b := s.expr(n.Right) 1813 if n.Type.IsComplex() { 1814 // TODO this is not executed because the front-end substitutes a runtime call. 1815 // That probably ought to change; with modest optimization the widen/narrow 1816 // conversions could all be elided in larger expression trees. 1817 mulop := ssa.OpMul64F 1818 addop := ssa.OpAdd64F 1819 subop := ssa.OpSub64F 1820 divop := ssa.OpDiv64F 1821 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1822 wt := Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 1823 1824 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1825 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1826 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1827 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1828 1829 if pt != wt { // Widen for calculation 1830 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1831 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1832 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1833 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1834 } 1835 1836 denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag)) 1837 xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1838 ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag)) 1839 1840 // TODO not sure if this is best done in wide precision or narrow 1841 // Double-rounding might be an issue. 1842 // Note that the pre-SSA implementation does the entire calculation 1843 // in wide format, so wide is compatible. 1844 xreal = s.newValue2(divop, wt, xreal, denom) 1845 ximag = s.newValue2(divop, wt, ximag, denom) 1846 1847 if pt != wt { // Narrow to store back 1848 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1849 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1850 } 1851 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1852 } 1853 if n.Type.IsFloat() { 1854 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1855 } else { 1856 // do a size-appropriate check for zero 1857 cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type)) 1858 s.check(cmp, panicdivide) 1859 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1860 } 1861 case OMOD: 1862 a := s.expr(n.Left) 1863 b := s.expr(n.Right) 1864 // do a size-appropriate check for zero 1865 cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type)) 1866 s.check(cmp, panicdivide) 1867 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1868 case OADD, OSUB: 1869 a := s.expr(n.Left) 1870 b := s.expr(n.Right) 1871 if n.Type.IsComplex() { 1872 pt := floatForComplex(n.Type) 1873 op := s.ssaOp(n.Op, pt) 1874 return s.newValue2(ssa.OpComplexMake, n.Type, 1875 s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), 1876 s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) 1877 } 1878 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1879 case OAND, OOR, OHMUL, OXOR: 1880 a := s.expr(n.Left) 1881 b := s.expr(n.Right) 1882 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1883 case OLSH, ORSH: 1884 a := s.expr(n.Left) 1885 b := s.expr(n.Right) 1886 return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b) 1887 case OLROT: 1888 a := s.expr(n.Left) 1889 i := n.Right.Int64() 1890 if i <= 0 || i >= n.Type.Size()*8 { 1891 s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i) 1892 } 1893 return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a) 1894 case OANDAND, OOROR: 1895 // To implement OANDAND (and OOROR), we introduce a 1896 // new temporary variable to hold the result. The 1897 // variable is associated with the OANDAND node in the 1898 // s.vars table (normally variables are only 1899 // associated with ONAME nodes). We convert 1900 // A && B 1901 // to 1902 // var = A 1903 // if var { 1904 // var = B 1905 // } 1906 // Using var in the subsequent block introduces the 1907 // necessary phi variable. 1908 el := s.expr(n.Left) 1909 s.vars[n] = el 1910 1911 b := s.endBlock() 1912 b.Kind = ssa.BlockIf 1913 b.SetControl(el) 1914 // In theory, we should set b.Likely here based on context. 1915 // However, gc only gives us likeliness hints 1916 // in a single place, for plain OIF statements, 1917 // and passing around context is finnicky, so don't bother for now. 1918 1919 bRight := s.f.NewBlock(ssa.BlockPlain) 1920 bResult := s.f.NewBlock(ssa.BlockPlain) 1921 if n.Op == OANDAND { 1922 b.AddEdgeTo(bRight) 1923 b.AddEdgeTo(bResult) 1924 } else if n.Op == OOROR { 1925 b.AddEdgeTo(bResult) 1926 b.AddEdgeTo(bRight) 1927 } 1928 1929 s.startBlock(bRight) 1930 er := s.expr(n.Right) 1931 s.vars[n] = er 1932 1933 b = s.endBlock() 1934 b.AddEdgeTo(bResult) 1935 1936 s.startBlock(bResult) 1937 return s.variable(n, Types[TBOOL]) 1938 case OCOMPLEX: 1939 r := s.expr(n.Left) 1940 i := s.expr(n.Right) 1941 return s.newValue2(ssa.OpComplexMake, n.Type, r, i) 1942 1943 // unary ops 1944 case OMINUS: 1945 a := s.expr(n.Left) 1946 if n.Type.IsComplex() { 1947 tp := floatForComplex(n.Type) 1948 negop := s.ssaOp(n.Op, tp) 1949 return s.newValue2(ssa.OpComplexMake, n.Type, 1950 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), 1951 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) 1952 } 1953 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1954 case ONOT, OCOM, OSQRT: 1955 a := s.expr(n.Left) 1956 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1957 case OIMAG, OREAL: 1958 a := s.expr(n.Left) 1959 return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) 1960 case OPLUS: 1961 return s.expr(n.Left) 1962 1963 case OADDR: 1964 a, _ := s.addr(n.Left, n.Bounded) 1965 // Note we know the volatile result is false because you can't write &f() in Go. 1966 return a 1967 1968 case OINDREG: 1969 if int(n.Reg) != Thearch.REGSP { 1970 s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n) 1971 return nil 1972 } 1973 addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp) 1974 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1975 1976 case OIND: 1977 p := s.exprPtr(n.Left, false, n.Lineno) 1978 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1979 1980 case ODOT: 1981 t := n.Left.Type 1982 if canSSAType(t) { 1983 v := s.expr(n.Left) 1984 return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v) 1985 } 1986 p, _ := s.addr(n, false) 1987 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1988 1989 case ODOTPTR: 1990 p := s.exprPtr(n.Left, false, n.Lineno) 1991 p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p) 1992 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1993 1994 case OINDEX: 1995 switch { 1996 case n.Left.Type.IsString(): 1997 a := s.expr(n.Left) 1998 i := s.expr(n.Right) 1999 i = s.extendIndex(i, Panicindex) 2000 if !n.Bounded { 2001 len := s.newValue1(ssa.OpStringLen, Types[TINT], a) 2002 s.boundsCheck(i, len) 2003 } 2004 ptrtyp := Ptrto(Types[TUINT8]) 2005 ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) 2006 if Isconst(n.Right, CTINT) { 2007 ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr) 2008 } else { 2009 ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) 2010 } 2011 return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem()) 2012 case n.Left.Type.IsSlice(): 2013 p, _ := s.addr(n, false) 2014 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 2015 case n.Left.Type.IsArray(): 2016 // TODO: fix when we can SSA arrays of length 1. 2017 p, _ := s.addr(n, false) 2018 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 2019 default: 2020 s.Fatalf("bad type for index %v", n.Left.Type) 2021 return nil 2022 } 2023 2024 case OLEN, OCAP: 2025 switch { 2026 case n.Left.Type.IsSlice(): 2027 op := ssa.OpSliceLen 2028 if n.Op == OCAP { 2029 op = ssa.OpSliceCap 2030 } 2031 return s.newValue1(op, Types[TINT], s.expr(n.Left)) 2032 case n.Left.Type.IsString(): // string; not reachable for OCAP 2033 return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left)) 2034 case n.Left.Type.IsMap(), n.Left.Type.IsChan(): 2035 return s.referenceTypeBuiltin(n, s.expr(n.Left)) 2036 default: // array 2037 return s.constInt(Types[TINT], n.Left.Type.NumElem()) 2038 } 2039 2040 case OSPTR: 2041 a := s.expr(n.Left) 2042 if n.Left.Type.IsSlice() { 2043 return s.newValue1(ssa.OpSlicePtr, n.Type, a) 2044 } else { 2045 return s.newValue1(ssa.OpStringPtr, n.Type, a) 2046 } 2047 2048 case OITAB: 2049 a := s.expr(n.Left) 2050 return s.newValue1(ssa.OpITab, n.Type, a) 2051 2052 case OIDATA: 2053 a := s.expr(n.Left) 2054 return s.newValue1(ssa.OpIData, n.Type, a) 2055 2056 case OEFACE: 2057 tab := s.expr(n.Left) 2058 data := s.expr(n.Right) 2059 // The frontend allows putting things like struct{*byte} in 2060 // the data portion of an eface. But we don't want struct{*byte} 2061 // as a register type because (among other reasons) the liveness 2062 // analysis is confused by the "fat" variables that result from 2063 // such types being spilled. 2064 // So here we ensure that we are selecting the underlying pointer 2065 // when we build an eface. 2066 // TODO: get rid of this now that structs can be SSA'd? 2067 for !data.Type.IsPtrShaped() { 2068 switch { 2069 case data.Type.IsArray(): 2070 data = s.newValue1I(ssa.OpArrayIndex, data.Type.ElemType(), 0, data) 2071 case data.Type.IsStruct(): 2072 for i := data.Type.NumFields() - 1; i >= 0; i-- { 2073 f := data.Type.FieldType(i) 2074 if f.Size() == 0 { 2075 // eface type could also be struct{p *byte; q [0]int} 2076 continue 2077 } 2078 data = s.newValue1I(ssa.OpStructSelect, f, int64(i), data) 2079 break 2080 } 2081 default: 2082 s.Fatalf("type being put into an eface isn't a pointer") 2083 } 2084 } 2085 return s.newValue2(ssa.OpIMake, n.Type, tab, data) 2086 2087 case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR: 2088 v := s.expr(n.Left) 2089 var i, j, k *ssa.Value 2090 low, high, max := n.SliceBounds() 2091 if low != nil { 2092 i = s.extendIndex(s.expr(low), panicslice) 2093 } 2094 if high != nil { 2095 j = s.extendIndex(s.expr(high), panicslice) 2096 } 2097 if max != nil { 2098 k = s.extendIndex(s.expr(max), panicslice) 2099 } 2100 p, l, c := s.slice(n.Left.Type, v, i, j, k) 2101 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2102 2103 case OSLICESTR: 2104 v := s.expr(n.Left) 2105 var i, j *ssa.Value 2106 low, high, _ := n.SliceBounds() 2107 if low != nil { 2108 i = s.extendIndex(s.expr(low), panicslice) 2109 } 2110 if high != nil { 2111 j = s.extendIndex(s.expr(high), panicslice) 2112 } 2113 p, l, _ := s.slice(n.Left.Type, v, i, j, nil) 2114 return s.newValue2(ssa.OpStringMake, n.Type, p, l) 2115 2116 case OCALLFUNC: 2117 if isIntrinsicCall(n) { 2118 return s.intrinsicCall(n) 2119 } 2120 fallthrough 2121 2122 case OCALLINTER, OCALLMETH: 2123 a := s.call(n, callNormal) 2124 return s.newValue2(ssa.OpLoad, n.Type, a, s.mem()) 2125 2126 case OGETG: 2127 return s.newValue1(ssa.OpGetG, n.Type, s.mem()) 2128 2129 case OAPPEND: 2130 return s.append(n, false) 2131 2132 default: 2133 s.Unimplementedf("unhandled expr %s", n.Op) 2134 return nil 2135 } 2136 } 2137 2138 // append converts an OAPPEND node to SSA. 2139 // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, 2140 // adds it to s, and returns the Value. 2141 // If inplace is true, it writes the result of the OAPPEND expression n 2142 // back to the slice being appended to, and returns nil. 2143 // inplace MUST be set to false if the slice can be SSA'd. 2144 func (s *state) append(n *Node, inplace bool) *ssa.Value { 2145 // If inplace is false, process as expression "append(s, e1, e2, e3)": 2146 // 2147 // ptr, len, cap := s 2148 // newlen := len + 3 2149 // if newlen > cap { 2150 // ptr, len, cap = growslice(s, newlen) 2151 // newlen = len + 3 // recalculate to avoid a spill 2152 // } 2153 // // with write barriers, if needed: 2154 // *(ptr+len) = e1 2155 // *(ptr+len+1) = e2 2156 // *(ptr+len+2) = e3 2157 // return makeslice(ptr, newlen, cap) 2158 // 2159 // 2160 // If inplace is true, process as statement "s = append(s, e1, e2, e3)": 2161 // 2162 // a := &s 2163 // ptr, len, cap := s 2164 // newlen := len + 3 2165 // if newlen > cap { 2166 // newptr, len, newcap = growslice(ptr, len, cap, newlen) 2167 // vardef(a) // if necessary, advise liveness we are writing a new a 2168 // *a.cap = newcap // write before ptr to avoid a spill 2169 // *a.ptr = newptr // with write barrier 2170 // } 2171 // newlen = len + 3 // recalculate to avoid a spill 2172 // *a.len = newlen 2173 // // with write barriers, if needed: 2174 // *(ptr+len) = e1 2175 // *(ptr+len+1) = e2 2176 // *(ptr+len+2) = e3 2177 2178 et := n.Type.Elem() 2179 pt := Ptrto(et) 2180 2181 // Evaluate slice 2182 sn := n.List.First() // the slice node is the first in the list 2183 2184 var slice, addr *ssa.Value 2185 if inplace { 2186 addr, _ = s.addr(sn, false) 2187 slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 2188 } else { 2189 slice = s.expr(sn) 2190 } 2191 2192 // Allocate new blocks 2193 grow := s.f.NewBlock(ssa.BlockPlain) 2194 assign := s.f.NewBlock(ssa.BlockPlain) 2195 2196 // Decide if we need to grow 2197 nargs := int64(n.List.Len() - 1) 2198 p := s.newValue1(ssa.OpSlicePtr, pt, slice) 2199 l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice) 2200 c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice) 2201 nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs)) 2202 2203 cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c) 2204 s.vars[&ptrVar] = p 2205 2206 if !inplace { 2207 s.vars[&newlenVar] = nl 2208 s.vars[&capVar] = c 2209 } else { 2210 s.vars[&lenVar] = l 2211 } 2212 2213 b := s.endBlock() 2214 b.Kind = ssa.BlockIf 2215 b.Likely = ssa.BranchUnlikely 2216 b.SetControl(cmp) 2217 b.AddEdgeTo(grow) 2218 b.AddEdgeTo(assign) 2219 2220 // Call growslice 2221 s.startBlock(grow) 2222 taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb) 2223 2224 r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl) 2225 2226 if inplace { 2227 if sn.Op == ONAME { 2228 // Tell liveness we're about to build a new slice 2229 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem()) 2230 } 2231 capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_cap), addr) 2232 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem()) 2233 s.insertWBstore(pt, addr, r[0], n.Lineno, 0) 2234 // load the value we just stored to avoid having to spill it 2235 s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem()) 2236 s.vars[&lenVar] = r[1] // avoid a spill in the fast path 2237 } else { 2238 s.vars[&ptrVar] = r[0] 2239 s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs)) 2240 s.vars[&capVar] = r[2] 2241 } 2242 2243 b = s.endBlock() 2244 b.AddEdgeTo(assign) 2245 2246 // assign new elements to slots 2247 s.startBlock(assign) 2248 2249 if inplace { 2250 l = s.variable(&lenVar, Types[TINT]) // generates phi for len 2251 nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs)) 2252 lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_nel), addr) 2253 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem()) 2254 } 2255 2256 // Evaluate args 2257 type argRec struct { 2258 // if store is true, we're appending the value v. If false, we're appending the 2259 // value at *v. If store==false, isVolatile reports whether the source 2260 // is in the outargs section of the stack frame. 2261 v *ssa.Value 2262 store bool 2263 isVolatile bool 2264 } 2265 args := make([]argRec, 0, nargs) 2266 for _, n := range n.List.Slice()[1:] { 2267 if canSSAType(n.Type) { 2268 args = append(args, argRec{v: s.expr(n), store: true}) 2269 } else { 2270 v, isVolatile := s.addr(n, false) 2271 args = append(args, argRec{v: v, isVolatile: isVolatile}) 2272 } 2273 } 2274 2275 p = s.variable(&ptrVar, pt) // generates phi for ptr 2276 if !inplace { 2277 nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl 2278 c = s.variable(&capVar, Types[TINT]) // generates phi for cap 2279 } 2280 p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) 2281 // TODO: just one write barrier call for all of these writes? 2282 // TODO: maybe just one writeBarrier.enabled check? 2283 for i, arg := range args { 2284 addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i))) 2285 if arg.store { 2286 if haspointers(et) { 2287 s.insertWBstore(et, addr, arg.v, n.Lineno, 0) 2288 } else { 2289 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem()) 2290 } 2291 } else { 2292 if haspointers(et) { 2293 s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile) 2294 } else { 2295 s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(et), addr, arg.v, s.mem()) 2296 } 2297 } 2298 } 2299 2300 delete(s.vars, &ptrVar) 2301 if inplace { 2302 delete(s.vars, &lenVar) 2303 return nil 2304 } 2305 delete(s.vars, &newlenVar) 2306 delete(s.vars, &capVar) 2307 // make result 2308 return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c) 2309 } 2310 2311 // condBranch evaluates the boolean expression cond and branches to yes 2312 // if cond is true and no if cond is false. 2313 // This function is intended to handle && and || better than just calling 2314 // s.expr(cond) and branching on the result. 2315 func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) { 2316 if cond.Op == OANDAND { 2317 mid := s.f.NewBlock(ssa.BlockPlain) 2318 s.stmtList(cond.Ninit) 2319 s.condBranch(cond.Left, mid, no, max8(likely, 0)) 2320 s.startBlock(mid) 2321 s.condBranch(cond.Right, yes, no, likely) 2322 return 2323 // Note: if likely==1, then both recursive calls pass 1. 2324 // If likely==-1, then we don't have enough information to decide 2325 // whether the first branch is likely or not. So we pass 0 for 2326 // the likeliness of the first branch. 2327 // TODO: have the frontend give us branch prediction hints for 2328 // OANDAND and OOROR nodes (if it ever has such info). 2329 } 2330 if cond.Op == OOROR { 2331 mid := s.f.NewBlock(ssa.BlockPlain) 2332 s.stmtList(cond.Ninit) 2333 s.condBranch(cond.Left, yes, mid, min8(likely, 0)) 2334 s.startBlock(mid) 2335 s.condBranch(cond.Right, yes, no, likely) 2336 return 2337 // Note: if likely==-1, then both recursive calls pass -1. 2338 // If likely==1, then we don't have enough info to decide 2339 // the likelihood of the first branch. 2340 } 2341 if cond.Op == ONOT { 2342 s.stmtList(cond.Ninit) 2343 s.condBranch(cond.Left, no, yes, -likely) 2344 return 2345 } 2346 c := s.expr(cond) 2347 b := s.endBlock() 2348 b.Kind = ssa.BlockIf 2349 b.SetControl(c) 2350 b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness 2351 b.AddEdgeTo(yes) 2352 b.AddEdgeTo(no) 2353 } 2354 2355 type skipMask uint8 2356 2357 const ( 2358 skipPtr skipMask = 1 << iota 2359 skipLen 2360 skipCap 2361 ) 2362 2363 // assign does left = right. 2364 // Right has already been evaluated to ssa, left has not. 2365 // If deref is true, then we do left = *right instead (and right has already been nil-checked). 2366 // If deref is true and right == nil, just do left = 0. 2367 // If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage. 2368 // Include a write barrier if wb is true. 2369 // skip indicates assignments (at the top level) that can be avoided. 2370 func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) { 2371 if left.Op == ONAME && isblank(left) { 2372 return 2373 } 2374 t := left.Type 2375 dowidth(t) 2376 if s.canSSA(left) { 2377 if deref { 2378 s.Fatalf("can SSA LHS %s but not RHS %s", left, right) 2379 } 2380 if left.Op == ODOT { 2381 // We're assigning to a field of an ssa-able value. 2382 // We need to build a new structure with the new value for the 2383 // field we're assigning and the old values for the other fields. 2384 // For instance: 2385 // type T struct {a, b, c int} 2386 // var T x 2387 // x.b = 5 2388 // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} 2389 2390 // Grab information about the structure type. 2391 t := left.Left.Type 2392 nf := t.NumFields() 2393 idx := fieldIdx(left) 2394 2395 // Grab old value of structure. 2396 old := s.expr(left.Left) 2397 2398 // Make new structure. 2399 new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) 2400 2401 // Add fields as args. 2402 for i := 0; i < nf; i++ { 2403 if i == idx { 2404 new.AddArg(right) 2405 } else { 2406 new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) 2407 } 2408 } 2409 2410 // Recursively assign the new value we've made to the base of the dot op. 2411 s.assign(left.Left, new, false, false, line, 0, rightIsVolatile) 2412 // TODO: do we need to update named values here? 2413 return 2414 } 2415 // Update variable assignment. 2416 s.vars[left] = right 2417 s.addNamedValue(left, right) 2418 return 2419 } 2420 // Left is not ssa-able. Compute its address. 2421 addr, _ := s.addr(left, false) 2422 if left.Op == ONAME && skip == 0 { 2423 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem()) 2424 } 2425 if deref { 2426 // Treat as a mem->mem move. 2427 if right == nil { 2428 s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, SizeAlignAuxInt(t), addr, s.mem()) 2429 return 2430 } 2431 if wb { 2432 s.insertWBmove(t, addr, right, line, rightIsVolatile) 2433 return 2434 } 2435 s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), addr, right, s.mem()) 2436 return 2437 } 2438 // Treat as a store. 2439 if wb { 2440 if skip&skipPtr != 0 { 2441 // Special case: if we don't write back the pointers, don't bother 2442 // doing the write barrier check. 2443 s.storeTypeScalars(t, addr, right, skip) 2444 return 2445 } 2446 s.insertWBstore(t, addr, right, line, skip) 2447 return 2448 } 2449 if skip != 0 { 2450 if skip&skipPtr == 0 { 2451 s.storeTypePtrs(t, addr, right) 2452 } 2453 s.storeTypeScalars(t, addr, right, skip) 2454 return 2455 } 2456 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem()) 2457 } 2458 2459 // zeroVal returns the zero value for type t. 2460 func (s *state) zeroVal(t *Type) *ssa.Value { 2461 switch { 2462 case t.IsInteger(): 2463 switch t.Size() { 2464 case 1: 2465 return s.constInt8(t, 0) 2466 case 2: 2467 return s.constInt16(t, 0) 2468 case 4: 2469 return s.constInt32(t, 0) 2470 case 8: 2471 return s.constInt64(t, 0) 2472 default: 2473 s.Fatalf("bad sized integer type %s", t) 2474 } 2475 case t.IsFloat(): 2476 switch t.Size() { 2477 case 4: 2478 return s.constFloat32(t, 0) 2479 case 8: 2480 return s.constFloat64(t, 0) 2481 default: 2482 s.Fatalf("bad sized float type %s", t) 2483 } 2484 case t.IsComplex(): 2485 switch t.Size() { 2486 case 8: 2487 z := s.constFloat32(Types[TFLOAT32], 0) 2488 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2489 case 16: 2490 z := s.constFloat64(Types[TFLOAT64], 0) 2491 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2492 default: 2493 s.Fatalf("bad sized complex type %s", t) 2494 } 2495 2496 case t.IsString(): 2497 return s.constEmptyString(t) 2498 case t.IsPtrShaped(): 2499 return s.constNil(t) 2500 case t.IsBoolean(): 2501 return s.constBool(false) 2502 case t.IsInterface(): 2503 return s.constInterface(t) 2504 case t.IsSlice(): 2505 return s.constSlice(t) 2506 case t.IsStruct(): 2507 n := t.NumFields() 2508 v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) 2509 for i := 0; i < n; i++ { 2510 v.AddArg(s.zeroVal(t.FieldType(i).(*Type))) 2511 } 2512 return v 2513 } 2514 s.Unimplementedf("zero for type %v not implemented", t) 2515 return nil 2516 } 2517 2518 type callKind int8 2519 2520 const ( 2521 callNormal callKind = iota 2522 callDefer 2523 callGo 2524 ) 2525 2526 // isSSAIntrinsic returns true if n is a call to a recognized intrinsic 2527 // that can be handled by the SSA backend. 2528 // SSA uses this, but so does the front end to see if should not 2529 // inline a function because it is a candidate for intrinsic 2530 // substitution. 2531 func isSSAIntrinsic(s *Sym) bool { 2532 // The test below is not quite accurate -- in the event that 2533 // a function is disabled on a per-function basis, for example 2534 // because of hash-keyed binary failure search, SSA might be 2535 // disabled for that function but it would not be noted here, 2536 // and thus an inlining would not occur (in practice, inlining 2537 // so far has only been noticed for Bswap32 and the 16-bit count 2538 // leading/trailing instructions, but heuristics might change 2539 // in the future or on different architectures). 2540 if !ssaEnabled || ssa.IntrinsicsDisable || Thearch.LinkArch.Family != sys.AMD64 { 2541 return false 2542 } 2543 if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/sys" { 2544 switch s.Name { 2545 case 2546 "Ctz64", "Ctz32", 2547 "Bswap64", "Bswap32": 2548 return true 2549 } 2550 } 2551 if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/atomic" { 2552 switch s.Name { 2553 case "Load", "Load64", "Loadint64", "Loadp", "Loaduint", "Loaduintptr": 2554 return true 2555 case "Store", "Store64", "StorepNoWB", "Storeuintptr": 2556 return true 2557 } 2558 } 2559 return false 2560 } 2561 2562 func isIntrinsicCall(n *Node) bool { 2563 if n == nil || n.Left == nil { 2564 return false 2565 } 2566 return isSSAIntrinsic(n.Left.Sym) 2567 } 2568 2569 // intrinsicArg extracts the ith arg from n.List and returns its value. 2570 func (s *state) intrinsicArg(n *Node, i int) *ssa.Value { 2571 x := n.List.Slice()[i] 2572 if x.Op == OAS { 2573 x = x.Right 2574 } 2575 return s.expr(x) 2576 } 2577 func (s *state) intrinsicFirstArg(n *Node) *ssa.Value { 2578 return s.intrinsicArg(n, 0) 2579 } 2580 2581 // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. 2582 func (s *state) intrinsicCall(n *Node) (ret *ssa.Value) { 2583 var result *ssa.Value 2584 name := n.Left.Sym.Name 2585 switch { 2586 case name == "Ctz64": 2587 result = s.newValue1(ssa.OpCtz64, Types[TUINT64], s.intrinsicFirstArg(n)) 2588 ret = result 2589 case name == "Ctz32": 2590 result = s.newValue1(ssa.OpCtz32, Types[TUINT32], s.intrinsicFirstArg(n)) 2591 ret = result 2592 case name == "Bswap64": 2593 result = s.newValue1(ssa.OpBswap64, Types[TUINT64], s.intrinsicFirstArg(n)) 2594 ret = result 2595 case name == "Bswap32": 2596 result = s.newValue1(ssa.OpBswap32, Types[TUINT32], s.intrinsicFirstArg(n)) 2597 ret = result 2598 case name == "Load" || name == "Loaduint" && s.config.IntSize == 4 || name == "Loaduintptr" && s.config.PtrSize == 4: 2599 result = s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem()) 2600 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result) 2601 ret = s.newValue1(ssa.OpSelect0, Types[TUINT32], result) 2602 case name == "Load64" || name == "Loadint64" || name == "Loaduint" && s.config.IntSize == 8 || name == "Loaduintptr" && s.config.PtrSize == 8: 2603 result = s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem()) 2604 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result) 2605 ret = s.newValue1(ssa.OpSelect0, Types[TUINT64], result) 2606 case name == "Loadp": 2607 result = s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(Ptrto(Types[TUINT8]), ssa.TypeMem), s.intrinsicArg(n, 0), s.mem()) 2608 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result) 2609 ret = s.newValue1(ssa.OpSelect0, Ptrto(Types[TUINT8]), result) 2610 case name == "Store" || name == "Storeuintptr" && s.config.PtrSize == 4: 2611 result = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem()) 2612 s.vars[&memVar] = result 2613 case name == "Store64" || name == "Storeuintptr" && s.config.PtrSize == 8: 2614 result = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem()) 2615 s.vars[&memVar] = result 2616 case name == "StorepNoWB": 2617 result = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem()) 2618 s.vars[&memVar] = result 2619 } 2620 if result == nil { 2621 Fatalf("Unknown special call: %v", n.Left.Sym) 2622 } 2623 if ssa.IntrinsicsDebug > 0 { 2624 Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, result.LongString()) 2625 } 2626 return 2627 } 2628 2629 // Calls the function n using the specified call type. 2630 // Returns the address of the return value (or nil if none). 2631 func (s *state) call(n *Node, k callKind) *ssa.Value { 2632 var sym *Sym // target symbol (if static) 2633 var closure *ssa.Value // ptr to closure to run (if dynamic) 2634 var codeptr *ssa.Value // ptr to target code (if dynamic) 2635 var rcvr *ssa.Value // receiver to set 2636 fn := n.Left 2637 switch n.Op { 2638 case OCALLFUNC: 2639 if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC { 2640 sym = fn.Sym 2641 break 2642 } 2643 closure = s.expr(fn) 2644 case OCALLMETH: 2645 if fn.Op != ODOTMETH { 2646 Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) 2647 } 2648 if k == callNormal { 2649 sym = fn.Sym 2650 break 2651 } 2652 n2 := newname(fn.Sym) 2653 n2.Class = PFUNC 2654 n2.Lineno = fn.Lineno 2655 closure = s.expr(n2) 2656 // Note: receiver is already assigned in n.List, so we don't 2657 // want to set it here. 2658 case OCALLINTER: 2659 if fn.Op != ODOTINTER { 2660 Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op) 2661 } 2662 i := s.expr(fn.Left) 2663 itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i) 2664 if k != callNormal { 2665 s.nilCheck(itab) 2666 } 2667 itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab 2668 itab = s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), itabidx, itab) 2669 if k == callNormal { 2670 codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem()) 2671 } else { 2672 closure = itab 2673 } 2674 rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i) 2675 } 2676 dowidth(fn.Type) 2677 stksize := fn.Type.ArgWidth() // includes receiver 2678 2679 // Run all argument assignments. The arg slots have already 2680 // been offset by the appropriate amount (+2*widthptr for go/defer, 2681 // +widthptr for interface calls). 2682 // For OCALLMETH, the receiver is set in these statements. 2683 s.stmtList(n.List) 2684 2685 // Set receiver (for interface calls) 2686 if rcvr != nil { 2687 argStart := Ctxt.FixedFrameSize() 2688 if k != callNormal { 2689 argStart += int64(2 * Widthptr) 2690 } 2691 addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart, s.sp) 2692 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem()) 2693 } 2694 2695 // Defer/go args 2696 if k != callNormal { 2697 // Write argsize and closure (args to Newproc/Deferproc). 2698 argStart := Ctxt.FixedFrameSize() 2699 argsize := s.constInt32(Types[TUINT32], int32(stksize)) 2700 addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT32]), argStart, s.sp) 2701 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem()) 2702 addr = s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart+int64(Widthptr), s.sp) 2703 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem()) 2704 stksize += 2 * int64(Widthptr) 2705 } 2706 2707 // call target 2708 bNext := s.f.NewBlock(ssa.BlockPlain) 2709 var call *ssa.Value 2710 switch { 2711 case k == callDefer: 2712 call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem()) 2713 case k == callGo: 2714 call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem()) 2715 case closure != nil: 2716 codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem()) 2717 call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem()) 2718 case codeptr != nil: 2719 call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem()) 2720 case sym != nil: 2721 call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem()) 2722 default: 2723 Fatalf("bad call type %s %v", n.Op, n) 2724 } 2725 call.AuxInt = stksize // Call operations carry the argsize of the callee along with them 2726 2727 // Finish call block 2728 s.vars[&memVar] = call 2729 b := s.endBlock() 2730 b.Kind = ssa.BlockCall 2731 b.SetControl(call) 2732 b.AddEdgeTo(bNext) 2733 if k == callDefer { 2734 // Add recover edge to exit code. 2735 b.Kind = ssa.BlockDefer 2736 r := s.f.NewBlock(ssa.BlockPlain) 2737 s.startBlock(r) 2738 s.exit() 2739 b.AddEdgeTo(r) 2740 b.Likely = ssa.BranchLikely 2741 } 2742 2743 // Start exit block, find address of result. 2744 s.startBlock(bNext) 2745 // Keep input pointer args live across calls. This is a bandaid until 1.8. 2746 for _, n := range s.ptrargs { 2747 s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem()) 2748 } 2749 res := n.Left.Type.Results() 2750 if res.NumFields() == 0 || k != callNormal { 2751 // call has no return value. Continue with the next statement. 2752 return nil 2753 } 2754 fp := res.Field(0) 2755 return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp) 2756 } 2757 2758 // etypesign returns the signed-ness of e, for integer/pointer etypes. 2759 // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. 2760 func etypesign(e EType) int8 { 2761 switch e { 2762 case TINT8, TINT16, TINT32, TINT64, TINT: 2763 return -1 2764 case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: 2765 return +1 2766 } 2767 return 0 2768 } 2769 2770 // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node. 2771 // This improves the effectiveness of cse by using the same Aux values for the 2772 // same symbols. 2773 func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} { 2774 switch sym.(type) { 2775 default: 2776 s.Fatalf("sym %v is of uknown type %T", sym, sym) 2777 case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol: 2778 // these are the only valid types 2779 } 2780 2781 if lsym, ok := s.varsyms[n]; ok { 2782 return lsym 2783 } else { 2784 s.varsyms[n] = sym 2785 return sym 2786 } 2787 } 2788 2789 // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. 2790 // Also returns a bool reporting whether the returned value is "volatile", that is it 2791 // points to the outargs section and thus the referent will be clobbered by any call. 2792 // The value that the returned Value represents is guaranteed to be non-nil. 2793 // If bounded is true then this address does not require a nil check for its operand 2794 // even if that would otherwise be implied. 2795 func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) { 2796 t := Ptrto(n.Type) 2797 switch n.Op { 2798 case ONAME: 2799 switch n.Class { 2800 case PEXTERN: 2801 // global variable 2802 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym}) 2803 v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb) 2804 // TODO: Make OpAddr use AuxInt as well as Aux. 2805 if n.Xoffset != 0 { 2806 v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) 2807 } 2808 return v, false 2809 case PPARAM: 2810 // parameter slot 2811 v := s.decladdrs[n] 2812 if v != nil { 2813 return v, false 2814 } 2815 if n.String() == ".fp" { 2816 // Special arg that points to the frame pointer. 2817 // (Used by the race detector, others?) 2818 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) 2819 return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false 2820 } 2821 s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) 2822 return nil, false 2823 case PAUTO: 2824 aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n}) 2825 return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false 2826 case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. 2827 // ensure that we reuse symbols for out parameters so 2828 // that cse works on their addresses 2829 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) 2830 return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false 2831 default: 2832 s.Unimplementedf("variable address class %v not implemented", classnames[n.Class]) 2833 return nil, false 2834 } 2835 case OINDREG: 2836 // indirect off a register 2837 // used for storing/loading arguments/returns to/from callees 2838 if int(n.Reg) != Thearch.REGSP { 2839 s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n) 2840 return nil, false 2841 } 2842 return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true 2843 case OINDEX: 2844 if n.Left.Type.IsSlice() { 2845 a := s.expr(n.Left) 2846 i := s.expr(n.Right) 2847 i = s.extendIndex(i, Panicindex) 2848 len := s.newValue1(ssa.OpSliceLen, Types[TINT], a) 2849 if !n.Bounded { 2850 s.boundsCheck(i, len) 2851 } 2852 p := s.newValue1(ssa.OpSlicePtr, t, a) 2853 return s.newValue2(ssa.OpPtrIndex, t, p, i), false 2854 } else { // array 2855 a, isVolatile := s.addr(n.Left, bounded) 2856 i := s.expr(n.Right) 2857 i = s.extendIndex(i, Panicindex) 2858 len := s.constInt(Types[TINT], n.Left.Type.NumElem()) 2859 if !n.Bounded { 2860 s.boundsCheck(i, len) 2861 } 2862 return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Elem()), a, i), isVolatile 2863 } 2864 case OIND: 2865 return s.exprPtr(n.Left, bounded, n.Lineno), false 2866 case ODOT: 2867 p, isVolatile := s.addr(n.Left, bounded) 2868 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile 2869 case ODOTPTR: 2870 p := s.exprPtr(n.Left, bounded, n.Lineno) 2871 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false 2872 case OCLOSUREVAR: 2873 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, 2874 s.entryNewValue0(ssa.OpGetClosurePtr, Ptrto(Types[TUINT8]))), false 2875 case OCONVNOP: 2876 addr, isVolatile := s.addr(n.Left, bounded) 2877 return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type 2878 case OCALLFUNC, OCALLINTER, OCALLMETH: 2879 return s.call(n, callNormal), true 2880 2881 default: 2882 s.Unimplementedf("unhandled addr %v", n.Op) 2883 return nil, false 2884 } 2885 } 2886 2887 // canSSA reports whether n is SSA-able. 2888 // n must be an ONAME (or an ODOT sequence with an ONAME base). 2889 func (s *state) canSSA(n *Node) bool { 2890 if Debug['N'] != 0 { 2891 return false 2892 } 2893 for n.Op == ODOT { 2894 n = n.Left 2895 } 2896 if n.Op != ONAME { 2897 return false 2898 } 2899 if n.Addrtaken { 2900 return false 2901 } 2902 if n.isParamHeapCopy() { 2903 return false 2904 } 2905 if n.Class == PAUTOHEAP { 2906 Fatalf("canSSA of PAUTOHEAP %v", n) 2907 } 2908 switch n.Class { 2909 case PEXTERN: 2910 return false 2911 case PPARAMOUT: 2912 if hasdefer { 2913 // TODO: handle this case? Named return values must be 2914 // in memory so that the deferred function can see them. 2915 // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } 2916 return false 2917 } 2918 if s.cgoUnsafeArgs { 2919 // Cgo effectively takes the address of all result args, 2920 // but the compiler can't see that. 2921 return false 2922 } 2923 } 2924 if n.Class == PPARAM && n.String() == ".this" { 2925 // wrappers generated by genwrapper need to update 2926 // the .this pointer in place. 2927 // TODO: treat as a PPARMOUT? 2928 return false 2929 } 2930 return canSSAType(n.Type) 2931 // TODO: try to make more variables SSAable? 2932 } 2933 2934 // canSSA reports whether variables of type t are SSA-able. 2935 func canSSAType(t *Type) bool { 2936 dowidth(t) 2937 if t.Width > int64(4*Widthptr) { 2938 // 4*Widthptr is an arbitrary constant. We want it 2939 // to be at least 3*Widthptr so slices can be registerized. 2940 // Too big and we'll introduce too much register pressure. 2941 return false 2942 } 2943 switch t.Etype { 2944 case TARRAY: 2945 // We can't do arrays because dynamic indexing is 2946 // not supported on SSA variables. 2947 // TODO: maybe allow if length is <=1? All indexes 2948 // are constant? Might be good for the arrays 2949 // introduced by the compiler for variadic functions. 2950 return false 2951 case TSTRUCT: 2952 if t.NumFields() > ssa.MaxStruct { 2953 return false 2954 } 2955 for _, t1 := range t.Fields().Slice() { 2956 if !canSSAType(t1.Type) { 2957 return false 2958 } 2959 } 2960 return true 2961 default: 2962 return true 2963 } 2964 } 2965 2966 // exprPtr evaluates n to a pointer and nil-checks it. 2967 func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value { 2968 p := s.expr(n) 2969 if bounded || n.NonNil { 2970 if s.f.Config.Debug_checknil() && lineno > 1 { 2971 s.f.Config.Warnl(lineno, "removed nil check") 2972 } 2973 return p 2974 } 2975 s.nilCheck(p) 2976 return p 2977 } 2978 2979 // nilCheck generates nil pointer checking code. 2980 // Starts a new block on return, unless nil checks are disabled. 2981 // Used only for automatically inserted nil checks, 2982 // not for user code like 'x != nil'. 2983 func (s *state) nilCheck(ptr *ssa.Value) { 2984 if Disable_checknil != 0 { 2985 return 2986 } 2987 chk := s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem()) 2988 b := s.endBlock() 2989 b.Kind = ssa.BlockCheck 2990 b.SetControl(chk) 2991 bNext := s.f.NewBlock(ssa.BlockPlain) 2992 b.AddEdgeTo(bNext) 2993 s.startBlock(bNext) 2994 } 2995 2996 // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. 2997 // Starts a new block on return. 2998 // idx is already converted to full int width. 2999 func (s *state) boundsCheck(idx, len *ssa.Value) { 3000 if Debug['B'] != 0 { 3001 return 3002 } 3003 3004 // bounds check 3005 cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len) 3006 s.check(cmp, Panicindex) 3007 } 3008 3009 // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not. 3010 // Starts a new block on return. 3011 // idx and len are already converted to full int width. 3012 func (s *state) sliceBoundsCheck(idx, len *ssa.Value) { 3013 if Debug['B'] != 0 { 3014 return 3015 } 3016 3017 // bounds check 3018 cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len) 3019 s.check(cmp, panicslice) 3020 } 3021 3022 // If cmp (a bool) is false, panic using the given function. 3023 func (s *state) check(cmp *ssa.Value, fn *Node) { 3024 b := s.endBlock() 3025 b.Kind = ssa.BlockIf 3026 b.SetControl(cmp) 3027 b.Likely = ssa.BranchLikely 3028 bNext := s.f.NewBlock(ssa.BlockPlain) 3029 line := s.peekLine() 3030 bPanic := s.panics[funcLine{fn, line}] 3031 if bPanic == nil { 3032 bPanic = s.f.NewBlock(ssa.BlockPlain) 3033 s.panics[funcLine{fn, line}] = bPanic 3034 s.startBlock(bPanic) 3035 // The panic call takes/returns memory to ensure that the right 3036 // memory state is observed if the panic happens. 3037 s.rtcall(fn, false, nil) 3038 } 3039 b.AddEdgeTo(bNext) 3040 b.AddEdgeTo(bPanic) 3041 s.startBlock(bNext) 3042 } 3043 3044 // rtcall issues a call to the given runtime function fn with the listed args. 3045 // Returns a slice of results of the given result types. 3046 // The call is added to the end of the current block. 3047 // If returns is false, the block is marked as an exit block. 3048 // If returns is true, the block is marked as a call block. A new block 3049 // is started to load the return values. 3050 func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value { 3051 // Write args to the stack 3052 off := Ctxt.FixedFrameSize() 3053 for _, arg := range args { 3054 t := arg.Type 3055 off = Rnd(off, t.Alignment()) 3056 ptr := s.sp 3057 if off != 0 { 3058 ptr = s.newValue1I(ssa.OpOffPtr, t.PtrTo(), off, s.sp) 3059 } 3060 size := t.Size() 3061 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem()) 3062 off += size 3063 } 3064 off = Rnd(off, int64(Widthptr)) 3065 if Thearch.LinkArch.Name == "amd64p32" { 3066 // amd64p32 wants 8-byte alignment of the start of the return values. 3067 off = Rnd(off, 8) 3068 } 3069 3070 // Issue call 3071 call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem()) 3072 s.vars[&memVar] = call 3073 3074 // Finish block 3075 b := s.endBlock() 3076 if !returns { 3077 b.Kind = ssa.BlockExit 3078 b.SetControl(call) 3079 call.AuxInt = off - Ctxt.FixedFrameSize() 3080 if len(results) > 0 { 3081 Fatalf("panic call can't have results") 3082 } 3083 return nil 3084 } 3085 b.Kind = ssa.BlockCall 3086 b.SetControl(call) 3087 bNext := s.f.NewBlock(ssa.BlockPlain) 3088 b.AddEdgeTo(bNext) 3089 s.startBlock(bNext) 3090 3091 // Keep input pointer args live across calls. This is a bandaid until 1.8. 3092 for _, n := range s.ptrargs { 3093 s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem()) 3094 } 3095 3096 // Load results 3097 res := make([]*ssa.Value, len(results)) 3098 for i, t := range results { 3099 off = Rnd(off, t.Alignment()) 3100 ptr := s.sp 3101 if off != 0 { 3102 ptr = s.newValue1I(ssa.OpOffPtr, Ptrto(t), off, s.sp) 3103 } 3104 res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem()) 3105 off += t.Size() 3106 } 3107 off = Rnd(off, int64(Widthptr)) 3108 3109 // Remember how much callee stack space we needed. 3110 call.AuxInt = off 3111 3112 return res 3113 } 3114 3115 // insertWBmove inserts the assignment *left = *right including a write barrier. 3116 // t is the type being assigned. 3117 func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) { 3118 // if writeBarrier.enabled { 3119 // typedmemmove(&t, left, right) 3120 // } else { 3121 // *left = *right 3122 // } 3123 3124 if s.noWB { 3125 s.Fatalf("write barrier prohibited") 3126 } 3127 if s.WBLineno == 0 { 3128 s.WBLineno = left.Line 3129 } 3130 bThen := s.f.NewBlock(ssa.BlockPlain) 3131 bElse := s.f.NewBlock(ssa.BlockPlain) 3132 bEnd := s.f.NewBlock(ssa.BlockPlain) 3133 3134 aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym} 3135 flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb) 3136 // Load word, test word, avoiding partial register write from load byte. 3137 flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem()) 3138 flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0)) 3139 b := s.endBlock() 3140 b.Kind = ssa.BlockIf 3141 b.Likely = ssa.BranchUnlikely 3142 b.SetControl(flag) 3143 b.AddEdgeTo(bThen) 3144 b.AddEdgeTo(bElse) 3145 3146 s.startBlock(bThen) 3147 3148 if !rightIsVolatile { 3149 // Issue typedmemmove call. 3150 taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb) 3151 s.rtcall(typedmemmove, true, nil, taddr, left, right) 3152 } else { 3153 // Copy to temp location if the source is volatile (will be clobbered by 3154 // a function call). Marshaling the args to typedmemmove might clobber the 3155 // value we're trying to move. 3156 tmp := temp(t) 3157 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem()) 3158 tmpaddr, _ := s.addr(tmp, true) 3159 s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), tmpaddr, right, s.mem()) 3160 // Issue typedmemmove call. 3161 taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb) 3162 s.rtcall(typedmemmove, true, nil, taddr, left, tmpaddr) 3163 // Mark temp as dead. 3164 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem()) 3165 } 3166 s.endBlock().AddEdgeTo(bEnd) 3167 3168 s.startBlock(bElse) 3169 s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), left, right, s.mem()) 3170 s.endBlock().AddEdgeTo(bEnd) 3171 3172 s.startBlock(bEnd) 3173 3174 if Debug_wb > 0 { 3175 Warnl(line, "write barrier") 3176 } 3177 } 3178 3179 // insertWBstore inserts the assignment *left = right including a write barrier. 3180 // t is the type being assigned. 3181 func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) { 3182 // store scalar fields 3183 // if writeBarrier.enabled { 3184 // writebarrierptr for pointer fields 3185 // } else { 3186 // store pointer fields 3187 // } 3188 3189 if s.noWB { 3190 s.Fatalf("write barrier prohibited") 3191 } 3192 if s.WBLineno == 0 { 3193 s.WBLineno = left.Line 3194 } 3195 s.storeTypeScalars(t, left, right, skip) 3196 3197 bThen := s.f.NewBlock(ssa.BlockPlain) 3198 bElse := s.f.NewBlock(ssa.BlockPlain) 3199 bEnd := s.f.NewBlock(ssa.BlockPlain) 3200 3201 aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym} 3202 flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb) 3203 // Load word, test word, avoiding partial register write from load byte. 3204 flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem()) 3205 flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0)) 3206 b := s.endBlock() 3207 b.Kind = ssa.BlockIf 3208 b.Likely = ssa.BranchUnlikely 3209 b.SetControl(flag) 3210 b.AddEdgeTo(bThen) 3211 b.AddEdgeTo(bElse) 3212 3213 // Issue write barriers for pointer writes. 3214 s.startBlock(bThen) 3215 s.storeTypePtrsWB(t, left, right) 3216 s.endBlock().AddEdgeTo(bEnd) 3217 3218 // Issue regular stores for pointer writes. 3219 s.startBlock(bElse) 3220 s.storeTypePtrs(t, left, right) 3221 s.endBlock().AddEdgeTo(bEnd) 3222 3223 s.startBlock(bEnd) 3224 3225 if Debug_wb > 0 { 3226 Warnl(line, "write barrier") 3227 } 3228 } 3229 3230 // do *left = right for all scalar (non-pointer) parts of t. 3231 func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) { 3232 switch { 3233 case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): 3234 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem()) 3235 case t.IsPtrShaped(): 3236 // no scalar fields. 3237 case t.IsString(): 3238 if skip&skipLen != 0 { 3239 return 3240 } 3241 len := s.newValue1(ssa.OpStringLen, Types[TINT], right) 3242 lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left) 3243 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem()) 3244 case t.IsSlice(): 3245 if skip&skipLen == 0 { 3246 len := s.newValue1(ssa.OpSliceLen, Types[TINT], right) 3247 lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left) 3248 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem()) 3249 } 3250 if skip&skipCap == 0 { 3251 cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right) 3252 capAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), 2*s.config.IntSize, left) 3253 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem()) 3254 } 3255 case t.IsInterface(): 3256 // itab field doesn't need a write barrier (even though it is a pointer). 3257 itab := s.newValue1(ssa.OpITab, Ptrto(Types[TUINT8]), right) 3258 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem()) 3259 case t.IsStruct(): 3260 n := t.NumFields() 3261 for i := 0; i < n; i++ { 3262 ft := t.FieldType(i) 3263 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3264 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3265 s.storeTypeScalars(ft.(*Type), addr, val, 0) 3266 } 3267 default: 3268 s.Fatalf("bad write barrier type %s", t) 3269 } 3270 } 3271 3272 // do *left = right for all pointer parts of t. 3273 func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) { 3274 switch { 3275 case t.IsPtrShaped(): 3276 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem()) 3277 case t.IsString(): 3278 ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right) 3279 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) 3280 case t.IsSlice(): 3281 ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right) 3282 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) 3283 case t.IsInterface(): 3284 // itab field is treated as a scalar. 3285 idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right) 3286 idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left) 3287 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem()) 3288 case t.IsStruct(): 3289 n := t.NumFields() 3290 for i := 0; i < n; i++ { 3291 ft := t.FieldType(i) 3292 if !haspointers(ft.(*Type)) { 3293 continue 3294 } 3295 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3296 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3297 s.storeTypePtrs(ft.(*Type), addr, val) 3298 } 3299 default: 3300 s.Fatalf("bad write barrier type %s", t) 3301 } 3302 } 3303 3304 // do *left = right with a write barrier for all pointer parts of t. 3305 func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) { 3306 switch { 3307 case t.IsPtrShaped(): 3308 s.rtcall(writebarrierptr, true, nil, left, right) 3309 case t.IsString(): 3310 ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right) 3311 s.rtcall(writebarrierptr, true, nil, left, ptr) 3312 case t.IsSlice(): 3313 ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right) 3314 s.rtcall(writebarrierptr, true, nil, left, ptr) 3315 case t.IsInterface(): 3316 idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right) 3317 idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left) 3318 s.rtcall(writebarrierptr, true, nil, idataAddr, idata) 3319 case t.IsStruct(): 3320 n := t.NumFields() 3321 for i := 0; i < n; i++ { 3322 ft := t.FieldType(i) 3323 if !haspointers(ft.(*Type)) { 3324 continue 3325 } 3326 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3327 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3328 s.storeTypePtrsWB(ft.(*Type), addr, val) 3329 } 3330 default: 3331 s.Fatalf("bad write barrier type %s", t) 3332 } 3333 } 3334 3335 // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. 3336 // i,j,k may be nil, in which case they are set to their default value. 3337 // t is a slice, ptr to array, or string type. 3338 func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) { 3339 var elemtype *Type 3340 var ptrtype *Type 3341 var ptr *ssa.Value 3342 var len *ssa.Value 3343 var cap *ssa.Value 3344 zero := s.constInt(Types[TINT], 0) 3345 switch { 3346 case t.IsSlice(): 3347 elemtype = t.Elem() 3348 ptrtype = Ptrto(elemtype) 3349 ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v) 3350 len = s.newValue1(ssa.OpSliceLen, Types[TINT], v) 3351 cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v) 3352 case t.IsString(): 3353 elemtype = Types[TUINT8] 3354 ptrtype = Ptrto(elemtype) 3355 ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v) 3356 len = s.newValue1(ssa.OpStringLen, Types[TINT], v) 3357 cap = len 3358 case t.IsPtr(): 3359 if !t.Elem().IsArray() { 3360 s.Fatalf("bad ptr to array in slice %v\n", t) 3361 } 3362 elemtype = t.Elem().Elem() 3363 ptrtype = Ptrto(elemtype) 3364 s.nilCheck(v) 3365 ptr = v 3366 len = s.constInt(Types[TINT], t.Elem().NumElem()) 3367 cap = len 3368 default: 3369 s.Fatalf("bad type in slice %v\n", t) 3370 } 3371 3372 // Set default values 3373 if i == nil { 3374 i = zero 3375 } 3376 if j == nil { 3377 j = len 3378 } 3379 if k == nil { 3380 k = cap 3381 } 3382 3383 // Panic if slice indices are not in bounds. 3384 s.sliceBoundsCheck(i, j) 3385 if j != k { 3386 s.sliceBoundsCheck(j, k) 3387 } 3388 if k != cap { 3389 s.sliceBoundsCheck(k, cap) 3390 } 3391 3392 // Generate the following code assuming that indexes are in bounds. 3393 // The conditional is to make sure that we don't generate a slice 3394 // that points to the next object in memory. 3395 // rlen = j-i 3396 // rcap = k-i 3397 // delta = i*elemsize 3398 // if rcap == 0 { 3399 // delta = 0 3400 // } 3401 // rptr = p+delta 3402 // result = (SliceMake rptr rlen rcap) 3403 subOp := s.ssaOp(OSUB, Types[TINT]) 3404 eqOp := s.ssaOp(OEQ, Types[TINT]) 3405 mulOp := s.ssaOp(OMUL, Types[TINT]) 3406 rlen := s.newValue2(subOp, Types[TINT], j, i) 3407 var rcap *ssa.Value 3408 switch { 3409 case t.IsString(): 3410 // Capacity of the result is unimportant. However, we use 3411 // rcap to test if we've generated a zero-length slice. 3412 // Use length of strings for that. 3413 rcap = rlen 3414 case j == k: 3415 rcap = rlen 3416 default: 3417 rcap = s.newValue2(subOp, Types[TINT], k, i) 3418 } 3419 3420 // delta = # of elements to offset pointer by. 3421 s.vars[&deltaVar] = i 3422 3423 // Generate code to set delta=0 if the resulting capacity is zero. 3424 if !((i.Op == ssa.OpConst64 && i.AuxInt == 0) || 3425 (i.Op == ssa.OpConst32 && int32(i.AuxInt) == 0)) { 3426 cmp := s.newValue2(eqOp, Types[TBOOL], rcap, zero) 3427 3428 b := s.endBlock() 3429 b.Kind = ssa.BlockIf 3430 b.Likely = ssa.BranchUnlikely 3431 b.SetControl(cmp) 3432 3433 // Generate block which zeros the delta variable. 3434 nz := s.f.NewBlock(ssa.BlockPlain) 3435 b.AddEdgeTo(nz) 3436 s.startBlock(nz) 3437 s.vars[&deltaVar] = zero 3438 s.endBlock() 3439 3440 // All done. 3441 merge := s.f.NewBlock(ssa.BlockPlain) 3442 b.AddEdgeTo(merge) 3443 nz.AddEdgeTo(merge) 3444 s.startBlock(merge) 3445 3446 // TODO: use conditional moves somehow? 3447 } 3448 3449 // Compute rptr = ptr + delta * elemsize 3450 rptr := s.newValue2(ssa.OpAddPtr, ptrtype, ptr, s.newValue2(mulOp, Types[TINT], s.variable(&deltaVar, Types[TINT]), s.constInt(Types[TINT], elemtype.Width))) 3451 delete(s.vars, &deltaVar) 3452 return rptr, rlen, rcap 3453 } 3454 3455 type u2fcvtTab struct { 3456 geq, cvt2F, and, rsh, or, add ssa.Op 3457 one func(*state, ssa.Type, int64) *ssa.Value 3458 } 3459 3460 var u64_f64 u2fcvtTab = u2fcvtTab{ 3461 geq: ssa.OpGeq64, 3462 cvt2F: ssa.OpCvt64to64F, 3463 and: ssa.OpAnd64, 3464 rsh: ssa.OpRsh64Ux64, 3465 or: ssa.OpOr64, 3466 add: ssa.OpAdd64F, 3467 one: (*state).constInt64, 3468 } 3469 3470 var u64_f32 u2fcvtTab = u2fcvtTab{ 3471 geq: ssa.OpGeq64, 3472 cvt2F: ssa.OpCvt64to32F, 3473 and: ssa.OpAnd64, 3474 rsh: ssa.OpRsh64Ux64, 3475 or: ssa.OpOr64, 3476 add: ssa.OpAdd32F, 3477 one: (*state).constInt64, 3478 } 3479 3480 func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3481 return s.uintTofloat(&u64_f64, n, x, ft, tt) 3482 } 3483 3484 func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3485 return s.uintTofloat(&u64_f32, n, x, ft, tt) 3486 } 3487 3488 func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3489 // if x >= 0 { 3490 // result = (floatY) x 3491 // } else { 3492 // y = uintX(x) ; y = x & 1 3493 // z = uintX(x) ; z = z >> 1 3494 // z = z >> 1 3495 // z = z | y 3496 // result = floatY(z) 3497 // result = result + result 3498 // } 3499 // 3500 // Code borrowed from old code generator. 3501 // What's going on: large 64-bit "unsigned" looks like 3502 // negative number to hardware's integer-to-float 3503 // conversion. However, because the mantissa is only 3504 // 63 bits, we don't need the LSB, so instead we do an 3505 // unsigned right shift (divide by two), convert, and 3506 // double. However, before we do that, we need to be 3507 // sure that we do not lose a "1" if that made the 3508 // difference in the resulting rounding. Therefore, we 3509 // preserve it, and OR (not ADD) it back in. The case 3510 // that matters is when the eleven discarded bits are 3511 // equal to 10000000001; that rounds up, and the 1 cannot 3512 // be lost else it would round down if the LSB of the 3513 // candidate mantissa is 0. 3514 cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft)) 3515 b := s.endBlock() 3516 b.Kind = ssa.BlockIf 3517 b.SetControl(cmp) 3518 b.Likely = ssa.BranchLikely 3519 3520 bThen := s.f.NewBlock(ssa.BlockPlain) 3521 bElse := s.f.NewBlock(ssa.BlockPlain) 3522 bAfter := s.f.NewBlock(ssa.BlockPlain) 3523 3524 b.AddEdgeTo(bThen) 3525 s.startBlock(bThen) 3526 a0 := s.newValue1(cvttab.cvt2F, tt, x) 3527 s.vars[n] = a0 3528 s.endBlock() 3529 bThen.AddEdgeTo(bAfter) 3530 3531 b.AddEdgeTo(bElse) 3532 s.startBlock(bElse) 3533 one := cvttab.one(s, ft, 1) 3534 y := s.newValue2(cvttab.and, ft, x, one) 3535 z := s.newValue2(cvttab.rsh, ft, x, one) 3536 z = s.newValue2(cvttab.or, ft, z, y) 3537 a := s.newValue1(cvttab.cvt2F, tt, z) 3538 a1 := s.newValue2(cvttab.add, tt, a, a) 3539 s.vars[n] = a1 3540 s.endBlock() 3541 bElse.AddEdgeTo(bAfter) 3542 3543 s.startBlock(bAfter) 3544 return s.variable(n, n.Type) 3545 } 3546 3547 // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. 3548 func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { 3549 if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { 3550 s.Fatalf("node must be a map or a channel") 3551 } 3552 // if n == nil { 3553 // return 0 3554 // } else { 3555 // // len 3556 // return *((*int)n) 3557 // // cap 3558 // return *(((*int)n)+1) 3559 // } 3560 lenType := n.Type 3561 nilValue := s.constNil(Types[TUINTPTR]) 3562 cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue) 3563 b := s.endBlock() 3564 b.Kind = ssa.BlockIf 3565 b.SetControl(cmp) 3566 b.Likely = ssa.BranchUnlikely 3567 3568 bThen := s.f.NewBlock(ssa.BlockPlain) 3569 bElse := s.f.NewBlock(ssa.BlockPlain) 3570 bAfter := s.f.NewBlock(ssa.BlockPlain) 3571 3572 // length/capacity of a nil map/chan is zero 3573 b.AddEdgeTo(bThen) 3574 s.startBlock(bThen) 3575 s.vars[n] = s.zeroVal(lenType) 3576 s.endBlock() 3577 bThen.AddEdgeTo(bAfter) 3578 3579 b.AddEdgeTo(bElse) 3580 s.startBlock(bElse) 3581 if n.Op == OLEN { 3582 // length is stored in the first word for map/chan 3583 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem()) 3584 } else if n.Op == OCAP { 3585 // capacity is stored in the second word for chan 3586 sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) 3587 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem()) 3588 } else { 3589 s.Fatalf("op must be OLEN or OCAP") 3590 } 3591 s.endBlock() 3592 bElse.AddEdgeTo(bAfter) 3593 3594 s.startBlock(bAfter) 3595 return s.variable(n, lenType) 3596 } 3597 3598 type f2uCvtTab struct { 3599 ltf, cvt2U, subf ssa.Op 3600 value func(*state, ssa.Type, float64) *ssa.Value 3601 } 3602 3603 var f32_u64 f2uCvtTab = f2uCvtTab{ 3604 ltf: ssa.OpLess32F, 3605 cvt2U: ssa.OpCvt32Fto64, 3606 subf: ssa.OpSub32F, 3607 value: (*state).constFloat32, 3608 } 3609 3610 var f64_u64 f2uCvtTab = f2uCvtTab{ 3611 ltf: ssa.OpLess64F, 3612 cvt2U: ssa.OpCvt64Fto64, 3613 subf: ssa.OpSub64F, 3614 value: (*state).constFloat64, 3615 } 3616 3617 func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3618 return s.floatToUint(&f32_u64, n, x, ft, tt) 3619 } 3620 func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3621 return s.floatToUint(&f64_u64, n, x, ft, tt) 3622 } 3623 3624 func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3625 // if x < 9223372036854775808.0 { 3626 // result = uintY(x) 3627 // } else { 3628 // y = x - 9223372036854775808.0 3629 // z = uintY(y) 3630 // result = z | -9223372036854775808 3631 // } 3632 twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0) 3633 cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63) 3634 b := s.endBlock() 3635 b.Kind = ssa.BlockIf 3636 b.SetControl(cmp) 3637 b.Likely = ssa.BranchLikely 3638 3639 bThen := s.f.NewBlock(ssa.BlockPlain) 3640 bElse := s.f.NewBlock(ssa.BlockPlain) 3641 bAfter := s.f.NewBlock(ssa.BlockPlain) 3642 3643 b.AddEdgeTo(bThen) 3644 s.startBlock(bThen) 3645 a0 := s.newValue1(cvttab.cvt2U, tt, x) 3646 s.vars[n] = a0 3647 s.endBlock() 3648 bThen.AddEdgeTo(bAfter) 3649 3650 b.AddEdgeTo(bElse) 3651 s.startBlock(bElse) 3652 y := s.newValue2(cvttab.subf, ft, x, twoToThe63) 3653 y = s.newValue1(cvttab.cvt2U, tt, y) 3654 z := s.constInt64(tt, -9223372036854775808) 3655 a1 := s.newValue2(ssa.OpOr64, tt, y, z) 3656 s.vars[n] = a1 3657 s.endBlock() 3658 bElse.AddEdgeTo(bAfter) 3659 3660 s.startBlock(bAfter) 3661 return s.variable(n, n.Type) 3662 } 3663 3664 // ifaceType returns the value for the word containing the type. 3665 // n is the node for the interface expression. 3666 // v is the corresponding value. 3667 func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value { 3668 byteptr := Ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte) 3669 3670 if n.Type.IsEmptyInterface() { 3671 // Have *eface. The type is the first word in the struct. 3672 return s.newValue1(ssa.OpITab, byteptr, v) 3673 } 3674 3675 // Have *iface. 3676 // The first word in the struct is the *itab. 3677 // If the *itab is nil, return 0. 3678 // Otherwise, the second word in the *itab is the type. 3679 3680 tab := s.newValue1(ssa.OpITab, byteptr, v) 3681 s.vars[&typVar] = tab 3682 isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr)) 3683 b := s.endBlock() 3684 b.Kind = ssa.BlockIf 3685 b.SetControl(isnonnil) 3686 b.Likely = ssa.BranchLikely 3687 3688 bLoad := s.f.NewBlock(ssa.BlockPlain) 3689 bEnd := s.f.NewBlock(ssa.BlockPlain) 3690 3691 b.AddEdgeTo(bLoad) 3692 b.AddEdgeTo(bEnd) 3693 bLoad.AddEdgeTo(bEnd) 3694 3695 s.startBlock(bLoad) 3696 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab) 3697 s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) 3698 s.endBlock() 3699 3700 s.startBlock(bEnd) 3701 typ := s.variable(&typVar, byteptr) 3702 delete(s.vars, &typVar) 3703 return typ 3704 } 3705 3706 // dottype generates SSA for a type assertion node. 3707 // commaok indicates whether to panic or return a bool. 3708 // If commaok is false, resok will be nil. 3709 func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) { 3710 iface := s.expr(n.Left) 3711 typ := s.ifaceType(n.Left, iface) // actual concrete type 3712 target := s.expr(typename(n.Type)) // target type 3713 if !isdirectiface(n.Type) { 3714 // walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case. 3715 Fatalf("dottype needs a direct iface type %s", n.Type) 3716 } 3717 3718 if Debug_typeassert > 0 { 3719 Warnl(n.Lineno, "type assertion inlined") 3720 } 3721 3722 // TODO: If we have a nonempty interface and its itab field is nil, 3723 // then this test is redundant and ifaceType should just branch directly to bFail. 3724 cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target) 3725 b := s.endBlock() 3726 b.Kind = ssa.BlockIf 3727 b.SetControl(cond) 3728 b.Likely = ssa.BranchLikely 3729 3730 byteptr := Ptrto(Types[TUINT8]) 3731 3732 bOk := s.f.NewBlock(ssa.BlockPlain) 3733 bFail := s.f.NewBlock(ssa.BlockPlain) 3734 b.AddEdgeTo(bOk) 3735 b.AddEdgeTo(bFail) 3736 3737 if !commaok { 3738 // on failure, panic by calling panicdottype 3739 s.startBlock(bFail) 3740 taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb) 3741 s.rtcall(panicdottype, false, nil, typ, target, taddr) 3742 3743 // on success, return idata field 3744 s.startBlock(bOk) 3745 return s.newValue1(ssa.OpIData, n.Type, iface), nil 3746 } 3747 3748 // commaok is the more complicated case because we have 3749 // a control flow merge point. 3750 bEnd := s.f.NewBlock(ssa.BlockPlain) 3751 3752 // type assertion succeeded 3753 s.startBlock(bOk) 3754 s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface) 3755 s.vars[&okVar] = s.constBool(true) 3756 s.endBlock() 3757 bOk.AddEdgeTo(bEnd) 3758 3759 // type assertion failed 3760 s.startBlock(bFail) 3761 s.vars[&idataVar] = s.constNil(byteptr) 3762 s.vars[&okVar] = s.constBool(false) 3763 s.endBlock() 3764 bFail.AddEdgeTo(bEnd) 3765 3766 // merge point 3767 s.startBlock(bEnd) 3768 res = s.variable(&idataVar, byteptr) 3769 resok = s.variable(&okVar, Types[TBOOL]) 3770 delete(s.vars, &idataVar) 3771 delete(s.vars, &okVar) 3772 return res, resok 3773 } 3774 3775 // checkgoto checks that a goto from from to to does not 3776 // jump into a block or jump over variable declarations. 3777 // It is a copy of checkgoto in the pre-SSA backend, 3778 // modified only for line number handling. 3779 // TODO: document how this works and why it is designed the way it is. 3780 func (s *state) checkgoto(from *Node, to *Node) { 3781 if from.Sym == to.Sym { 3782 return 3783 } 3784 3785 nf := 0 3786 for fs := from.Sym; fs != nil; fs = fs.Link { 3787 nf++ 3788 } 3789 nt := 0 3790 for fs := to.Sym; fs != nil; fs = fs.Link { 3791 nt++ 3792 } 3793 fs := from.Sym 3794 for ; nf > nt; nf-- { 3795 fs = fs.Link 3796 } 3797 if fs != to.Sym { 3798 // decide what to complain about. 3799 // prefer to complain about 'into block' over declarations, 3800 // so scan backward to find most recent block or else dcl. 3801 var block *Sym 3802 3803 var dcl *Sym 3804 ts := to.Sym 3805 for ; nt > nf; nt-- { 3806 if ts.Pkg == nil { 3807 block = ts 3808 } else { 3809 dcl = ts 3810 } 3811 ts = ts.Link 3812 } 3813 3814 for ts != fs { 3815 if ts.Pkg == nil { 3816 block = ts 3817 } else { 3818 dcl = ts 3819 } 3820 ts = ts.Link 3821 fs = fs.Link 3822 } 3823 3824 lno := from.Left.Lineno 3825 if block != nil { 3826 yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno)) 3827 } else { 3828 yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno)) 3829 } 3830 } 3831 } 3832 3833 // variable returns the value of a variable at the current location. 3834 func (s *state) variable(name *Node, t ssa.Type) *ssa.Value { 3835 v := s.vars[name] 3836 if v == nil { 3837 v = s.newValue0A(ssa.OpFwdRef, t, name) 3838 s.fwdRefs = append(s.fwdRefs, v) 3839 s.vars[name] = v 3840 s.addNamedValue(name, v) 3841 } 3842 return v 3843 } 3844 3845 func (s *state) mem() *ssa.Value { 3846 return s.variable(&memVar, ssa.TypeMem) 3847 } 3848 3849 func (s *state) linkForwardReferences(dm *sparseDefState) { 3850 3851 // Build SSA graph. Each variable on its first use in a basic block 3852 // leaves a FwdRef in that block representing the incoming value 3853 // of that variable. This function links that ref up with possible definitions, 3854 // inserting Phi values as needed. This is essentially the algorithm 3855 // described by Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau: 3856 // http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf 3857 // Differences: 3858 // - We use FwdRef nodes to postpone phi building until the CFG is 3859 // completely built. That way we can avoid the notion of "sealed" 3860 // blocks. 3861 // - Phi optimization is a separate pass (in ../ssa/phielim.go). 3862 for len(s.fwdRefs) > 0 { 3863 v := s.fwdRefs[len(s.fwdRefs)-1] 3864 s.fwdRefs = s.fwdRefs[:len(s.fwdRefs)-1] 3865 s.resolveFwdRef(v, dm) 3866 } 3867 } 3868 3869 // resolveFwdRef modifies v to be the variable's value at the start of its block. 3870 // v must be a FwdRef op. 3871 func (s *state) resolveFwdRef(v *ssa.Value, dm *sparseDefState) { 3872 b := v.Block 3873 name := v.Aux.(*Node) 3874 v.Aux = nil 3875 if b == s.f.Entry { 3876 // Live variable at start of function. 3877 if s.canSSA(name) { 3878 if strings.HasPrefix(name.Sym.Name, "autotmp_") { 3879 // It's likely that this is an uninitialized variable in the entry block. 3880 s.Fatalf("Treating auto as if it were arg, func %s, node %v, value %v", b.Func.Name, name, v) 3881 } 3882 v.Op = ssa.OpArg 3883 v.Aux = name 3884 return 3885 } 3886 // Not SSAable. Load it. 3887 addr := s.decladdrs[name] 3888 if addr == nil { 3889 // TODO: closure args reach here. 3890 s.Unimplementedf("unhandled closure arg %s at entry to function %s", name, b.Func.Name) 3891 } 3892 if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok { 3893 s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name) 3894 } 3895 v.Op = ssa.OpLoad 3896 v.AddArgs(addr, s.startmem) 3897 return 3898 } 3899 if len(b.Preds) == 0 { 3900 // This block is dead; we have no predecessors and we're not the entry block. 3901 // It doesn't matter what we use here as long as it is well-formed. 3902 v.Op = ssa.OpUnknown 3903 return 3904 } 3905 // Find variable value on each predecessor. 3906 var argstore [4]*ssa.Value 3907 args := argstore[:0] 3908 for _, e := range b.Preds { 3909 p := e.Block() 3910 p = dm.FindBetterDefiningBlock(name, p) // try sparse improvement on p 3911 args = append(args, s.lookupVarOutgoing(p, v.Type, name, v.Line)) 3912 } 3913 3914 // Decide if we need a phi or not. We need a phi if there 3915 // are two different args (which are both not v). 3916 var w *ssa.Value 3917 for _, a := range args { 3918 if a == v { 3919 continue // self-reference 3920 } 3921 if a == w { 3922 continue // already have this witness 3923 } 3924 if w != nil { 3925 // two witnesses, need a phi value 3926 v.Op = ssa.OpPhi 3927 v.AddArgs(args...) 3928 return 3929 } 3930 w = a // save witness 3931 } 3932 if w == nil { 3933 s.Fatalf("no witness for reachable phi %s", v) 3934 } 3935 // One witness. Make v a copy of w. 3936 v.Op = ssa.OpCopy 3937 v.AddArg(w) 3938 } 3939 3940 // lookupVarOutgoing finds the variable's value at the end of block b. 3941 func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node, line int32) *ssa.Value { 3942 for { 3943 if v, ok := s.defvars[b.ID][name]; ok { 3944 return v 3945 } 3946 // The variable is not defined by b and we haven't looked it up yet. 3947 // If b has exactly one predecessor, loop to look it up there. 3948 // Otherwise, give up and insert a new FwdRef and resolve it later. 3949 if len(b.Preds) != 1 { 3950 break 3951 } 3952 b = b.Preds[0].Block() 3953 } 3954 // Generate a FwdRef for the variable and return that. 3955 v := b.NewValue0A(line, ssa.OpFwdRef, t, name) 3956 s.fwdRefs = append(s.fwdRefs, v) 3957 s.defvars[b.ID][name] = v 3958 s.addNamedValue(name, v) 3959 return v 3960 } 3961 3962 func (s *state) addNamedValue(n *Node, v *ssa.Value) { 3963 if n.Class == Pxxx { 3964 // Don't track our dummy nodes (&memVar etc.). 3965 return 3966 } 3967 if strings.HasPrefix(n.Sym.Name, "autotmp_") { 3968 // Don't track autotmp_ variables. 3969 return 3970 } 3971 if n.Class == PPARAMOUT { 3972 // Don't track named output values. This prevents return values 3973 // from being assigned too early. See #14591 and #14762. TODO: allow this. 3974 return 3975 } 3976 if n.Class == PAUTO && n.Xoffset != 0 { 3977 s.Fatalf("AUTO var with offset %s %d", n, n.Xoffset) 3978 } 3979 loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0} 3980 values, ok := s.f.NamedValues[loc] 3981 if !ok { 3982 s.f.Names = append(s.f.Names, loc) 3983 } 3984 s.f.NamedValues[loc] = append(values, v) 3985 } 3986 3987 // Branch is an unresolved branch. 3988 type Branch struct { 3989 P *obj.Prog // branch instruction 3990 B *ssa.Block // target 3991 } 3992 3993 // SSAGenState contains state needed during Prog generation. 3994 type SSAGenState struct { 3995 // Branches remembers all the branch instructions we've seen 3996 // and where they would like to go. 3997 Branches []Branch 3998 3999 // bstart remembers where each block starts (indexed by block ID) 4000 bstart []*obj.Prog 4001 4002 // 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?) 4003 SSEto387 map[int16]int16 4004 // Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8. 4005 ScratchFpMem *Node 4006 } 4007 4008 // Pc returns the current Prog. 4009 func (s *SSAGenState) Pc() *obj.Prog { 4010 return Pc 4011 } 4012 4013 // SetLineno sets the current source line number. 4014 func (s *SSAGenState) SetLineno(l int32) { 4015 lineno = l 4016 } 4017 4018 // genssa appends entries to ptxt for each instruction in f. 4019 // gcargs and gclocals are filled in with pointer maps for the frame. 4020 func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) { 4021 var s SSAGenState 4022 4023 e := f.Config.Frontend().(*ssaExport) 4024 // We're about to emit a bunch of Progs. 4025 // Since the only way to get here is to explicitly request it, 4026 // just fail on unimplemented instead of trying to unwind our mess. 4027 e.mustImplement = true 4028 4029 // Remember where each block starts. 4030 s.bstart = make([]*obj.Prog, f.NumBlocks()) 4031 4032 var valueProgs map[*obj.Prog]*ssa.Value 4033 var blockProgs map[*obj.Prog]*ssa.Block 4034 var logProgs = e.log 4035 if logProgs { 4036 valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues()) 4037 blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) 4038 f.Logf("genssa %s\n", f.Name) 4039 blockProgs[Pc] = f.Blocks[0] 4040 } 4041 4042 if Thearch.Use387 { 4043 s.SSEto387 = map[int16]int16{} 4044 } 4045 if f.Config.NeedsFpScratch { 4046 s.ScratchFpMem = temp(Types[TUINT64]) 4047 } 4048 4049 // Emit basic blocks 4050 for i, b := range f.Blocks { 4051 s.bstart[b.ID] = Pc 4052 // Emit values in block 4053 Thearch.SSAMarkMoves(&s, b) 4054 for _, v := range b.Values { 4055 x := Pc 4056 Thearch.SSAGenValue(&s, v) 4057 if logProgs { 4058 for ; x != Pc; x = x.Link { 4059 valueProgs[x] = v 4060 } 4061 } 4062 } 4063 // Emit control flow instructions for block 4064 var next *ssa.Block 4065 if i < len(f.Blocks)-1 && (Debug['N'] == 0 || b.Kind == ssa.BlockCall) { 4066 // If -N, leave next==nil so every block with successors 4067 // ends in a JMP (except call blocks - plive doesn't like 4068 // select{send,recv} followed by a JMP call). Helps keep 4069 // line numbers for otherwise empty blocks. 4070 next = f.Blocks[i+1] 4071 } 4072 x := Pc 4073 Thearch.SSAGenBlock(&s, b, next) 4074 if logProgs { 4075 for ; x != Pc; x = x.Link { 4076 blockProgs[x] = b 4077 } 4078 } 4079 } 4080 4081 // Resolve branches 4082 for _, br := range s.Branches { 4083 br.P.To.Val = s.bstart[br.B.ID] 4084 } 4085 4086 if logProgs { 4087 for p := ptxt; p != nil; p = p.Link { 4088 var s string 4089 if v, ok := valueProgs[p]; ok { 4090 s = v.String() 4091 } else if b, ok := blockProgs[p]; ok { 4092 s = b.String() 4093 } else { 4094 s = " " // most value and branch strings are 2-3 characters long 4095 } 4096 f.Logf("%s\t%s\n", s, p) 4097 } 4098 if f.Config.HTML != nil { 4099 saved := ptxt.Ctxt.LineHist.PrintFilenameOnly 4100 ptxt.Ctxt.LineHist.PrintFilenameOnly = true 4101 var buf bytes.Buffer 4102 buf.WriteString("<code>") 4103 buf.WriteString("<dl class=\"ssa-gen\">") 4104 for p := ptxt; p != nil; p = p.Link { 4105 buf.WriteString("<dt class=\"ssa-prog-src\">") 4106 if v, ok := valueProgs[p]; ok { 4107 buf.WriteString(v.HTML()) 4108 } else if b, ok := blockProgs[p]; ok { 4109 buf.WriteString(b.HTML()) 4110 } 4111 buf.WriteString("</dt>") 4112 buf.WriteString("<dd class=\"ssa-prog\">") 4113 buf.WriteString(html.EscapeString(p.String())) 4114 buf.WriteString("</dd>") 4115 buf.WriteString("</li>") 4116 } 4117 buf.WriteString("</dl>") 4118 buf.WriteString("</code>") 4119 f.Config.HTML.WriteColumn("genssa", buf.String()) 4120 ptxt.Ctxt.LineHist.PrintFilenameOnly = saved 4121 } 4122 } 4123 4124 // Emit static data 4125 if f.StaticData != nil { 4126 for _, n := range f.StaticData.([]*Node) { 4127 if !gen_as_init(n, false) { 4128 Fatalf("non-static data marked as static: %v\n\n", n) 4129 } 4130 } 4131 } 4132 4133 // Allocate stack frame 4134 allocauto(ptxt) 4135 4136 // Generate gc bitmaps. 4137 liveness(Curfn, ptxt, gcargs, gclocals) 4138 4139 // Add frame prologue. Zero ambiguously live variables. 4140 Thearch.Defframe(ptxt) 4141 if Debug['f'] != 0 { 4142 frame(0) 4143 } 4144 4145 // Remove leftover instrumentation from the instruction stream. 4146 removevardef(ptxt) 4147 4148 f.Config.HTML.Close() 4149 } 4150 4151 type FloatingEQNEJump struct { 4152 Jump obj.As 4153 Index int 4154 } 4155 4156 func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch { 4157 p := Prog(jumps.Jump) 4158 p.To.Type = obj.TYPE_BRANCH 4159 to := jumps.Index 4160 branches = append(branches, Branch{p, b.Succs[to].Block()}) 4161 if to == 1 { 4162 likely = -likely 4163 } 4164 // liblink reorders the instruction stream as it sees fit. 4165 // Pass along what we know so liblink can make use of it. 4166 // TODO: Once we've fully switched to SSA, 4167 // make liblink leave our output alone. 4168 switch likely { 4169 case ssa.BranchUnlikely: 4170 p.From.Type = obj.TYPE_CONST 4171 p.From.Offset = 0 4172 case ssa.BranchLikely: 4173 p.From.Type = obj.TYPE_CONST 4174 p.From.Offset = 1 4175 } 4176 return branches 4177 } 4178 4179 func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) { 4180 likely := b.Likely 4181 switch next { 4182 case b.Succs[0].Block(): 4183 s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches) 4184 s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches) 4185 case b.Succs[1].Block(): 4186 s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches) 4187 s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches) 4188 default: 4189 s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches) 4190 s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches) 4191 q := Prog(obj.AJMP) 4192 q.To.Type = obj.TYPE_BRANCH 4193 s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()}) 4194 } 4195 } 4196 4197 func AuxOffset(v *ssa.Value) (offset int64) { 4198 if v.Aux == nil { 4199 return 0 4200 } 4201 switch sym := v.Aux.(type) { 4202 4203 case *ssa.AutoSymbol: 4204 n := sym.Node.(*Node) 4205 return n.Xoffset 4206 } 4207 return 0 4208 } 4209 4210 // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. 4211 func AddAux(a *obj.Addr, v *ssa.Value) { 4212 AddAux2(a, v, v.AuxInt) 4213 } 4214 func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { 4215 if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { 4216 v.Fatalf("bad AddAux addr %v", a) 4217 } 4218 // add integer offset 4219 a.Offset += offset 4220 4221 // If no additional symbol offset, we're done. 4222 if v.Aux == nil { 4223 return 4224 } 4225 // Add symbol's offset from its base register. 4226 switch sym := v.Aux.(type) { 4227 case *ssa.ExternSymbol: 4228 a.Name = obj.NAME_EXTERN 4229 switch s := sym.Sym.(type) { 4230 case *Sym: 4231 a.Sym = Linksym(s) 4232 case *obj.LSym: 4233 a.Sym = s 4234 default: 4235 v.Fatalf("ExternSymbol.Sym is %T", s) 4236 } 4237 case *ssa.ArgSymbol: 4238 n := sym.Node.(*Node) 4239 a.Name = obj.NAME_PARAM 4240 a.Node = n 4241 a.Sym = Linksym(n.Orig.Sym) 4242 a.Offset += n.Xoffset // TODO: why do I have to add this here? I don't for auto variables. 4243 case *ssa.AutoSymbol: 4244 n := sym.Node.(*Node) 4245 a.Name = obj.NAME_AUTO 4246 a.Node = n 4247 a.Sym = Linksym(n.Sym) 4248 default: 4249 v.Fatalf("aux in %s not implemented %#v", v, v.Aux) 4250 } 4251 } 4252 4253 // SizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t. 4254 func SizeAlignAuxInt(t *Type) int64 { 4255 return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64() 4256 } 4257 4258 // extendIndex extends v to a full int width. 4259 // panic using the given function if v does not fit in an int (only on 32-bit archs). 4260 func (s *state) extendIndex(v *ssa.Value, panicfn *Node) *ssa.Value { 4261 size := v.Type.Size() 4262 if size == s.config.IntSize { 4263 return v 4264 } 4265 if size > s.config.IntSize { 4266 // truncate 64-bit indexes on 32-bit pointer archs. Test the 4267 // high word and branch to out-of-bounds failure if it is not 0. 4268 if Debug['B'] == 0 { 4269 hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v) 4270 cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0)) 4271 s.check(cmp, panicfn) 4272 } 4273 return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v) 4274 } 4275 4276 // Extend value to the required size 4277 var op ssa.Op 4278 if v.Type.IsSigned() { 4279 switch 10*size + s.config.IntSize { 4280 case 14: 4281 op = ssa.OpSignExt8to32 4282 case 18: 4283 op = ssa.OpSignExt8to64 4284 case 24: 4285 op = ssa.OpSignExt16to32 4286 case 28: 4287 op = ssa.OpSignExt16to64 4288 case 48: 4289 op = ssa.OpSignExt32to64 4290 default: 4291 s.Fatalf("bad signed index extension %s", v.Type) 4292 } 4293 } else { 4294 switch 10*size + s.config.IntSize { 4295 case 14: 4296 op = ssa.OpZeroExt8to32 4297 case 18: 4298 op = ssa.OpZeroExt8to64 4299 case 24: 4300 op = ssa.OpZeroExt16to32 4301 case 28: 4302 op = ssa.OpZeroExt16to64 4303 case 48: 4304 op = ssa.OpZeroExt32to64 4305 default: 4306 s.Fatalf("bad unsigned index extension %s", v.Type) 4307 } 4308 } 4309 return s.newValue1(op, Types[TINT], v) 4310 } 4311 4312 // SSAReg returns the register to which v has been allocated. 4313 func SSAReg(v *ssa.Value) *ssa.Register { 4314 reg := v.Block.Func.RegAlloc[v.ID] 4315 if reg == nil { 4316 v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) 4317 } 4318 return reg.(*ssa.Register) 4319 } 4320 4321 // SSAReg0 returns the register to which the first output of v has been allocated. 4322 func SSAReg0(v *ssa.Value) *ssa.Register { 4323 reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[0] 4324 if reg == nil { 4325 v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func) 4326 } 4327 return reg.(*ssa.Register) 4328 } 4329 4330 // SSAReg1 returns the register to which the second output of v has been allocated. 4331 func SSAReg1(v *ssa.Value) *ssa.Register { 4332 reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[1] 4333 if reg == nil { 4334 v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func) 4335 } 4336 return reg.(*ssa.Register) 4337 } 4338 4339 // SSARegNum returns the register number (in cmd/internal/obj numbering) to which v has been allocated. 4340 func SSARegNum(v *ssa.Value) int16 { 4341 return Thearch.SSARegToReg[SSAReg(v).Num] 4342 } 4343 4344 // SSARegNum0 returns the register number (in cmd/internal/obj numbering) to which the first output of v has been allocated. 4345 func SSARegNum0(v *ssa.Value) int16 { 4346 return Thearch.SSARegToReg[SSAReg0(v).Num] 4347 } 4348 4349 // SSARegNum1 returns the register number (in cmd/internal/obj numbering) to which the second output of v has been allocated. 4350 func SSARegNum1(v *ssa.Value) int16 { 4351 return Thearch.SSARegToReg[SSAReg1(v).Num] 4352 } 4353 4354 // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. 4355 // Called during ssaGenValue. 4356 func CheckLoweredPhi(v *ssa.Value) { 4357 if v.Op != ssa.OpPhi { 4358 v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) 4359 } 4360 if v.Type.IsMemory() { 4361 return 4362 } 4363 f := v.Block.Func 4364 loc := f.RegAlloc[v.ID] 4365 for _, a := range v.Args { 4366 if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? 4367 v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func) 4368 } 4369 } 4370 } 4371 4372 // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block. 4373 // The output of LoweredGetClosurePtr is generally hardwired to the correct register. 4374 // That register contains the closure pointer on closure entry. 4375 func CheckLoweredGetClosurePtr(v *ssa.Value) { 4376 entry := v.Block.Func.Entry 4377 if entry != v.Block || entry.Values[0] != v { 4378 Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) 4379 } 4380 } 4381 4382 // AutoVar returns a *Node and int64 representing the auto variable and offset within it 4383 // where v should be spilled. 4384 func AutoVar(v *ssa.Value) (*Node, int64) { 4385 loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot) 4386 if v.Type.Size() > loc.Type.Size() { 4387 v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) 4388 } 4389 return loc.N.(*Node), loc.Off 4390 } 4391 4392 // fieldIdx finds the index of the field referred to by the ODOT node n. 4393 func fieldIdx(n *Node) int { 4394 t := n.Left.Type 4395 f := n.Sym 4396 if !t.IsStruct() { 4397 panic("ODOT's LHS is not a struct") 4398 } 4399 4400 var i int 4401 for _, t1 := range t.Fields().Slice() { 4402 if t1.Sym != f { 4403 i++ 4404 continue 4405 } 4406 if t1.Offset != n.Xoffset { 4407 panic("field offset doesn't match") 4408 } 4409 return i 4410 } 4411 panic(fmt.Sprintf("can't find field in expr %s\n", n)) 4412 4413 // TODO: keep the result of this function somewhere in the ODOT Node 4414 // so we don't have to recompute it each time we need it. 4415 } 4416 4417 // ssaExport exports a bunch of compiler services for the ssa backend. 4418 type ssaExport struct { 4419 log bool 4420 unimplemented bool 4421 mustImplement bool 4422 } 4423 4424 func (s *ssaExport) TypeBool() ssa.Type { return Types[TBOOL] } 4425 func (s *ssaExport) TypeInt8() ssa.Type { return Types[TINT8] } 4426 func (s *ssaExport) TypeInt16() ssa.Type { return Types[TINT16] } 4427 func (s *ssaExport) TypeInt32() ssa.Type { return Types[TINT32] } 4428 func (s *ssaExport) TypeInt64() ssa.Type { return Types[TINT64] } 4429 func (s *ssaExport) TypeUInt8() ssa.Type { return Types[TUINT8] } 4430 func (s *ssaExport) TypeUInt16() ssa.Type { return Types[TUINT16] } 4431 func (s *ssaExport) TypeUInt32() ssa.Type { return Types[TUINT32] } 4432 func (s *ssaExport) TypeUInt64() ssa.Type { return Types[TUINT64] } 4433 func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] } 4434 func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] } 4435 func (s *ssaExport) TypeInt() ssa.Type { return Types[TINT] } 4436 func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] } 4437 func (s *ssaExport) TypeString() ssa.Type { return Types[TSTRING] } 4438 func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) } 4439 4440 // StringData returns a symbol (a *Sym wrapped in an interface) which 4441 // is the data component of a global string constant containing s. 4442 func (*ssaExport) StringData(s string) interface{} { 4443 // TODO: is idealstring correct? It might not matter... 4444 _, data := stringsym(s) 4445 return &ssa.ExternSymbol{Typ: idealstring, Sym: data} 4446 } 4447 4448 func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode { 4449 n := temp(t.(*Type)) // Note: adds new auto to Curfn.Func.Dcl list 4450 e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here! 4451 return n 4452 } 4453 4454 func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4455 n := name.N.(*Node) 4456 ptrType := Ptrto(Types[TUINT8]) 4457 lenType := Types[TINT] 4458 if n.Class == PAUTO && !n.Addrtaken { 4459 // Split this string up into two separate variables. 4460 p := e.namedAuto(n.Sym.Name+".ptr", ptrType) 4461 l := e.namedAuto(n.Sym.Name+".len", lenType) 4462 return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0} 4463 } 4464 // Return the two parts of the larger variable. 4465 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)} 4466 } 4467 4468 func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4469 n := name.N.(*Node) 4470 t := Ptrto(Types[TUINT8]) 4471 if n.Class == PAUTO && !n.Addrtaken { 4472 // Split this interface up into two separate variables. 4473 f := ".itab" 4474 if n.Type.IsEmptyInterface() { 4475 f = ".type" 4476 } 4477 c := e.namedAuto(n.Sym.Name+f, t) 4478 d := e.namedAuto(n.Sym.Name+".data", t) 4479 return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0} 4480 } 4481 // Return the two parts of the larger variable. 4482 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)} 4483 } 4484 4485 func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) { 4486 n := name.N.(*Node) 4487 ptrType := Ptrto(name.Type.ElemType().(*Type)) 4488 lenType := Types[TINT] 4489 if n.Class == PAUTO && !n.Addrtaken { 4490 // Split this slice up into three separate variables. 4491 p := e.namedAuto(n.Sym.Name+".ptr", ptrType) 4492 l := e.namedAuto(n.Sym.Name+".len", lenType) 4493 c := e.namedAuto(n.Sym.Name+".cap", lenType) 4494 return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0} 4495 } 4496 // Return the three parts of the larger variable. 4497 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, 4498 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}, 4499 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)} 4500 } 4501 4502 func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4503 n := name.N.(*Node) 4504 s := name.Type.Size() / 2 4505 var t *Type 4506 if s == 8 { 4507 t = Types[TFLOAT64] 4508 } else { 4509 t = Types[TFLOAT32] 4510 } 4511 if n.Class == PAUTO && !n.Addrtaken { 4512 // Split this complex up into two separate variables. 4513 c := e.namedAuto(n.Sym.Name+".real", t) 4514 d := e.namedAuto(n.Sym.Name+".imag", t) 4515 return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0} 4516 } 4517 // Return the two parts of the larger variable. 4518 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s} 4519 } 4520 4521 func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4522 n := name.N.(*Node) 4523 var t *Type 4524 if name.Type.IsSigned() { 4525 t = Types[TINT32] 4526 } else { 4527 t = Types[TUINT32] 4528 } 4529 if n.Class == PAUTO && !n.Addrtaken { 4530 // Split this int64 up into two separate variables. 4531 h := e.namedAuto(n.Sym.Name+".hi", t) 4532 l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32]) 4533 return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0} 4534 } 4535 // Return the two parts of the larger variable. 4536 // Assuming little endian (we don't support big endian 32-bit architecture yet) 4537 return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off} 4538 } 4539 4540 func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot { 4541 n := name.N.(*Node) 4542 st := name.Type 4543 ft := st.FieldType(i) 4544 if n.Class == PAUTO && !n.Addrtaken { 4545 // Note: the _ field may appear several times. But 4546 // have no fear, identically-named but distinct Autos are 4547 // ok, albeit maybe confusing for a debugger. 4548 x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft) 4549 return ssa.LocalSlot{N: x, Type: ft, Off: 0} 4550 } 4551 return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)} 4552 } 4553 4554 // namedAuto returns a new AUTO variable with the given name and type. 4555 func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode { 4556 t := typ.(*Type) 4557 s := &Sym{Name: name, Pkg: localpkg} 4558 n := Nod(ONAME, nil, nil) 4559 s.Def = n 4560 s.Def.Used = true 4561 n.Sym = s 4562 n.Type = t 4563 n.Class = PAUTO 4564 n.Addable = true 4565 n.Ullman = 1 4566 n.Esc = EscNever 4567 n.Xoffset = 0 4568 n.Name.Curfn = Curfn 4569 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 4570 4571 dowidth(t) 4572 e.mustImplement = true 4573 4574 return n 4575 } 4576 4577 func (e *ssaExport) CanSSA(t ssa.Type) bool { 4578 return canSSAType(t.(*Type)) 4579 } 4580 4581 func (e *ssaExport) Line(line int32) string { 4582 return linestr(line) 4583 } 4584 4585 // Log logs a message from the compiler. 4586 func (e *ssaExport) Logf(msg string, args ...interface{}) { 4587 // If e was marked as unimplemented, anything could happen. Ignore. 4588 if e.log && !e.unimplemented { 4589 fmt.Printf(msg, args...) 4590 } 4591 } 4592 4593 func (e *ssaExport) Log() bool { 4594 return e.log 4595 } 4596 4597 // Fatal reports a compiler error and exits. 4598 func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) { 4599 // If e was marked as unimplemented, anything could happen. Ignore. 4600 if !e.unimplemented { 4601 lineno = line 4602 Fatalf(msg, args...) 4603 } 4604 } 4605 4606 // Unimplemented reports that the function cannot be compiled. 4607 // It will be removed once SSA work is complete. 4608 func (e *ssaExport) Unimplementedf(line int32, msg string, args ...interface{}) { 4609 if e.mustImplement { 4610 lineno = line 4611 Fatalf(msg, args...) 4612 } 4613 const alwaysLog = false // enable to calculate top unimplemented features 4614 if !e.unimplemented && (e.log || alwaysLog) { 4615 // first implementation failure, print explanation 4616 fmt.Printf("SSA unimplemented: "+msg+"\n", args...) 4617 } 4618 e.unimplemented = true 4619 } 4620 4621 // Warnl reports a "warning", which is usually flag-triggered 4622 // logging output for the benefit of tests. 4623 func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) { 4624 Warnl(line, fmt_, args...) 4625 } 4626 4627 func (e *ssaExport) Debug_checknil() bool { 4628 return Debug_checknil != 0 4629 } 4630 4631 func (n *Node) Typ() ssa.Type { 4632 return n.Type 4633 }