github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"html"
    11  	"os"
    12  	"strings"
    13  
    14  	"cmd/compile/internal/ssa"
    15  	"cmd/internal/obj"
    16  	"cmd/internal/sys"
    17  )
    18  
    19  var ssaEnabled = true
    20  
    21  var ssaConfig *ssa.Config
    22  var ssaExp ssaExport
    23  
    24  func initssa() *ssa.Config {
    25  	ssaExp.unimplemented = false
    26  	ssaExp.mustImplement = true
    27  	if ssaConfig == nil {
    28  		ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0)
    29  		if Thearch.LinkArch.Name == "386" {
    30  			ssaConfig.Set387(Thearch.Use387)
    31  		}
    32  	}
    33  	return ssaConfig
    34  }
    35  
    36  func shouldssa(fn *Node) bool {
    37  	switch Thearch.LinkArch.Name {
    38  	default:
    39  		// Only available for testing.
    40  		if os.Getenv("SSATEST") == "" {
    41  			return false
    42  		}
    43  	case "amd64", "amd64p32", "arm", "386", "arm64", "ppc64le", "mips64", "mips64le":
    44  		// Generally available.
    45  	}
    46  	if !ssaEnabled {
    47  		return false
    48  	}
    49  
    50  	// Environment variable control of SSA CG
    51  	// 1. IF GOSSAFUNC == current function name THEN
    52  	//       compile this function with SSA and log output to ssa.html
    53  
    54  	// 2. IF GOSSAHASH == "" THEN
    55  	//       compile this function (and everything else) with SSA
    56  
    57  	// 3. IF GOSSAHASH == "n" or "N"
    58  	//       IF GOSSAPKG == current package name THEN
    59  	//          compile this function (and everything in this package) with SSA
    60  	//       ELSE
    61  	//          use the old back end for this function.
    62  	//       This is for compatibility with existing test harness and should go away.
    63  
    64  	// 4. IF GOSSAHASH is a suffix of the binary-rendered SHA1 hash of the function name THEN
    65  	//          compile this function with SSA
    66  	//       ELSE
    67  	//          compile this function with the old back end.
    68  
    69  	// Plan is for 3 to be removed when the tests are revised.
    70  	// SSA is now default, and is disabled by setting
    71  	// GOSSAHASH to n or N, or selectively with strings of
    72  	// 0 and 1.
    73  
    74  	name := fn.Func.Nname.Sym.Name
    75  
    76  	funcname := os.Getenv("GOSSAFUNC")
    77  	if funcname != "" {
    78  		// If GOSSAFUNC is set, compile only that function.
    79  		return name == funcname
    80  	}
    81  
    82  	pkg := os.Getenv("GOSSAPKG")
    83  	if pkg != "" {
    84  		// If GOSSAPKG is set, compile only that package.
    85  		return localpkg.Name == pkg
    86  	}
    87  
    88  	return initssa().DebugHashMatch("GOSSAHASH", name)
    89  }
    90  
    91  // buildssa builds an SSA function.
    92  func buildssa(fn *Node) *ssa.Func {
    93  	name := fn.Func.Nname.Sym.Name
    94  	printssa := name == os.Getenv("GOSSAFUNC")
    95  	if printssa {
    96  		fmt.Println("generating SSA for", name)
    97  		dumplist("buildssa-enter", fn.Func.Enter)
    98  		dumplist("buildssa-body", fn.Nbody)
    99  		dumplist("buildssa-exit", fn.Func.Exit)
   100  	}
   101  
   102  	var s state
   103  	s.pushLine(fn.Lineno)
   104  	defer s.popLine()
   105  
   106  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   107  		s.cgoUnsafeArgs = true
   108  	}
   109  	if fn.Func.Pragma&Nowritebarrier != 0 {
   110  		s.noWB = true
   111  	}
   112  	defer func() {
   113  		if s.WBLineno != 0 {
   114  			fn.Func.WBLineno = s.WBLineno
   115  		}
   116  	}()
   117  	// TODO(khr): build config just once at the start of the compiler binary
   118  
   119  	ssaExp.log = printssa
   120  
   121  	s.config = initssa()
   122  	s.f = s.config.NewFunc()
   123  	s.f.Name = name
   124  	s.exitCode = fn.Func.Exit
   125  	s.panics = map[funcLine]*ssa.Block{}
   126  
   127  	if name == os.Getenv("GOSSAFUNC") {
   128  		// TODO: tempfile? it is handy to have the location
   129  		// of this file be stable, so you can just reload in the browser.
   130  		s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
   131  		// TODO: generate and print a mapping from nodes to values and blocks
   132  	}
   133  	defer func() {
   134  		if !printssa {
   135  			s.config.HTML.Close()
   136  		}
   137  	}()
   138  
   139  	// Allocate starting block
   140  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   141  
   142  	// Allocate starting values
   143  	s.labels = map[string]*ssaLabel{}
   144  	s.labeledNodes = map[*Node]*ssaLabel{}
   145  	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
   146  	s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   147  	s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])
   148  
   149  	s.startBlock(s.f.Entry)
   150  	s.vars[&memVar] = s.startmem
   151  
   152  	s.varsyms = map[*Node]interface{}{}
   153  
   154  	// Generate addresses of local declarations
   155  	s.decladdrs = map[*Node]*ssa.Value{}
   156  	for _, n := range fn.Func.Dcl {
   157  		switch n.Class {
   158  		case PPARAM, PPARAMOUT:
   159  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
   160  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
   161  			if n.Class == PPARAMOUT && s.canSSA(n) {
   162  				// Save ssa-able PPARAMOUT variables so we can
   163  				// store them back to the stack at the end of
   164  				// the function.
   165  				s.returns = append(s.returns, n)
   166  			}
   167  			if n.Class == PPARAM && s.canSSA(n) && n.Type.IsPtrShaped() {
   168  				s.ptrargs = append(s.ptrargs, n)
   169  				n.SetNotLiveAtEnd(true) // SSA takes care of this explicitly
   170  			}
   171  		case PAUTO:
   172  			// processed at each use, to prevent Addr coming
   173  			// before the decl.
   174  		case PAUTOHEAP:
   175  			// moved to heap - already handled by frontend
   176  		case PFUNC:
   177  			// local function - already handled by frontend
   178  		default:
   179  			s.Unimplementedf("local variable with class %s unimplemented", classnames[n.Class])
   180  		}
   181  	}
   182  
   183  	// Convert the AST-based IR to the SSA-based IR
   184  	s.stmts(fn.Func.Enter)
   185  	s.stmts(fn.Nbody)
   186  
   187  	// fallthrough to exit
   188  	if s.curBlock != nil {
   189  		s.pushLine(fn.Func.Endlineno)
   190  		s.exit()
   191  		s.popLine()
   192  	}
   193  
   194  	// Check that we used all labels
   195  	for name, lab := range s.labels {
   196  		if !lab.used() && !lab.reported && !lab.defNode.Used {
   197  			yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name)
   198  			lab.reported = true
   199  		}
   200  		if lab.used() && !lab.defined() && !lab.reported {
   201  			yyerrorl(lab.useNode.Lineno, "label %v not defined", name)
   202  			lab.reported = true
   203  		}
   204  	}
   205  
   206  	// Check any forward gotos. Non-forward gotos have already been checked.
   207  	for _, n := range s.fwdGotos {
   208  		lab := s.labels[n.Left.Sym.Name]
   209  		// If the label is undefined, we have already have printed an error.
   210  		if lab.defined() {
   211  			s.checkgoto(n, lab.defNode)
   212  		}
   213  	}
   214  
   215  	if nerrors > 0 {
   216  		s.f.Free()
   217  		return nil
   218  	}
   219  
   220  	prelinkNumvars := s.f.NumValues()
   221  	sparseDefState := s.locatePotentialPhiFunctions(fn)
   222  
   223  	// Link up variable uses to variable definitions
   224  	s.linkForwardReferences(sparseDefState)
   225  
   226  	if ssa.BuildStats > 0 {
   227  		s.f.LogStat("build", s.f.NumBlocks(), "blocks", prelinkNumvars, "vars_before",
   228  			s.f.NumValues(), "vars_after", prelinkNumvars*s.f.NumBlocks(), "ssa_phi_loc_cutoff_score")
   229  	}
   230  
   231  	// Don't carry reference this around longer than necessary
   232  	s.exitCode = Nodes{}
   233  
   234  	// Main call to ssa package to compile function
   235  	ssa.Compile(s.f)
   236  
   237  	return s.f
   238  }
   239  
   240  type state struct {
   241  	// configuration (arch) information
   242  	config *ssa.Config
   243  
   244  	// function we're building
   245  	f *ssa.Func
   246  
   247  	// labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f
   248  	labels       map[string]*ssaLabel
   249  	labeledNodes map[*Node]*ssaLabel
   250  
   251  	// gotos that jump forward; required for deferred checkgoto calls
   252  	fwdGotos []*Node
   253  	// Code that must precede any return
   254  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   255  	exitCode Nodes
   256  
   257  	// unlabeled break and continue statement tracking
   258  	breakTo    *ssa.Block // current target for plain break statement
   259  	continueTo *ssa.Block // current target for plain continue statement
   260  
   261  	// current location where we're interpreting the AST
   262  	curBlock *ssa.Block
   263  
   264  	// variable assignments in the current block (map from variable symbol to ssa value)
   265  	// *Node is the unique identifier (an ONAME Node) for the variable.
   266  	vars map[*Node]*ssa.Value
   267  
   268  	// all defined variables at the end of each block. Indexed by block ID.
   269  	defvars []map[*Node]*ssa.Value
   270  
   271  	// addresses of PPARAM and PPARAMOUT variables.
   272  	decladdrs map[*Node]*ssa.Value
   273  
   274  	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
   275  	varsyms map[*Node]interface{}
   276  
   277  	// starting values. Memory, stack pointer, and globals pointer
   278  	startmem *ssa.Value
   279  	sp       *ssa.Value
   280  	sb       *ssa.Value
   281  
   282  	// line number stack. The current line number is top of stack
   283  	line []int32
   284  
   285  	// list of panic calls by function name and line number.
   286  	// Used to deduplicate panic calls.
   287  	panics map[funcLine]*ssa.Block
   288  
   289  	// list of FwdRef values.
   290  	fwdRefs []*ssa.Value
   291  
   292  	// list of PPARAMOUT (return) variables.
   293  	returns []*Node
   294  
   295  	// list of PPARAM SSA-able pointer-shaped args. We ensure these are live
   296  	// throughout the function to help users avoid premature finalizers.
   297  	ptrargs []*Node
   298  
   299  	cgoUnsafeArgs bool
   300  	noWB          bool
   301  	WBLineno      int32 // line number of first write barrier. 0=no write barriers
   302  }
   303  
   304  type funcLine struct {
   305  	f    *Node
   306  	line int32
   307  }
   308  
   309  type ssaLabel struct {
   310  	target         *ssa.Block // block identified by this label
   311  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   312  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   313  	defNode        *Node      // label definition Node (OLABEL)
   314  	// Label use Node (OGOTO, OBREAK, OCONTINUE).
   315  	// Used only for error detection and reporting.
   316  	// There might be multiple uses, but we only need to track one.
   317  	useNode  *Node
   318  	reported bool // reported indicates whether an error has already been reported for this label
   319  }
   320  
   321  // defined reports whether the label has a definition (OLABEL node).
   322  func (l *ssaLabel) defined() bool { return l.defNode != nil }
   323  
   324  // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node).
   325  func (l *ssaLabel) used() bool { return l.useNode != nil }
   326  
   327  // label returns the label associated with sym, creating it if necessary.
   328  func (s *state) label(sym *Sym) *ssaLabel {
   329  	lab := s.labels[sym.Name]
   330  	if lab == nil {
   331  		lab = new(ssaLabel)
   332  		s.labels[sym.Name] = lab
   333  	}
   334  	return lab
   335  }
   336  
   337  func (s *state) Logf(msg string, args ...interface{})   { s.config.Logf(msg, args...) }
   338  func (s *state) Log() bool                              { return s.config.Log() }
   339  func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) }
   340  func (s *state) Unimplementedf(msg string, args ...interface{}) {
   341  	s.config.Unimplementedf(s.peekLine(), msg, args...)
   342  }
   343  func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) }
   344  func (s *state) Debug_checknil() bool                              { return s.config.Debug_checknil() }
   345  
   346  var (
   347  	// dummy node for the memory variable
   348  	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}
   349  
   350  	// dummy nodes for temporary variables
   351  	ptrVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
   352  	lenVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}}
   353  	newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}}
   354  	capVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
   355  	typVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
   356  	idataVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}}
   357  	okVar     = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
   358  	deltaVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "delta"}}
   359  )
   360  
   361  // startBlock sets the current block we're generating code in to b.
   362  func (s *state) startBlock(b *ssa.Block) {
   363  	if s.curBlock != nil {
   364  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   365  	}
   366  	s.curBlock = b
   367  	s.vars = map[*Node]*ssa.Value{}
   368  }
   369  
   370  // endBlock marks the end of generating code for the current block.
   371  // Returns the (former) current block. Returns nil if there is no current
   372  // block, i.e. if no code flows to the current execution point.
   373  func (s *state) endBlock() *ssa.Block {
   374  	b := s.curBlock
   375  	if b == nil {
   376  		return nil
   377  	}
   378  	for len(s.defvars) <= int(b.ID) {
   379  		s.defvars = append(s.defvars, nil)
   380  	}
   381  	s.defvars[b.ID] = s.vars
   382  	s.curBlock = nil
   383  	s.vars = nil
   384  	b.Line = s.peekLine()
   385  	return b
   386  }
   387  
   388  // pushLine pushes a line number on the line number stack.
   389  func (s *state) pushLine(line int32) {
   390  	if line == 0 {
   391  		// the frontend may emit node with line number missing,
   392  		// use the parent line number in this case.
   393  		line = s.peekLine()
   394  		if Debug['K'] != 0 {
   395  			Warn("buildssa: line 0")
   396  		}
   397  	}
   398  	s.line = append(s.line, line)
   399  }
   400  
   401  // popLine pops the top of the line number stack.
   402  func (s *state) popLine() {
   403  	s.line = s.line[:len(s.line)-1]
   404  }
   405  
   406  // peekLine peek the top of the line number stack.
   407  func (s *state) peekLine() int32 {
   408  	return s.line[len(s.line)-1]
   409  }
   410  
   411  func (s *state) Error(msg string, args ...interface{}) {
   412  	yyerrorl(s.peekLine(), msg, args...)
   413  }
   414  
   415  // newValue0 adds a new value with no arguments to the current block.
   416  func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   417  	return s.curBlock.NewValue0(s.peekLine(), op, t)
   418  }
   419  
   420  // newValue0A adds a new value with no arguments and an aux value to the current block.
   421  func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   422  	return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
   423  }
   424  
   425  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   426  func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   427  	return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint)
   428  }
   429  
   430  // newValue1 adds a new value with one argument to the current block.
   431  func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   432  	return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
   433  }
   434  
   435  // newValue1A adds a new value with one argument and an aux value to the current block.
   436  func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   437  	return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
   438  }
   439  
   440  // newValue1I adds a new value with one argument and an auxint value to the current block.
   441  func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
   442  	return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
   443  }
   444  
   445  // newValue2 adds a new value with two arguments to the current block.
   446  func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   447  	return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
   448  }
   449  
   450  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   451  func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   452  	return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
   453  }
   454  
   455  // newValue3 adds a new value with three arguments to the current block.
   456  func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   457  	return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
   458  }
   459  
   460  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   461  func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   462  	return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2)
   463  }
   464  
   465  // entryNewValue0 adds a new value with no arguments to the entry block.
   466  func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   467  	return s.f.Entry.NewValue0(s.peekLine(), op, t)
   468  }
   469  
   470  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   471  func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   472  	return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
   473  }
   474  
   475  // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
   476  func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   477  	return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint)
   478  }
   479  
   480  // entryNewValue1 adds a new value with one argument to the entry block.
   481  func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   482  	return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
   483  }
   484  
   485  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   486  func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   487  	return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
   488  }
   489  
   490  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   491  func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   492  	return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
   493  }
   494  
   495  // entryNewValue2 adds a new value with two arguments to the entry block.
   496  func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   497  	return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
   498  }
   499  
   500  // const* routines add a new const value to the entry block.
   501  func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekLine(), t) }
   502  func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekLine(), t) }
   503  func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekLine(), t) }
   504  func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) }
   505  func (s *state) constBool(c bool) *ssa.Value {
   506  	return s.f.ConstBool(s.peekLine(), Types[TBOOL], c)
   507  }
   508  func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
   509  	return s.f.ConstInt8(s.peekLine(), t, c)
   510  }
   511  func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
   512  	return s.f.ConstInt16(s.peekLine(), t, c)
   513  }
   514  func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
   515  	return s.f.ConstInt32(s.peekLine(), t, c)
   516  }
   517  func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
   518  	return s.f.ConstInt64(s.peekLine(), t, c)
   519  }
   520  func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
   521  	return s.f.ConstFloat32(s.peekLine(), t, c)
   522  }
   523  func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
   524  	return s.f.ConstFloat64(s.peekLine(), t, c)
   525  }
   526  func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
   527  	if s.config.IntSize == 8 {
   528  		return s.constInt64(t, c)
   529  	}
   530  	if int64(int32(c)) != c {
   531  		s.Fatalf("integer constant too big %d", c)
   532  	}
   533  	return s.constInt32(t, int32(c))
   534  }
   535  
   536  func (s *state) stmts(a Nodes) {
   537  	for _, x := range a.Slice() {
   538  		s.stmt(x)
   539  	}
   540  }
   541  
   542  // ssaStmtList converts the statement n to SSA and adds it to s.
   543  func (s *state) stmtList(l Nodes) {
   544  	for _, n := range l.Slice() {
   545  		s.stmt(n)
   546  	}
   547  }
   548  
   549  // ssaStmt converts the statement n to SSA and adds it to s.
   550  func (s *state) stmt(n *Node) {
   551  	s.pushLine(n.Lineno)
   552  	defer s.popLine()
   553  
   554  	// If s.curBlock is nil, then we're about to generate dead code.
   555  	// We can't just short-circuit here, though,
   556  	// because we check labels and gotos as part of SSA generation.
   557  	// Provide a block for the dead code so that we don't have
   558  	// to add special cases everywhere else.
   559  	if s.curBlock == nil {
   560  		dead := s.f.NewBlock(ssa.BlockPlain)
   561  		s.startBlock(dead)
   562  	}
   563  
   564  	s.stmtList(n.Ninit)
   565  	switch n.Op {
   566  
   567  	case OBLOCK:
   568  		s.stmtList(n.List)
   569  
   570  	// No-ops
   571  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   572  
   573  	// Expression statements
   574  	case OCALLFUNC:
   575  		if isIntrinsicCall(n) {
   576  			s.intrinsicCall(n)
   577  			return
   578  		}
   579  		fallthrough
   580  
   581  	case OCALLMETH, OCALLINTER:
   582  		s.call(n, callNormal)
   583  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC &&
   584  			(compiling_runtime && n.Left.Sym.Name == "throw" ||
   585  				n.Left.Sym.Pkg == Runtimepkg && (n.Left.Sym.Name == "gopanic" || n.Left.Sym.Name == "selectgo" || n.Left.Sym.Name == "block")) {
   586  			m := s.mem()
   587  			b := s.endBlock()
   588  			b.Kind = ssa.BlockExit
   589  			b.SetControl(m)
   590  			// TODO: never rewrite OPANIC to OCALLFUNC in the
   591  			// first place. Need to wait until all backends
   592  			// go through SSA.
   593  		}
   594  	case ODEFER:
   595  		s.call(n.Left, callDefer)
   596  	case OPROC:
   597  		s.call(n.Left, callGo)
   598  
   599  	case OAS2DOTTYPE:
   600  		res, resok := s.dottype(n.Rlist.First(), true)
   601  		s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), false, n.Lineno, 0, false)
   602  		s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false)
   603  		return
   604  
   605  	case ODCL:
   606  		if n.Left.Class == PAUTOHEAP {
   607  			Fatalf("DCL %v", n)
   608  		}
   609  
   610  	case OLABEL:
   611  		sym := n.Left.Sym
   612  
   613  		if isblanksym(sym) {
   614  			// Empty identifier is valid but useless.
   615  			// See issues 11589, 11593.
   616  			return
   617  		}
   618  
   619  		lab := s.label(sym)
   620  
   621  		// Associate label with its control flow node, if any
   622  		if ctl := n.Name.Defn; ctl != nil {
   623  			switch ctl.Op {
   624  			case OFOR, OSWITCH, OSELECT:
   625  				s.labeledNodes[ctl] = lab
   626  			}
   627  		}
   628  
   629  		if !lab.defined() {
   630  			lab.defNode = n
   631  		} else {
   632  			s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno))
   633  			lab.reported = true
   634  		}
   635  		// The label might already have a target block via a goto.
   636  		if lab.target == nil {
   637  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   638  		}
   639  
   640  		// go to that label (we pretend "label:" is preceded by "goto label")
   641  		b := s.endBlock()
   642  		b.AddEdgeTo(lab.target)
   643  		s.startBlock(lab.target)
   644  
   645  	case OGOTO:
   646  		sym := n.Left.Sym
   647  
   648  		lab := s.label(sym)
   649  		if lab.target == nil {
   650  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   651  		}
   652  		if !lab.used() {
   653  			lab.useNode = n
   654  		}
   655  
   656  		if lab.defined() {
   657  			s.checkgoto(n, lab.defNode)
   658  		} else {
   659  			s.fwdGotos = append(s.fwdGotos, n)
   660  		}
   661  
   662  		b := s.endBlock()
   663  		b.AddEdgeTo(lab.target)
   664  
   665  	case OAS, OASWB:
   666  		// Check whether we can generate static data rather than code.
   667  		// If so, ignore n and defer data generation until codegen.
   668  		// Failure to do this causes writes to readonly symbols.
   669  		if gen_as_init(n, true) {
   670  			var data []*Node
   671  			if s.f.StaticData != nil {
   672  				data = s.f.StaticData.([]*Node)
   673  			}
   674  			s.f.StaticData = append(data, n)
   675  			return
   676  		}
   677  
   678  		if n.Left == n.Right && n.Left.Op == ONAME {
   679  			// An x=x assignment. No point in doing anything
   680  			// here. In addition, skipping this assignment
   681  			// prevents generating:
   682  			//   VARDEF x
   683  			//   COPY x -> x
   684  			// which is bad because x is incorrectly considered
   685  			// dead before the vardef. See issue #14904.
   686  			return
   687  		}
   688  
   689  		var t *Type
   690  		if n.Right != nil {
   691  			t = n.Right.Type
   692  		} else {
   693  			t = n.Left.Type
   694  		}
   695  
   696  		// Evaluate RHS.
   697  		rhs := n.Right
   698  		if rhs != nil {
   699  			switch rhs.Op {
   700  			case OSTRUCTLIT, OARRAYLIT:
   701  				// All literals with nonzero fields have already been
   702  				// rewritten during walk. Any that remain are just T{}
   703  				// or equivalents. Use the zero value.
   704  				if !iszero(rhs) {
   705  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   706  				}
   707  				rhs = nil
   708  			case OAPPEND:
   709  				// If we're writing the result of an append back to the same slice,
   710  				// handle it specially to avoid write barriers on the fast (non-growth) path.
   711  				// If the slice can be SSA'd, it'll be on the stack,
   712  				// so there will be no write barriers,
   713  				// so there's no need to attempt to prevent them.
   714  				if samesafeexpr(n.Left, rhs.List.First()) && !s.canSSA(n.Left) {
   715  					s.append(rhs, true)
   716  					return
   717  				}
   718  			}
   719  		}
   720  		var r *ssa.Value
   721  		var isVolatile bool
   722  		needwb := n.Op == OASWB && rhs != nil
   723  		deref := !canSSAType(t)
   724  		if deref {
   725  			if rhs == nil {
   726  				r = nil // Signal assign to use OpZero.
   727  			} else {
   728  				r, isVolatile = s.addr(rhs, false)
   729  			}
   730  		} else {
   731  			if rhs == nil {
   732  				r = s.zeroVal(t)
   733  			} else {
   734  				r = s.expr(rhs)
   735  			}
   736  		}
   737  		if rhs != nil && rhs.Op == OAPPEND {
   738  			// The frontend gets rid of the write barrier to enable the special OAPPEND
   739  			// handling above, but since this is not a special case, we need it.
   740  			// TODO: just add a ptr graying to the end of growslice?
   741  			// TODO: check whether we need to provide special handling and a write barrier
   742  			// for ODOTTYPE and ORECV also.
   743  			// They get similar wb-removal treatment in walk.go:OAS.
   744  			needwb = true
   745  		}
   746  
   747  		var skip skipMask
   748  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   749  			// We're assigning a slicing operation back to its source.
   750  			// Don't write back fields we aren't changing. See issue #14855.
   751  			i, j, k := rhs.SliceBounds()
   752  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   753  				// [0:...] is the same as [:...]
   754  				i = nil
   755  			}
   756  			// TODO: detect defaults for len/cap also.
   757  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   758  			//    tmp = len(*p)
   759  			//    (*p)[:tmp]
   760  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   761  			//      j = nil
   762  			//}
   763  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   764  			//      k = nil
   765  			//}
   766  			if i == nil {
   767  				skip |= skipPtr
   768  				if j == nil {
   769  					skip |= skipLen
   770  				}
   771  				if k == nil {
   772  					skip |= skipCap
   773  				}
   774  			}
   775  		}
   776  
   777  		s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile)
   778  
   779  	case OIF:
   780  		bThen := s.f.NewBlock(ssa.BlockPlain)
   781  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   782  		var bElse *ssa.Block
   783  		if n.Rlist.Len() != 0 {
   784  			bElse = s.f.NewBlock(ssa.BlockPlain)
   785  			s.condBranch(n.Left, bThen, bElse, n.Likely)
   786  		} else {
   787  			s.condBranch(n.Left, bThen, bEnd, n.Likely)
   788  		}
   789  
   790  		s.startBlock(bThen)
   791  		s.stmts(n.Nbody)
   792  		if b := s.endBlock(); b != nil {
   793  			b.AddEdgeTo(bEnd)
   794  		}
   795  
   796  		if n.Rlist.Len() != 0 {
   797  			s.startBlock(bElse)
   798  			s.stmtList(n.Rlist)
   799  			if b := s.endBlock(); b != nil {
   800  				b.AddEdgeTo(bEnd)
   801  			}
   802  		}
   803  		s.startBlock(bEnd)
   804  
   805  	case ORETURN:
   806  		s.stmtList(n.List)
   807  		s.exit()
   808  	case ORETJMP:
   809  		s.stmtList(n.List)
   810  		b := s.exit()
   811  		b.Kind = ssa.BlockRetJmp // override BlockRet
   812  		b.Aux = n.Left.Sym
   813  
   814  	case OCONTINUE, OBREAK:
   815  		var op string
   816  		var to *ssa.Block
   817  		switch n.Op {
   818  		case OCONTINUE:
   819  			op = "continue"
   820  			to = s.continueTo
   821  		case OBREAK:
   822  			op = "break"
   823  			to = s.breakTo
   824  		}
   825  		if n.Left == nil {
   826  			// plain break/continue
   827  			if to == nil {
   828  				s.Error("%s is not in a loop", op)
   829  				return
   830  			}
   831  			// nothing to do; "to" is already the correct target
   832  		} else {
   833  			// labeled break/continue; look up the target
   834  			sym := n.Left.Sym
   835  			lab := s.label(sym)
   836  			if !lab.used() {
   837  				lab.useNode = n.Left
   838  			}
   839  			if !lab.defined() {
   840  				s.Error("%s label not defined: %v", op, sym)
   841  				lab.reported = true
   842  				return
   843  			}
   844  			switch n.Op {
   845  			case OCONTINUE:
   846  				to = lab.continueTarget
   847  			case OBREAK:
   848  				to = lab.breakTarget
   849  			}
   850  			if to == nil {
   851  				// Valid label but not usable with a break/continue here, e.g.:
   852  				// for {
   853  				// 	continue abc
   854  				// }
   855  				// abc:
   856  				// for {}
   857  				s.Error("invalid %s label %v", op, sym)
   858  				lab.reported = true
   859  				return
   860  			}
   861  		}
   862  
   863  		b := s.endBlock()
   864  		b.AddEdgeTo(to)
   865  
   866  	case OFOR:
   867  		// OFOR: for Ninit; Left; Right { Nbody }
   868  		bCond := s.f.NewBlock(ssa.BlockPlain)
   869  		bBody := s.f.NewBlock(ssa.BlockPlain)
   870  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   871  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   872  
   873  		// first, jump to condition test
   874  		b := s.endBlock()
   875  		b.AddEdgeTo(bCond)
   876  
   877  		// generate code to test condition
   878  		s.startBlock(bCond)
   879  		if n.Left != nil {
   880  			s.condBranch(n.Left, bBody, bEnd, 1)
   881  		} else {
   882  			b := s.endBlock()
   883  			b.Kind = ssa.BlockPlain
   884  			b.AddEdgeTo(bBody)
   885  		}
   886  
   887  		// set up for continue/break in body
   888  		prevContinue := s.continueTo
   889  		prevBreak := s.breakTo
   890  		s.continueTo = bIncr
   891  		s.breakTo = bEnd
   892  		lab := s.labeledNodes[n]
   893  		if lab != nil {
   894  			// labeled for loop
   895  			lab.continueTarget = bIncr
   896  			lab.breakTarget = bEnd
   897  		}
   898  
   899  		// generate body
   900  		s.startBlock(bBody)
   901  		s.stmts(n.Nbody)
   902  
   903  		// tear down continue/break
   904  		s.continueTo = prevContinue
   905  		s.breakTo = prevBreak
   906  		if lab != nil {
   907  			lab.continueTarget = nil
   908  			lab.breakTarget = nil
   909  		}
   910  
   911  		// done with body, goto incr
   912  		if b := s.endBlock(); b != nil {
   913  			b.AddEdgeTo(bIncr)
   914  		}
   915  
   916  		// generate incr
   917  		s.startBlock(bIncr)
   918  		if n.Right != nil {
   919  			s.stmt(n.Right)
   920  		}
   921  		if b := s.endBlock(); b != nil {
   922  			b.AddEdgeTo(bCond)
   923  		}
   924  		s.startBlock(bEnd)
   925  
   926  	case OSWITCH, OSELECT:
   927  		// These have been mostly rewritten by the front end into their Nbody fields.
   928  		// Our main task is to correctly hook up any break statements.
   929  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   930  
   931  		prevBreak := s.breakTo
   932  		s.breakTo = bEnd
   933  		lab := s.labeledNodes[n]
   934  		if lab != nil {
   935  			// labeled
   936  			lab.breakTarget = bEnd
   937  		}
   938  
   939  		// generate body code
   940  		s.stmts(n.Nbody)
   941  
   942  		s.breakTo = prevBreak
   943  		if lab != nil {
   944  			lab.breakTarget = nil
   945  		}
   946  
   947  		// OSWITCH never falls through (s.curBlock == nil here).
   948  		// OSELECT does not fall through if we're calling selectgo.
   949  		// OSELECT does fall through if we're calling selectnb{send,recv}[2].
   950  		// In those latter cases, go to the code after the select.
   951  		if b := s.endBlock(); b != nil {
   952  			b.AddEdgeTo(bEnd)
   953  		}
   954  		s.startBlock(bEnd)
   955  
   956  	case OVARKILL:
   957  		// Insert a varkill op to record that a variable is no longer live.
   958  		// We only care about liveness info at call sites, so putting the
   959  		// varkill in the store chain is enough to keep it correctly ordered
   960  		// with respect to call ops.
   961  		if !s.canSSA(n.Left) {
   962  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
   963  		}
   964  
   965  	case OVARLIVE:
   966  		// Insert a varlive op to record that a variable is still live.
   967  		if !n.Left.Addrtaken {
   968  			s.Fatalf("VARLIVE variable %s must have Addrtaken set", n.Left)
   969  		}
   970  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
   971  
   972  	case OCHECKNIL:
   973  		p := s.expr(n.Left)
   974  		s.nilCheck(p)
   975  
   976  	case OSQRT:
   977  		s.expr(n.Left)
   978  
   979  	default:
   980  		s.Unimplementedf("unhandled stmt %s", n.Op)
   981  	}
   982  }
   983  
   984  // exit processes any code that needs to be generated just before returning.
   985  // It returns a BlockRet block that ends the control flow. Its control value
   986  // will be set to the final memory state.
   987  func (s *state) exit() *ssa.Block {
   988  	if hasdefer {
   989  		s.rtcall(Deferreturn, true, nil)
   990  	}
   991  
   992  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
   993  	// variables back to the stack.
   994  	s.stmts(s.exitCode)
   995  
   996  	// Store SSAable PPARAMOUT variables back to stack locations.
   997  	for _, n := range s.returns {
   998  		addr := s.decladdrs[n]
   999  		val := s.variable(n, n.Type)
  1000  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
  1001  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
  1002  		// TODO: if val is ever spilled, we'd like to use the
  1003  		// PPARAMOUT slot for spilling it. That won't happen
  1004  		// currently.
  1005  	}
  1006  
  1007  	// Keep input pointer args live until the return. This is a bandaid
  1008  	// fix for 1.7 for what will become in 1.8 explicit runtime.KeepAlive calls.
  1009  	// For <= 1.7 we guarantee that pointer input arguments live to the end of
  1010  	// the function to prevent premature (from the user's point of view)
  1011  	// execution of finalizers. See issue 15277.
  1012  	// TODO: remove for 1.8?
  1013  	for _, n := range s.ptrargs {
  1014  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  1015  	}
  1016  
  1017  	// Do actual return.
  1018  	m := s.mem()
  1019  	b := s.endBlock()
  1020  	b.Kind = ssa.BlockRet
  1021  	b.SetControl(m)
  1022  	return b
  1023  }
  1024  
  1025  type opAndType struct {
  1026  	op    Op
  1027  	etype EType
  1028  }
  1029  
  1030  var opToSSA = map[opAndType]ssa.Op{
  1031  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
  1032  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
  1033  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
  1034  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
  1035  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
  1036  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
  1037  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
  1038  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
  1039  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
  1040  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
  1041  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
  1042  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
  1043  
  1044  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1045  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1046  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1047  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1048  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1049  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1050  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1051  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1052  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1053  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1054  
  1055  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1056  
  1057  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1058  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1059  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1060  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1061  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1062  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1063  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1064  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1065  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1066  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1067  
  1068  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1069  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1070  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1071  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1072  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1073  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1074  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1075  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1076  
  1077  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1078  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1079  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1080  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1081  
  1082  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1083  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1084  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1085  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1086  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1087  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1088  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1089  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1090  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1091  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1092  
  1093  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1094  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1095  
  1096  	opAndType{OHMUL, TINT8}:   ssa.OpHmul8,
  1097  	opAndType{OHMUL, TUINT8}:  ssa.OpHmul8u,
  1098  	opAndType{OHMUL, TINT16}:  ssa.OpHmul16,
  1099  	opAndType{OHMUL, TUINT16}: ssa.OpHmul16u,
  1100  	opAndType{OHMUL, TINT32}:  ssa.OpHmul32,
  1101  	opAndType{OHMUL, TUINT32}: ssa.OpHmul32u,
  1102  
  1103  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1104  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1105  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1106  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1107  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1108  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1109  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1110  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1111  
  1112  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1113  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1114  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1115  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1116  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1117  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1118  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1119  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1120  
  1121  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1122  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1123  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1124  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1125  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1126  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1127  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1128  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1129  
  1130  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1131  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1132  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1133  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1134  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1135  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1136  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1137  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1138  
  1139  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1140  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1141  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1142  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1143  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1144  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1145  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1146  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1147  
  1148  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1149  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1150  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1151  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1152  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1153  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1154  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1155  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1156  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1157  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1158  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1159  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1160  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1161  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1162  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1163  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1164  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1165  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1166  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1167  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1168  
  1169  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1170  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1171  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1172  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1173  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1174  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1175  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1176  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1177  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1178  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1179  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1180  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1181  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1182  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1183  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1184  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1185  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1186  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1187  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1188  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1189  
  1190  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1191  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1192  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1193  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1194  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1195  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1196  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1197  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1198  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1199  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1200  
  1201  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1202  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1203  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1204  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1205  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1206  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1207  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1208  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1209  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1210  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1211  
  1212  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1213  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1214  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1215  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1216  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1217  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1218  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1219  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1220  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1221  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1222  
  1223  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1224  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1225  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1226  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1227  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1228  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1229  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1230  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1231  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1232  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1233  
  1234  	opAndType{OLROT, TUINT8}:  ssa.OpLrot8,
  1235  	opAndType{OLROT, TUINT16}: ssa.OpLrot16,
  1236  	opAndType{OLROT, TUINT32}: ssa.OpLrot32,
  1237  	opAndType{OLROT, TUINT64}: ssa.OpLrot64,
  1238  
  1239  	opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt,
  1240  }
  1241  
  1242  func (s *state) concreteEtype(t *Type) EType {
  1243  	e := t.Etype
  1244  	switch e {
  1245  	default:
  1246  		return e
  1247  	case TINT:
  1248  		if s.config.IntSize == 8 {
  1249  			return TINT64
  1250  		}
  1251  		return TINT32
  1252  	case TUINT:
  1253  		if s.config.IntSize == 8 {
  1254  			return TUINT64
  1255  		}
  1256  		return TUINT32
  1257  	case TUINTPTR:
  1258  		if s.config.PtrSize == 8 {
  1259  			return TUINT64
  1260  		}
  1261  		return TUINT32
  1262  	}
  1263  }
  1264  
  1265  func (s *state) ssaOp(op Op, t *Type) ssa.Op {
  1266  	etype := s.concreteEtype(t)
  1267  	x, ok := opToSSA[opAndType{op, etype}]
  1268  	if !ok {
  1269  		s.Unimplementedf("unhandled binary op %s %s", op, etype)
  1270  	}
  1271  	return x
  1272  }
  1273  
  1274  func floatForComplex(t *Type) *Type {
  1275  	if t.Size() == 8 {
  1276  		return Types[TFLOAT32]
  1277  	} else {
  1278  		return Types[TFLOAT64]
  1279  	}
  1280  }
  1281  
  1282  type opAndTwoTypes struct {
  1283  	op     Op
  1284  	etype1 EType
  1285  	etype2 EType
  1286  }
  1287  
  1288  type twoTypes struct {
  1289  	etype1 EType
  1290  	etype2 EType
  1291  }
  1292  
  1293  type twoOpsAndType struct {
  1294  	op1              ssa.Op
  1295  	op2              ssa.Op
  1296  	intermediateType EType
  1297  }
  1298  
  1299  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1300  
  1301  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1302  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1303  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1304  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1305  
  1306  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1307  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1308  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1309  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1310  
  1311  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1312  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1313  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1314  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1315  
  1316  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1317  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1318  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1319  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1320  	// unsigned
  1321  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1322  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1323  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1324  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1325  
  1326  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1327  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1328  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1329  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1330  
  1331  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1332  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1333  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1334  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1335  
  1336  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1337  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1338  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1339  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1340  
  1341  	// float
  1342  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1343  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64},
  1344  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32},
  1345  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1346  }
  1347  
  1348  // this map is used only for 32-bit arch, and only includes the difference
  1349  // on 32-bit arch, don't use int64<->float conversion for uint32
  1350  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1351  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1352  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1353  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1354  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1355  }
  1356  
  1357  // uint64<->float conversions, only on machines that have intructions for that
  1358  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1359  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1360  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1361  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1362  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1363  }
  1364  
  1365  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1366  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1367  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1368  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1369  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1370  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1371  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1372  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1373  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1374  
  1375  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1376  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1377  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1378  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1379  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1380  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1381  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1382  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1383  
  1384  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1385  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1386  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1387  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1388  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1389  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1390  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1391  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1392  
  1393  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1394  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1395  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1396  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1397  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1398  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1399  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1400  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1401  
  1402  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1403  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1404  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1405  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1406  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1407  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1408  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1409  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1410  
  1411  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1412  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1413  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1414  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1415  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1416  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1417  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1418  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1419  
  1420  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1421  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1422  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1423  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1424  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1425  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1426  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1427  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1428  
  1429  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1430  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1431  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1432  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1433  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1434  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1435  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1436  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1437  }
  1438  
  1439  func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
  1440  	etype1 := s.concreteEtype(t)
  1441  	etype2 := s.concreteEtype(u)
  1442  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1443  	if !ok {
  1444  		s.Unimplementedf("unhandled shift op %s etype=%s/%s", op, etype1, etype2)
  1445  	}
  1446  	return x
  1447  }
  1448  
  1449  func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op {
  1450  	etype1 := s.concreteEtype(t)
  1451  	x, ok := opToSSA[opAndType{op, etype1}]
  1452  	if !ok {
  1453  		s.Unimplementedf("unhandled rotate op %s etype=%s", op, etype1)
  1454  	}
  1455  	return x
  1456  }
  1457  
  1458  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1459  func (s *state) expr(n *Node) *ssa.Value {
  1460  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1461  		// ONAMEs and named OLITERALs have the line number
  1462  		// of the decl, not the use. See issue 14742.
  1463  		s.pushLine(n.Lineno)
  1464  		defer s.popLine()
  1465  	}
  1466  
  1467  	s.stmtList(n.Ninit)
  1468  	switch n.Op {
  1469  	case OCFUNC:
  1470  		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym})
  1471  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1472  	case ONAME:
  1473  		if n.Class == PFUNC {
  1474  			// "value" of a function is the address of the function's closure
  1475  			sym := funcsym(n.Sym)
  1476  			aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym}
  1477  			return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb)
  1478  		}
  1479  		if s.canSSA(n) {
  1480  			return s.variable(n, n.Type)
  1481  		}
  1482  		addr, _ := s.addr(n, false)
  1483  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1484  	case OCLOSUREVAR:
  1485  		addr, _ := s.addr(n, false)
  1486  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1487  	case OLITERAL:
  1488  		switch u := n.Val().U.(type) {
  1489  		case *Mpint:
  1490  			i := u.Int64()
  1491  			switch n.Type.Size() {
  1492  			case 1:
  1493  				return s.constInt8(n.Type, int8(i))
  1494  			case 2:
  1495  				return s.constInt16(n.Type, int16(i))
  1496  			case 4:
  1497  				return s.constInt32(n.Type, int32(i))
  1498  			case 8:
  1499  				return s.constInt64(n.Type, i)
  1500  			default:
  1501  				s.Fatalf("bad integer size %d", n.Type.Size())
  1502  				return nil
  1503  			}
  1504  		case string:
  1505  			if u == "" {
  1506  				return s.constEmptyString(n.Type)
  1507  			}
  1508  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1509  		case bool:
  1510  			return s.constBool(u)
  1511  		case *NilVal:
  1512  			t := n.Type
  1513  			switch {
  1514  			case t.IsSlice():
  1515  				return s.constSlice(t)
  1516  			case t.IsInterface():
  1517  				return s.constInterface(t)
  1518  			default:
  1519  				return s.constNil(t)
  1520  			}
  1521  		case *Mpflt:
  1522  			switch n.Type.Size() {
  1523  			case 4:
  1524  				return s.constFloat32(n.Type, u.Float32())
  1525  			case 8:
  1526  				return s.constFloat64(n.Type, u.Float64())
  1527  			default:
  1528  				s.Fatalf("bad float size %d", n.Type.Size())
  1529  				return nil
  1530  			}
  1531  		case *Mpcplx:
  1532  			r := &u.Real
  1533  			i := &u.Imag
  1534  			switch n.Type.Size() {
  1535  			case 8:
  1536  				pt := Types[TFLOAT32]
  1537  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1538  					s.constFloat32(pt, r.Float32()),
  1539  					s.constFloat32(pt, i.Float32()))
  1540  			case 16:
  1541  				pt := Types[TFLOAT64]
  1542  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1543  					s.constFloat64(pt, r.Float64()),
  1544  					s.constFloat64(pt, i.Float64()))
  1545  			default:
  1546  				s.Fatalf("bad float size %d", n.Type.Size())
  1547  				return nil
  1548  			}
  1549  
  1550  		default:
  1551  			s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype())
  1552  			return nil
  1553  		}
  1554  	case OCONVNOP:
  1555  		to := n.Type
  1556  		from := n.Left.Type
  1557  
  1558  		// Assume everything will work out, so set up our return value.
  1559  		// Anything interesting that happens from here is a fatal.
  1560  		x := s.expr(n.Left)
  1561  
  1562  		// Special case for not confusing GC and liveness.
  1563  		// We don't want pointers accidentally classified
  1564  		// as not-pointers or vice-versa because of copy
  1565  		// elision.
  1566  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1567  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1568  		}
  1569  
  1570  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1571  
  1572  		// CONVNOP closure
  1573  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1574  			return v
  1575  		}
  1576  
  1577  		// named <--> unnamed type or typed <--> untyped const
  1578  		if from.Etype == to.Etype {
  1579  			return v
  1580  		}
  1581  
  1582  		// unsafe.Pointer <--> *T
  1583  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1584  			return v
  1585  		}
  1586  
  1587  		dowidth(from)
  1588  		dowidth(to)
  1589  		if from.Width != to.Width {
  1590  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1591  			return nil
  1592  		}
  1593  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1594  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1595  			return nil
  1596  		}
  1597  
  1598  		if instrumenting {
  1599  			// These appear to be fine, but they fail the
  1600  			// integer constraint below, so okay them here.
  1601  			// Sample non-integer conversion: map[string]string -> *uint8
  1602  			return v
  1603  		}
  1604  
  1605  		if etypesign(from.Etype) == 0 {
  1606  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1607  			return nil
  1608  		}
  1609  
  1610  		// integer, same width, same sign
  1611  		return v
  1612  
  1613  	case OCONV:
  1614  		x := s.expr(n.Left)
  1615  		ft := n.Left.Type // from type
  1616  		tt := n.Type      // to type
  1617  		if ft.IsInteger() && tt.IsInteger() {
  1618  			var op ssa.Op
  1619  			if tt.Size() == ft.Size() {
  1620  				op = ssa.OpCopy
  1621  			} else if tt.Size() < ft.Size() {
  1622  				// truncation
  1623  				switch 10*ft.Size() + tt.Size() {
  1624  				case 21:
  1625  					op = ssa.OpTrunc16to8
  1626  				case 41:
  1627  					op = ssa.OpTrunc32to8
  1628  				case 42:
  1629  					op = ssa.OpTrunc32to16
  1630  				case 81:
  1631  					op = ssa.OpTrunc64to8
  1632  				case 82:
  1633  					op = ssa.OpTrunc64to16
  1634  				case 84:
  1635  					op = ssa.OpTrunc64to32
  1636  				default:
  1637  					s.Fatalf("weird integer truncation %s -> %s", ft, tt)
  1638  				}
  1639  			} else if ft.IsSigned() {
  1640  				// sign extension
  1641  				switch 10*ft.Size() + tt.Size() {
  1642  				case 12:
  1643  					op = ssa.OpSignExt8to16
  1644  				case 14:
  1645  					op = ssa.OpSignExt8to32
  1646  				case 18:
  1647  					op = ssa.OpSignExt8to64
  1648  				case 24:
  1649  					op = ssa.OpSignExt16to32
  1650  				case 28:
  1651  					op = ssa.OpSignExt16to64
  1652  				case 48:
  1653  					op = ssa.OpSignExt32to64
  1654  				default:
  1655  					s.Fatalf("bad integer sign extension %s -> %s", ft, tt)
  1656  				}
  1657  			} else {
  1658  				// zero extension
  1659  				switch 10*ft.Size() + tt.Size() {
  1660  				case 12:
  1661  					op = ssa.OpZeroExt8to16
  1662  				case 14:
  1663  					op = ssa.OpZeroExt8to32
  1664  				case 18:
  1665  					op = ssa.OpZeroExt8to64
  1666  				case 24:
  1667  					op = ssa.OpZeroExt16to32
  1668  				case 28:
  1669  					op = ssa.OpZeroExt16to64
  1670  				case 48:
  1671  					op = ssa.OpZeroExt32to64
  1672  				default:
  1673  					s.Fatalf("weird integer sign extension %s -> %s", ft, tt)
  1674  				}
  1675  			}
  1676  			return s.newValue1(op, n.Type, x)
  1677  		}
  1678  
  1679  		if ft.IsFloat() || tt.IsFloat() {
  1680  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1681  			if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" {
  1682  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1683  					conv = conv1
  1684  				}
  1685  			}
  1686  			if Thearch.LinkArch.Name == "arm64" {
  1687  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1688  					conv = conv1
  1689  				}
  1690  			}
  1691  			if !ok {
  1692  				s.Fatalf("weird float conversion %s -> %s", ft, tt)
  1693  			}
  1694  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1695  
  1696  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1697  				// normal case, not tripping over unsigned 64
  1698  				if op1 == ssa.OpCopy {
  1699  					if op2 == ssa.OpCopy {
  1700  						return x
  1701  					}
  1702  					return s.newValue1(op2, n.Type, x)
  1703  				}
  1704  				if op2 == ssa.OpCopy {
  1705  					return s.newValue1(op1, n.Type, x)
  1706  				}
  1707  				return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
  1708  			}
  1709  			// Tricky 64-bit unsigned cases.
  1710  			if ft.IsInteger() {
  1711  				// therefore tt is float32 or float64, and ft is also unsigned
  1712  				if tt.Size() == 4 {
  1713  					return s.uint64Tofloat32(n, x, ft, tt)
  1714  				}
  1715  				if tt.Size() == 8 {
  1716  					return s.uint64Tofloat64(n, x, ft, tt)
  1717  				}
  1718  				s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt)
  1719  			}
  1720  			// therefore ft is float32 or float64, and tt is unsigned integer
  1721  			if ft.Size() == 4 {
  1722  				return s.float32ToUint64(n, x, ft, tt)
  1723  			}
  1724  			if ft.Size() == 8 {
  1725  				return s.float64ToUint64(n, x, ft, tt)
  1726  			}
  1727  			s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt)
  1728  			return nil
  1729  		}
  1730  
  1731  		if ft.IsComplex() && tt.IsComplex() {
  1732  			var op ssa.Op
  1733  			if ft.Size() == tt.Size() {
  1734  				op = ssa.OpCopy
  1735  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1736  				op = ssa.OpCvt32Fto64F
  1737  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1738  				op = ssa.OpCvt64Fto32F
  1739  			} else {
  1740  				s.Fatalf("weird complex conversion %s -> %s", ft, tt)
  1741  			}
  1742  			ftp := floatForComplex(ft)
  1743  			ttp := floatForComplex(tt)
  1744  			return s.newValue2(ssa.OpComplexMake, tt,
  1745  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1746  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1747  		}
  1748  
  1749  		s.Unimplementedf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1750  		return nil
  1751  
  1752  	case ODOTTYPE:
  1753  		res, _ := s.dottype(n, false)
  1754  		return res
  1755  
  1756  	// binary ops
  1757  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1758  		a := s.expr(n.Left)
  1759  		b := s.expr(n.Right)
  1760  		if n.Left.Type.IsComplex() {
  1761  			pt := floatForComplex(n.Left.Type)
  1762  			op := s.ssaOp(OEQ, pt)
  1763  			r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1764  			i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1765  			c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i)
  1766  			switch n.Op {
  1767  			case OEQ:
  1768  				return c
  1769  			case ONE:
  1770  				return s.newValue1(ssa.OpNot, Types[TBOOL], c)
  1771  			default:
  1772  				s.Fatalf("ordered complex compare %s", n.Op)
  1773  			}
  1774  		}
  1775  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
  1776  	case OMUL:
  1777  		a := s.expr(n.Left)
  1778  		b := s.expr(n.Right)
  1779  		if n.Type.IsComplex() {
  1780  			mulop := ssa.OpMul64F
  1781  			addop := ssa.OpAdd64F
  1782  			subop := ssa.OpSub64F
  1783  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1784  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1785  
  1786  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1787  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1788  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1789  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1790  
  1791  			if pt != wt { // Widen for calculation
  1792  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1793  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1794  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1795  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1796  			}
  1797  
  1798  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1799  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1800  
  1801  			if pt != wt { // Narrow to store back
  1802  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1803  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1804  			}
  1805  
  1806  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1807  		}
  1808  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1809  
  1810  	case ODIV:
  1811  		a := s.expr(n.Left)
  1812  		b := s.expr(n.Right)
  1813  		if n.Type.IsComplex() {
  1814  			// TODO this is not executed because the front-end substitutes a runtime call.
  1815  			// That probably ought to change; with modest optimization the widen/narrow
  1816  			// conversions could all be elided in larger expression trees.
  1817  			mulop := ssa.OpMul64F
  1818  			addop := ssa.OpAdd64F
  1819  			subop := ssa.OpSub64F
  1820  			divop := ssa.OpDiv64F
  1821  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1822  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1823  
  1824  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1825  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1826  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1827  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1828  
  1829  			if pt != wt { // Widen for calculation
  1830  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1831  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1832  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1833  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1834  			}
  1835  
  1836  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1837  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1838  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1839  
  1840  			// TODO not sure if this is best done in wide precision or narrow
  1841  			// Double-rounding might be an issue.
  1842  			// Note that the pre-SSA implementation does the entire calculation
  1843  			// in wide format, so wide is compatible.
  1844  			xreal = s.newValue2(divop, wt, xreal, denom)
  1845  			ximag = s.newValue2(divop, wt, ximag, denom)
  1846  
  1847  			if pt != wt { // Narrow to store back
  1848  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1849  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1850  			}
  1851  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1852  		}
  1853  		if n.Type.IsFloat() {
  1854  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1855  		} else {
  1856  			// do a size-appropriate check for zero
  1857  			cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  1858  			s.check(cmp, panicdivide)
  1859  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1860  		}
  1861  	case OMOD:
  1862  		a := s.expr(n.Left)
  1863  		b := s.expr(n.Right)
  1864  		// do a size-appropriate check for zero
  1865  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  1866  		s.check(cmp, panicdivide)
  1867  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1868  	case OADD, OSUB:
  1869  		a := s.expr(n.Left)
  1870  		b := s.expr(n.Right)
  1871  		if n.Type.IsComplex() {
  1872  			pt := floatForComplex(n.Type)
  1873  			op := s.ssaOp(n.Op, pt)
  1874  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1875  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1876  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1877  		}
  1878  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1879  	case OAND, OOR, OHMUL, OXOR:
  1880  		a := s.expr(n.Left)
  1881  		b := s.expr(n.Right)
  1882  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1883  	case OLSH, ORSH:
  1884  		a := s.expr(n.Left)
  1885  		b := s.expr(n.Right)
  1886  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1887  	case OLROT:
  1888  		a := s.expr(n.Left)
  1889  		i := n.Right.Int64()
  1890  		if i <= 0 || i >= n.Type.Size()*8 {
  1891  			s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i)
  1892  		}
  1893  		return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a)
  1894  	case OANDAND, OOROR:
  1895  		// To implement OANDAND (and OOROR), we introduce a
  1896  		// new temporary variable to hold the result. The
  1897  		// variable is associated with the OANDAND node in the
  1898  		// s.vars table (normally variables are only
  1899  		// associated with ONAME nodes). We convert
  1900  		//     A && B
  1901  		// to
  1902  		//     var = A
  1903  		//     if var {
  1904  		//         var = B
  1905  		//     }
  1906  		// Using var in the subsequent block introduces the
  1907  		// necessary phi variable.
  1908  		el := s.expr(n.Left)
  1909  		s.vars[n] = el
  1910  
  1911  		b := s.endBlock()
  1912  		b.Kind = ssa.BlockIf
  1913  		b.SetControl(el)
  1914  		// In theory, we should set b.Likely here based on context.
  1915  		// However, gc only gives us likeliness hints
  1916  		// in a single place, for plain OIF statements,
  1917  		// and passing around context is finnicky, so don't bother for now.
  1918  
  1919  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1920  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1921  		if n.Op == OANDAND {
  1922  			b.AddEdgeTo(bRight)
  1923  			b.AddEdgeTo(bResult)
  1924  		} else if n.Op == OOROR {
  1925  			b.AddEdgeTo(bResult)
  1926  			b.AddEdgeTo(bRight)
  1927  		}
  1928  
  1929  		s.startBlock(bRight)
  1930  		er := s.expr(n.Right)
  1931  		s.vars[n] = er
  1932  
  1933  		b = s.endBlock()
  1934  		b.AddEdgeTo(bResult)
  1935  
  1936  		s.startBlock(bResult)
  1937  		return s.variable(n, Types[TBOOL])
  1938  	case OCOMPLEX:
  1939  		r := s.expr(n.Left)
  1940  		i := s.expr(n.Right)
  1941  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1942  
  1943  	// unary ops
  1944  	case OMINUS:
  1945  		a := s.expr(n.Left)
  1946  		if n.Type.IsComplex() {
  1947  			tp := floatForComplex(n.Type)
  1948  			negop := s.ssaOp(n.Op, tp)
  1949  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1950  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1951  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1952  		}
  1953  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1954  	case ONOT, OCOM, OSQRT:
  1955  		a := s.expr(n.Left)
  1956  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1957  	case OIMAG, OREAL:
  1958  		a := s.expr(n.Left)
  1959  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1960  	case OPLUS:
  1961  		return s.expr(n.Left)
  1962  
  1963  	case OADDR:
  1964  		a, _ := s.addr(n.Left, n.Bounded)
  1965  		// Note we know the volatile result is false because you can't write &f() in Go.
  1966  		return a
  1967  
  1968  	case OINDREG:
  1969  		if int(n.Reg) != Thearch.REGSP {
  1970  			s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n)
  1971  			return nil
  1972  		}
  1973  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
  1974  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1975  
  1976  	case OIND:
  1977  		p := s.exprPtr(n.Left, false, n.Lineno)
  1978  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1979  
  1980  	case ODOT:
  1981  		t := n.Left.Type
  1982  		if canSSAType(t) {
  1983  			v := s.expr(n.Left)
  1984  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1985  		}
  1986  		p, _ := s.addr(n, false)
  1987  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1988  
  1989  	case ODOTPTR:
  1990  		p := s.exprPtr(n.Left, false, n.Lineno)
  1991  		p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p)
  1992  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1993  
  1994  	case OINDEX:
  1995  		switch {
  1996  		case n.Left.Type.IsString():
  1997  			a := s.expr(n.Left)
  1998  			i := s.expr(n.Right)
  1999  			i = s.extendIndex(i, Panicindex)
  2000  			if !n.Bounded {
  2001  				len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
  2002  				s.boundsCheck(i, len)
  2003  			}
  2004  			ptrtyp := Ptrto(Types[TUINT8])
  2005  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  2006  			if Isconst(n.Right, CTINT) {
  2007  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  2008  			} else {
  2009  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  2010  			}
  2011  			return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
  2012  		case n.Left.Type.IsSlice():
  2013  			p, _ := s.addr(n, false)
  2014  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2015  		case n.Left.Type.IsArray():
  2016  			// TODO: fix when we can SSA arrays of length 1.
  2017  			p, _ := s.addr(n, false)
  2018  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2019  		default:
  2020  			s.Fatalf("bad type for index %v", n.Left.Type)
  2021  			return nil
  2022  		}
  2023  
  2024  	case OLEN, OCAP:
  2025  		switch {
  2026  		case n.Left.Type.IsSlice():
  2027  			op := ssa.OpSliceLen
  2028  			if n.Op == OCAP {
  2029  				op = ssa.OpSliceCap
  2030  			}
  2031  			return s.newValue1(op, Types[TINT], s.expr(n.Left))
  2032  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2033  			return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
  2034  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2035  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2036  		default: // array
  2037  			return s.constInt(Types[TINT], n.Left.Type.NumElem())
  2038  		}
  2039  
  2040  	case OSPTR:
  2041  		a := s.expr(n.Left)
  2042  		if n.Left.Type.IsSlice() {
  2043  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2044  		} else {
  2045  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2046  		}
  2047  
  2048  	case OITAB:
  2049  		a := s.expr(n.Left)
  2050  		return s.newValue1(ssa.OpITab, n.Type, a)
  2051  
  2052  	case OIDATA:
  2053  		a := s.expr(n.Left)
  2054  		return s.newValue1(ssa.OpIData, n.Type, a)
  2055  
  2056  	case OEFACE:
  2057  		tab := s.expr(n.Left)
  2058  		data := s.expr(n.Right)
  2059  		// The frontend allows putting things like struct{*byte} in
  2060  		// the data portion of an eface. But we don't want struct{*byte}
  2061  		// as a register type because (among other reasons) the liveness
  2062  		// analysis is confused by the "fat" variables that result from
  2063  		// such types being spilled.
  2064  		// So here we ensure that we are selecting the underlying pointer
  2065  		// when we build an eface.
  2066  		// TODO: get rid of this now that structs can be SSA'd?
  2067  		for !data.Type.IsPtrShaped() {
  2068  			switch {
  2069  			case data.Type.IsArray():
  2070  				data = s.newValue1I(ssa.OpArrayIndex, data.Type.ElemType(), 0, data)
  2071  			case data.Type.IsStruct():
  2072  				for i := data.Type.NumFields() - 1; i >= 0; i-- {
  2073  					f := data.Type.FieldType(i)
  2074  					if f.Size() == 0 {
  2075  						// eface type could also be struct{p *byte; q [0]int}
  2076  						continue
  2077  					}
  2078  					data = s.newValue1I(ssa.OpStructSelect, f, int64(i), data)
  2079  					break
  2080  				}
  2081  			default:
  2082  				s.Fatalf("type being put into an eface isn't a pointer")
  2083  			}
  2084  		}
  2085  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2086  
  2087  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2088  		v := s.expr(n.Left)
  2089  		var i, j, k *ssa.Value
  2090  		low, high, max := n.SliceBounds()
  2091  		if low != nil {
  2092  			i = s.extendIndex(s.expr(low), panicslice)
  2093  		}
  2094  		if high != nil {
  2095  			j = s.extendIndex(s.expr(high), panicslice)
  2096  		}
  2097  		if max != nil {
  2098  			k = s.extendIndex(s.expr(max), panicslice)
  2099  		}
  2100  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2101  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2102  
  2103  	case OSLICESTR:
  2104  		v := s.expr(n.Left)
  2105  		var i, j *ssa.Value
  2106  		low, high, _ := n.SliceBounds()
  2107  		if low != nil {
  2108  			i = s.extendIndex(s.expr(low), panicslice)
  2109  		}
  2110  		if high != nil {
  2111  			j = s.extendIndex(s.expr(high), panicslice)
  2112  		}
  2113  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2114  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2115  
  2116  	case OCALLFUNC:
  2117  		if isIntrinsicCall(n) {
  2118  			return s.intrinsicCall(n)
  2119  		}
  2120  		fallthrough
  2121  
  2122  	case OCALLINTER, OCALLMETH:
  2123  		a := s.call(n, callNormal)
  2124  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2125  
  2126  	case OGETG:
  2127  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2128  
  2129  	case OAPPEND:
  2130  		return s.append(n, false)
  2131  
  2132  	default:
  2133  		s.Unimplementedf("unhandled expr %s", n.Op)
  2134  		return nil
  2135  	}
  2136  }
  2137  
  2138  // append converts an OAPPEND node to SSA.
  2139  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2140  // adds it to s, and returns the Value.
  2141  // If inplace is true, it writes the result of the OAPPEND expression n
  2142  // back to the slice being appended to, and returns nil.
  2143  // inplace MUST be set to false if the slice can be SSA'd.
  2144  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2145  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2146  	//
  2147  	// ptr, len, cap := s
  2148  	// newlen := len + 3
  2149  	// if newlen > cap {
  2150  	//     ptr, len, cap = growslice(s, newlen)
  2151  	//     newlen = len + 3 // recalculate to avoid a spill
  2152  	// }
  2153  	// // with write barriers, if needed:
  2154  	// *(ptr+len) = e1
  2155  	// *(ptr+len+1) = e2
  2156  	// *(ptr+len+2) = e3
  2157  	// return makeslice(ptr, newlen, cap)
  2158  	//
  2159  	//
  2160  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2161  	//
  2162  	// a := &s
  2163  	// ptr, len, cap := s
  2164  	// newlen := len + 3
  2165  	// if newlen > cap {
  2166  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2167  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2168  	//    *a.cap = newcap // write before ptr to avoid a spill
  2169  	//    *a.ptr = newptr // with write barrier
  2170  	// }
  2171  	// newlen = len + 3 // recalculate to avoid a spill
  2172  	// *a.len = newlen
  2173  	// // with write barriers, if needed:
  2174  	// *(ptr+len) = e1
  2175  	// *(ptr+len+1) = e2
  2176  	// *(ptr+len+2) = e3
  2177  
  2178  	et := n.Type.Elem()
  2179  	pt := Ptrto(et)
  2180  
  2181  	// Evaluate slice
  2182  	sn := n.List.First() // the slice node is the first in the list
  2183  
  2184  	var slice, addr *ssa.Value
  2185  	if inplace {
  2186  		addr, _ = s.addr(sn, false)
  2187  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2188  	} else {
  2189  		slice = s.expr(sn)
  2190  	}
  2191  
  2192  	// Allocate new blocks
  2193  	grow := s.f.NewBlock(ssa.BlockPlain)
  2194  	assign := s.f.NewBlock(ssa.BlockPlain)
  2195  
  2196  	// Decide if we need to grow
  2197  	nargs := int64(n.List.Len() - 1)
  2198  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2199  	l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  2200  	c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
  2201  	nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2202  
  2203  	cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
  2204  	s.vars[&ptrVar] = p
  2205  
  2206  	if !inplace {
  2207  		s.vars[&newlenVar] = nl
  2208  		s.vars[&capVar] = c
  2209  	} else {
  2210  		s.vars[&lenVar] = l
  2211  	}
  2212  
  2213  	b := s.endBlock()
  2214  	b.Kind = ssa.BlockIf
  2215  	b.Likely = ssa.BranchUnlikely
  2216  	b.SetControl(cmp)
  2217  	b.AddEdgeTo(grow)
  2218  	b.AddEdgeTo(assign)
  2219  
  2220  	// Call growslice
  2221  	s.startBlock(grow)
  2222  	taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb)
  2223  
  2224  	r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)
  2225  
  2226  	if inplace {
  2227  		if sn.Op == ONAME {
  2228  			// Tell liveness we're about to build a new slice
  2229  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
  2230  		}
  2231  		capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_cap), addr)
  2232  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
  2233  		s.insertWBstore(pt, addr, r[0], n.Lineno, 0)
  2234  		// load the value we just stored to avoid having to spill it
  2235  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2236  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2237  	} else {
  2238  		s.vars[&ptrVar] = r[0]
  2239  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs))
  2240  		s.vars[&capVar] = r[2]
  2241  	}
  2242  
  2243  	b = s.endBlock()
  2244  	b.AddEdgeTo(assign)
  2245  
  2246  	// assign new elements to slots
  2247  	s.startBlock(assign)
  2248  
  2249  	if inplace {
  2250  		l = s.variable(&lenVar, Types[TINT]) // generates phi for len
  2251  		nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2252  		lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_nel), addr)
  2253  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem())
  2254  	}
  2255  
  2256  	// Evaluate args
  2257  	type argRec struct {
  2258  		// if store is true, we're appending the value v.  If false, we're appending the
  2259  		// value at *v.  If store==false, isVolatile reports whether the source
  2260  		// is in the outargs section of the stack frame.
  2261  		v          *ssa.Value
  2262  		store      bool
  2263  		isVolatile bool
  2264  	}
  2265  	args := make([]argRec, 0, nargs)
  2266  	for _, n := range n.List.Slice()[1:] {
  2267  		if canSSAType(n.Type) {
  2268  			args = append(args, argRec{v: s.expr(n), store: true})
  2269  		} else {
  2270  			v, isVolatile := s.addr(n, false)
  2271  			args = append(args, argRec{v: v, isVolatile: isVolatile})
  2272  		}
  2273  	}
  2274  
  2275  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2276  	if !inplace {
  2277  		nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl
  2278  		c = s.variable(&capVar, Types[TINT])     // generates phi for cap
  2279  	}
  2280  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2281  	// TODO: just one write barrier call for all of these writes?
  2282  	// TODO: maybe just one writeBarrier.enabled check?
  2283  	for i, arg := range args {
  2284  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
  2285  		if arg.store {
  2286  			if haspointers(et) {
  2287  				s.insertWBstore(et, addr, arg.v, n.Lineno, 0)
  2288  			} else {
  2289  				s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2290  			}
  2291  		} else {
  2292  			if haspointers(et) {
  2293  				s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile)
  2294  			} else {
  2295  				s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(et), addr, arg.v, s.mem())
  2296  			}
  2297  		}
  2298  	}
  2299  
  2300  	delete(s.vars, &ptrVar)
  2301  	if inplace {
  2302  		delete(s.vars, &lenVar)
  2303  		return nil
  2304  	}
  2305  	delete(s.vars, &newlenVar)
  2306  	delete(s.vars, &capVar)
  2307  	// make result
  2308  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2309  }
  2310  
  2311  // condBranch evaluates the boolean expression cond and branches to yes
  2312  // if cond is true and no if cond is false.
  2313  // This function is intended to handle && and || better than just calling
  2314  // s.expr(cond) and branching on the result.
  2315  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2316  	if cond.Op == OANDAND {
  2317  		mid := s.f.NewBlock(ssa.BlockPlain)
  2318  		s.stmtList(cond.Ninit)
  2319  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2320  		s.startBlock(mid)
  2321  		s.condBranch(cond.Right, yes, no, likely)
  2322  		return
  2323  		// Note: if likely==1, then both recursive calls pass 1.
  2324  		// If likely==-1, then we don't have enough information to decide
  2325  		// whether the first branch is likely or not. So we pass 0 for
  2326  		// the likeliness of the first branch.
  2327  		// TODO: have the frontend give us branch prediction hints for
  2328  		// OANDAND and OOROR nodes (if it ever has such info).
  2329  	}
  2330  	if cond.Op == OOROR {
  2331  		mid := s.f.NewBlock(ssa.BlockPlain)
  2332  		s.stmtList(cond.Ninit)
  2333  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2334  		s.startBlock(mid)
  2335  		s.condBranch(cond.Right, yes, no, likely)
  2336  		return
  2337  		// Note: if likely==-1, then both recursive calls pass -1.
  2338  		// If likely==1, then we don't have enough info to decide
  2339  		// the likelihood of the first branch.
  2340  	}
  2341  	if cond.Op == ONOT {
  2342  		s.stmtList(cond.Ninit)
  2343  		s.condBranch(cond.Left, no, yes, -likely)
  2344  		return
  2345  	}
  2346  	c := s.expr(cond)
  2347  	b := s.endBlock()
  2348  	b.Kind = ssa.BlockIf
  2349  	b.SetControl(c)
  2350  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2351  	b.AddEdgeTo(yes)
  2352  	b.AddEdgeTo(no)
  2353  }
  2354  
  2355  type skipMask uint8
  2356  
  2357  const (
  2358  	skipPtr skipMask = 1 << iota
  2359  	skipLen
  2360  	skipCap
  2361  )
  2362  
  2363  // assign does left = right.
  2364  // Right has already been evaluated to ssa, left has not.
  2365  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2366  // If deref is true and right == nil, just do left = 0.
  2367  // If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage.
  2368  // Include a write barrier if wb is true.
  2369  // skip indicates assignments (at the top level) that can be avoided.
  2370  func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) {
  2371  	if left.Op == ONAME && isblank(left) {
  2372  		return
  2373  	}
  2374  	t := left.Type
  2375  	dowidth(t)
  2376  	if s.canSSA(left) {
  2377  		if deref {
  2378  			s.Fatalf("can SSA LHS %s but not RHS %s", left, right)
  2379  		}
  2380  		if left.Op == ODOT {
  2381  			// We're assigning to a field of an ssa-able value.
  2382  			// We need to build a new structure with the new value for the
  2383  			// field we're assigning and the old values for the other fields.
  2384  			// For instance:
  2385  			//   type T struct {a, b, c int}
  2386  			//   var T x
  2387  			//   x.b = 5
  2388  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2389  
  2390  			// Grab information about the structure type.
  2391  			t := left.Left.Type
  2392  			nf := t.NumFields()
  2393  			idx := fieldIdx(left)
  2394  
  2395  			// Grab old value of structure.
  2396  			old := s.expr(left.Left)
  2397  
  2398  			// Make new structure.
  2399  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2400  
  2401  			// Add fields as args.
  2402  			for i := 0; i < nf; i++ {
  2403  				if i == idx {
  2404  					new.AddArg(right)
  2405  				} else {
  2406  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2407  				}
  2408  			}
  2409  
  2410  			// Recursively assign the new value we've made to the base of the dot op.
  2411  			s.assign(left.Left, new, false, false, line, 0, rightIsVolatile)
  2412  			// TODO: do we need to update named values here?
  2413  			return
  2414  		}
  2415  		// Update variable assignment.
  2416  		s.vars[left] = right
  2417  		s.addNamedValue(left, right)
  2418  		return
  2419  	}
  2420  	// Left is not ssa-able. Compute its address.
  2421  	addr, _ := s.addr(left, false)
  2422  	if left.Op == ONAME && skip == 0 {
  2423  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
  2424  	}
  2425  	if deref {
  2426  		// Treat as a mem->mem move.
  2427  		if right == nil {
  2428  			s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, SizeAlignAuxInt(t), addr, s.mem())
  2429  			return
  2430  		}
  2431  		if wb {
  2432  			s.insertWBmove(t, addr, right, line, rightIsVolatile)
  2433  			return
  2434  		}
  2435  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), addr, right, s.mem())
  2436  		return
  2437  	}
  2438  	// Treat as a store.
  2439  	if wb {
  2440  		if skip&skipPtr != 0 {
  2441  			// Special case: if we don't write back the pointers, don't bother
  2442  			// doing the write barrier check.
  2443  			s.storeTypeScalars(t, addr, right, skip)
  2444  			return
  2445  		}
  2446  		s.insertWBstore(t, addr, right, line, skip)
  2447  		return
  2448  	}
  2449  	if skip != 0 {
  2450  		if skip&skipPtr == 0 {
  2451  			s.storeTypePtrs(t, addr, right)
  2452  		}
  2453  		s.storeTypeScalars(t, addr, right, skip)
  2454  		return
  2455  	}
  2456  	s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2457  }
  2458  
  2459  // zeroVal returns the zero value for type t.
  2460  func (s *state) zeroVal(t *Type) *ssa.Value {
  2461  	switch {
  2462  	case t.IsInteger():
  2463  		switch t.Size() {
  2464  		case 1:
  2465  			return s.constInt8(t, 0)
  2466  		case 2:
  2467  			return s.constInt16(t, 0)
  2468  		case 4:
  2469  			return s.constInt32(t, 0)
  2470  		case 8:
  2471  			return s.constInt64(t, 0)
  2472  		default:
  2473  			s.Fatalf("bad sized integer type %s", t)
  2474  		}
  2475  	case t.IsFloat():
  2476  		switch t.Size() {
  2477  		case 4:
  2478  			return s.constFloat32(t, 0)
  2479  		case 8:
  2480  			return s.constFloat64(t, 0)
  2481  		default:
  2482  			s.Fatalf("bad sized float type %s", t)
  2483  		}
  2484  	case t.IsComplex():
  2485  		switch t.Size() {
  2486  		case 8:
  2487  			z := s.constFloat32(Types[TFLOAT32], 0)
  2488  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2489  		case 16:
  2490  			z := s.constFloat64(Types[TFLOAT64], 0)
  2491  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2492  		default:
  2493  			s.Fatalf("bad sized complex type %s", t)
  2494  		}
  2495  
  2496  	case t.IsString():
  2497  		return s.constEmptyString(t)
  2498  	case t.IsPtrShaped():
  2499  		return s.constNil(t)
  2500  	case t.IsBoolean():
  2501  		return s.constBool(false)
  2502  	case t.IsInterface():
  2503  		return s.constInterface(t)
  2504  	case t.IsSlice():
  2505  		return s.constSlice(t)
  2506  	case t.IsStruct():
  2507  		n := t.NumFields()
  2508  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2509  		for i := 0; i < n; i++ {
  2510  			v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
  2511  		}
  2512  		return v
  2513  	}
  2514  	s.Unimplementedf("zero for type %v not implemented", t)
  2515  	return nil
  2516  }
  2517  
  2518  type callKind int8
  2519  
  2520  const (
  2521  	callNormal callKind = iota
  2522  	callDefer
  2523  	callGo
  2524  )
  2525  
  2526  // isSSAIntrinsic returns true if n is a call to a recognized intrinsic
  2527  // that can be handled by the SSA backend.
  2528  // SSA uses this, but so does the front end to see if should not
  2529  // inline a function because it is a candidate for intrinsic
  2530  // substitution.
  2531  func isSSAIntrinsic(s *Sym) bool {
  2532  	// The test below is not quite accurate -- in the event that
  2533  	// a function is disabled on a per-function basis, for example
  2534  	// because of hash-keyed binary failure search, SSA might be
  2535  	// disabled for that function but it would not be noted here,
  2536  	// and thus an inlining would not occur (in practice, inlining
  2537  	// so far has only been noticed for Bswap32 and the 16-bit count
  2538  	// leading/trailing instructions, but heuristics might change
  2539  	// in the future or on different architectures).
  2540  	if !ssaEnabled || ssa.IntrinsicsDisable || Thearch.LinkArch.Family != sys.AMD64 {
  2541  		return false
  2542  	}
  2543  	if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/sys" {
  2544  		switch s.Name {
  2545  		case
  2546  			"Ctz64", "Ctz32",
  2547  			"Bswap64", "Bswap32":
  2548  			return true
  2549  		}
  2550  	}
  2551  	if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/atomic" {
  2552  		switch s.Name {
  2553  		case "Load", "Load64", "Loadint64", "Loadp", "Loaduint", "Loaduintptr":
  2554  			return true
  2555  		case "Store", "Store64", "StorepNoWB", "Storeuintptr":
  2556  			return true
  2557  		}
  2558  	}
  2559  	return false
  2560  }
  2561  
  2562  func isIntrinsicCall(n *Node) bool {
  2563  	if n == nil || n.Left == nil {
  2564  		return false
  2565  	}
  2566  	return isSSAIntrinsic(n.Left.Sym)
  2567  }
  2568  
  2569  // intrinsicArg extracts the ith arg from n.List and returns its value.
  2570  func (s *state) intrinsicArg(n *Node, i int) *ssa.Value {
  2571  	x := n.List.Slice()[i]
  2572  	if x.Op == OAS {
  2573  		x = x.Right
  2574  	}
  2575  	return s.expr(x)
  2576  }
  2577  func (s *state) intrinsicFirstArg(n *Node) *ssa.Value {
  2578  	return s.intrinsicArg(n, 0)
  2579  }
  2580  
  2581  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  2582  func (s *state) intrinsicCall(n *Node) (ret *ssa.Value) {
  2583  	var result *ssa.Value
  2584  	name := n.Left.Sym.Name
  2585  	switch {
  2586  	case name == "Ctz64":
  2587  		result = s.newValue1(ssa.OpCtz64, Types[TUINT64], s.intrinsicFirstArg(n))
  2588  		ret = result
  2589  	case name == "Ctz32":
  2590  		result = s.newValue1(ssa.OpCtz32, Types[TUINT32], s.intrinsicFirstArg(n))
  2591  		ret = result
  2592  	case name == "Bswap64":
  2593  		result = s.newValue1(ssa.OpBswap64, Types[TUINT64], s.intrinsicFirstArg(n))
  2594  		ret = result
  2595  	case name == "Bswap32":
  2596  		result = s.newValue1(ssa.OpBswap32, Types[TUINT32], s.intrinsicFirstArg(n))
  2597  		ret = result
  2598  	case name == "Load" || name == "Loaduint" && s.config.IntSize == 4 || name == "Loaduintptr" && s.config.PtrSize == 4:
  2599  		result = s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2600  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2601  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT32], result)
  2602  	case name == "Load64" || name == "Loadint64" || name == "Loaduint" && s.config.IntSize == 8 || name == "Loaduintptr" && s.config.PtrSize == 8:
  2603  		result = s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2604  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2605  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT64], result)
  2606  	case name == "Loadp":
  2607  		result = s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(Ptrto(Types[TUINT8]), ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2608  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2609  		ret = s.newValue1(ssa.OpSelect0, Ptrto(Types[TUINT8]), result)
  2610  	case name == "Store" || name == "Storeuintptr" && s.config.PtrSize == 4:
  2611  		result = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2612  		s.vars[&memVar] = result
  2613  	case name == "Store64" || name == "Storeuintptr" && s.config.PtrSize == 8:
  2614  		result = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2615  		s.vars[&memVar] = result
  2616  	case name == "StorepNoWB":
  2617  		result = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2618  		s.vars[&memVar] = result
  2619  	}
  2620  	if result == nil {
  2621  		Fatalf("Unknown special call: %v", n.Left.Sym)
  2622  	}
  2623  	if ssa.IntrinsicsDebug > 0 {
  2624  		Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, result.LongString())
  2625  	}
  2626  	return
  2627  }
  2628  
  2629  // Calls the function n using the specified call type.
  2630  // Returns the address of the return value (or nil if none).
  2631  func (s *state) call(n *Node, k callKind) *ssa.Value {
  2632  	var sym *Sym           // target symbol (if static)
  2633  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  2634  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  2635  	var rcvr *ssa.Value    // receiver to set
  2636  	fn := n.Left
  2637  	switch n.Op {
  2638  	case OCALLFUNC:
  2639  		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
  2640  			sym = fn.Sym
  2641  			break
  2642  		}
  2643  		closure = s.expr(fn)
  2644  	case OCALLMETH:
  2645  		if fn.Op != ODOTMETH {
  2646  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  2647  		}
  2648  		if k == callNormal {
  2649  			sym = fn.Sym
  2650  			break
  2651  		}
  2652  		n2 := newname(fn.Sym)
  2653  		n2.Class = PFUNC
  2654  		n2.Lineno = fn.Lineno
  2655  		closure = s.expr(n2)
  2656  		// Note: receiver is already assigned in n.List, so we don't
  2657  		// want to set it here.
  2658  	case OCALLINTER:
  2659  		if fn.Op != ODOTINTER {
  2660  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  2661  		}
  2662  		i := s.expr(fn.Left)
  2663  		itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
  2664  		if k != callNormal {
  2665  			s.nilCheck(itab)
  2666  		}
  2667  		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  2668  		itab = s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), itabidx, itab)
  2669  		if k == callNormal {
  2670  			codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
  2671  		} else {
  2672  			closure = itab
  2673  		}
  2674  		rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
  2675  	}
  2676  	dowidth(fn.Type)
  2677  	stksize := fn.Type.ArgWidth() // includes receiver
  2678  
  2679  	// Run all argument assignments. The arg slots have already
  2680  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  2681  	// +widthptr for interface calls).
  2682  	// For OCALLMETH, the receiver is set in these statements.
  2683  	s.stmtList(n.List)
  2684  
  2685  	// Set receiver (for interface calls)
  2686  	if rcvr != nil {
  2687  		argStart := Ctxt.FixedFrameSize()
  2688  		if k != callNormal {
  2689  			argStart += int64(2 * Widthptr)
  2690  		}
  2691  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart, s.sp)
  2692  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
  2693  	}
  2694  
  2695  	// Defer/go args
  2696  	if k != callNormal {
  2697  		// Write argsize and closure (args to Newproc/Deferproc).
  2698  		argStart := Ctxt.FixedFrameSize()
  2699  		argsize := s.constInt32(Types[TUINT32], int32(stksize))
  2700  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT32]), argStart, s.sp)
  2701  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem())
  2702  		addr = s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart+int64(Widthptr), s.sp)
  2703  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
  2704  		stksize += 2 * int64(Widthptr)
  2705  	}
  2706  
  2707  	// call target
  2708  	bNext := s.f.NewBlock(ssa.BlockPlain)
  2709  	var call *ssa.Value
  2710  	switch {
  2711  	case k == callDefer:
  2712  		call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem())
  2713  	case k == callGo:
  2714  		call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem())
  2715  	case closure != nil:
  2716  		codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
  2717  		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
  2718  	case codeptr != nil:
  2719  		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
  2720  	case sym != nil:
  2721  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem())
  2722  	default:
  2723  		Fatalf("bad call type %s %v", n.Op, n)
  2724  	}
  2725  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  2726  
  2727  	// Finish call block
  2728  	s.vars[&memVar] = call
  2729  	b := s.endBlock()
  2730  	b.Kind = ssa.BlockCall
  2731  	b.SetControl(call)
  2732  	b.AddEdgeTo(bNext)
  2733  	if k == callDefer {
  2734  		// Add recover edge to exit code.
  2735  		b.Kind = ssa.BlockDefer
  2736  		r := s.f.NewBlock(ssa.BlockPlain)
  2737  		s.startBlock(r)
  2738  		s.exit()
  2739  		b.AddEdgeTo(r)
  2740  		b.Likely = ssa.BranchLikely
  2741  	}
  2742  
  2743  	// Start exit block, find address of result.
  2744  	s.startBlock(bNext)
  2745  	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
  2746  	for _, n := range s.ptrargs {
  2747  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  2748  	}
  2749  	res := n.Left.Type.Results()
  2750  	if res.NumFields() == 0 || k != callNormal {
  2751  		// call has no return value. Continue with the next statement.
  2752  		return nil
  2753  	}
  2754  	fp := res.Field(0)
  2755  	return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp)
  2756  }
  2757  
  2758  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  2759  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  2760  func etypesign(e EType) int8 {
  2761  	switch e {
  2762  	case TINT8, TINT16, TINT32, TINT64, TINT:
  2763  		return -1
  2764  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  2765  		return +1
  2766  	}
  2767  	return 0
  2768  }
  2769  
  2770  // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
  2771  // This improves the effectiveness of cse by using the same Aux values for the
  2772  // same symbols.
  2773  func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
  2774  	switch sym.(type) {
  2775  	default:
  2776  		s.Fatalf("sym %v is of uknown type %T", sym, sym)
  2777  	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
  2778  		// these are the only valid types
  2779  	}
  2780  
  2781  	if lsym, ok := s.varsyms[n]; ok {
  2782  		return lsym
  2783  	} else {
  2784  		s.varsyms[n] = sym
  2785  		return sym
  2786  	}
  2787  }
  2788  
  2789  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  2790  // Also returns a bool reporting whether the returned value is "volatile", that is it
  2791  // points to the outargs section and thus the referent will be clobbered by any call.
  2792  // The value that the returned Value represents is guaranteed to be non-nil.
  2793  // If bounded is true then this address does not require a nil check for its operand
  2794  // even if that would otherwise be implied.
  2795  func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) {
  2796  	t := Ptrto(n.Type)
  2797  	switch n.Op {
  2798  	case ONAME:
  2799  		switch n.Class {
  2800  		case PEXTERN:
  2801  			// global variable
  2802  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym})
  2803  			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
  2804  			// TODO: Make OpAddr use AuxInt as well as Aux.
  2805  			if n.Xoffset != 0 {
  2806  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  2807  			}
  2808  			return v, false
  2809  		case PPARAM:
  2810  			// parameter slot
  2811  			v := s.decladdrs[n]
  2812  			if v != nil {
  2813  				return v, false
  2814  			}
  2815  			if n.String() == ".fp" {
  2816  				// Special arg that points to the frame pointer.
  2817  				// (Used by the race detector, others?)
  2818  				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  2819  				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false
  2820  			}
  2821  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  2822  			return nil, false
  2823  		case PAUTO:
  2824  			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
  2825  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  2826  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  2827  			// ensure that we reuse symbols for out parameters so
  2828  			// that cse works on their addresses
  2829  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  2830  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  2831  		default:
  2832  			s.Unimplementedf("variable address class %v not implemented", classnames[n.Class])
  2833  			return nil, false
  2834  		}
  2835  	case OINDREG:
  2836  		// indirect off a register
  2837  		// used for storing/loading arguments/returns to/from callees
  2838  		if int(n.Reg) != Thearch.REGSP {
  2839  			s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n)
  2840  			return nil, false
  2841  		}
  2842  		return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true
  2843  	case OINDEX:
  2844  		if n.Left.Type.IsSlice() {
  2845  			a := s.expr(n.Left)
  2846  			i := s.expr(n.Right)
  2847  			i = s.extendIndex(i, Panicindex)
  2848  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
  2849  			if !n.Bounded {
  2850  				s.boundsCheck(i, len)
  2851  			}
  2852  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  2853  			return s.newValue2(ssa.OpPtrIndex, t, p, i), false
  2854  		} else { // array
  2855  			a, isVolatile := s.addr(n.Left, bounded)
  2856  			i := s.expr(n.Right)
  2857  			i = s.extendIndex(i, Panicindex)
  2858  			len := s.constInt(Types[TINT], n.Left.Type.NumElem())
  2859  			if !n.Bounded {
  2860  				s.boundsCheck(i, len)
  2861  			}
  2862  			return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Elem()), a, i), isVolatile
  2863  		}
  2864  	case OIND:
  2865  		return s.exprPtr(n.Left, bounded, n.Lineno), false
  2866  	case ODOT:
  2867  		p, isVolatile := s.addr(n.Left, bounded)
  2868  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile
  2869  	case ODOTPTR:
  2870  		p := s.exprPtr(n.Left, bounded, n.Lineno)
  2871  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false
  2872  	case OCLOSUREVAR:
  2873  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  2874  			s.entryNewValue0(ssa.OpGetClosurePtr, Ptrto(Types[TUINT8]))), false
  2875  	case OCONVNOP:
  2876  		addr, isVolatile := s.addr(n.Left, bounded)
  2877  		return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type
  2878  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  2879  		return s.call(n, callNormal), true
  2880  
  2881  	default:
  2882  		s.Unimplementedf("unhandled addr %v", n.Op)
  2883  		return nil, false
  2884  	}
  2885  }
  2886  
  2887  // canSSA reports whether n is SSA-able.
  2888  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  2889  func (s *state) canSSA(n *Node) bool {
  2890  	if Debug['N'] != 0 {
  2891  		return false
  2892  	}
  2893  	for n.Op == ODOT {
  2894  		n = n.Left
  2895  	}
  2896  	if n.Op != ONAME {
  2897  		return false
  2898  	}
  2899  	if n.Addrtaken {
  2900  		return false
  2901  	}
  2902  	if n.isParamHeapCopy() {
  2903  		return false
  2904  	}
  2905  	if n.Class == PAUTOHEAP {
  2906  		Fatalf("canSSA of PAUTOHEAP %v", n)
  2907  	}
  2908  	switch n.Class {
  2909  	case PEXTERN:
  2910  		return false
  2911  	case PPARAMOUT:
  2912  		if hasdefer {
  2913  			// TODO: handle this case?  Named return values must be
  2914  			// in memory so that the deferred function can see them.
  2915  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  2916  			return false
  2917  		}
  2918  		if s.cgoUnsafeArgs {
  2919  			// Cgo effectively takes the address of all result args,
  2920  			// but the compiler can't see that.
  2921  			return false
  2922  		}
  2923  	}
  2924  	if n.Class == PPARAM && n.String() == ".this" {
  2925  		// wrappers generated by genwrapper need to update
  2926  		// the .this pointer in place.
  2927  		// TODO: treat as a PPARMOUT?
  2928  		return false
  2929  	}
  2930  	return canSSAType(n.Type)
  2931  	// TODO: try to make more variables SSAable?
  2932  }
  2933  
  2934  // canSSA reports whether variables of type t are SSA-able.
  2935  func canSSAType(t *Type) bool {
  2936  	dowidth(t)
  2937  	if t.Width > int64(4*Widthptr) {
  2938  		// 4*Widthptr is an arbitrary constant. We want it
  2939  		// to be at least 3*Widthptr so slices can be registerized.
  2940  		// Too big and we'll introduce too much register pressure.
  2941  		return false
  2942  	}
  2943  	switch t.Etype {
  2944  	case TARRAY:
  2945  		// We can't do arrays because dynamic indexing is
  2946  		// not supported on SSA variables.
  2947  		// TODO: maybe allow if length is <=1?  All indexes
  2948  		// are constant?  Might be good for the arrays
  2949  		// introduced by the compiler for variadic functions.
  2950  		return false
  2951  	case TSTRUCT:
  2952  		if t.NumFields() > ssa.MaxStruct {
  2953  			return false
  2954  		}
  2955  		for _, t1 := range t.Fields().Slice() {
  2956  			if !canSSAType(t1.Type) {
  2957  				return false
  2958  			}
  2959  		}
  2960  		return true
  2961  	default:
  2962  		return true
  2963  	}
  2964  }
  2965  
  2966  // exprPtr evaluates n to a pointer and nil-checks it.
  2967  func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value {
  2968  	p := s.expr(n)
  2969  	if bounded || n.NonNil {
  2970  		if s.f.Config.Debug_checknil() && lineno > 1 {
  2971  			s.f.Config.Warnl(lineno, "removed nil check")
  2972  		}
  2973  		return p
  2974  	}
  2975  	s.nilCheck(p)
  2976  	return p
  2977  }
  2978  
  2979  // nilCheck generates nil pointer checking code.
  2980  // Starts a new block on return, unless nil checks are disabled.
  2981  // Used only for automatically inserted nil checks,
  2982  // not for user code like 'x != nil'.
  2983  func (s *state) nilCheck(ptr *ssa.Value) {
  2984  	if Disable_checknil != 0 {
  2985  		return
  2986  	}
  2987  	chk := s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
  2988  	b := s.endBlock()
  2989  	b.Kind = ssa.BlockCheck
  2990  	b.SetControl(chk)
  2991  	bNext := s.f.NewBlock(ssa.BlockPlain)
  2992  	b.AddEdgeTo(bNext)
  2993  	s.startBlock(bNext)
  2994  }
  2995  
  2996  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  2997  // Starts a new block on return.
  2998  // idx is already converted to full int width.
  2999  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3000  	if Debug['B'] != 0 {
  3001  		return
  3002  	}
  3003  
  3004  	// bounds check
  3005  	cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
  3006  	s.check(cmp, Panicindex)
  3007  }
  3008  
  3009  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3010  // Starts a new block on return.
  3011  // idx and len are already converted to full int width.
  3012  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3013  	if Debug['B'] != 0 {
  3014  		return
  3015  	}
  3016  
  3017  	// bounds check
  3018  	cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
  3019  	s.check(cmp, panicslice)
  3020  }
  3021  
  3022  // If cmp (a bool) is false, panic using the given function.
  3023  func (s *state) check(cmp *ssa.Value, fn *Node) {
  3024  	b := s.endBlock()
  3025  	b.Kind = ssa.BlockIf
  3026  	b.SetControl(cmp)
  3027  	b.Likely = ssa.BranchLikely
  3028  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3029  	line := s.peekLine()
  3030  	bPanic := s.panics[funcLine{fn, line}]
  3031  	if bPanic == nil {
  3032  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3033  		s.panics[funcLine{fn, line}] = bPanic
  3034  		s.startBlock(bPanic)
  3035  		// The panic call takes/returns memory to ensure that the right
  3036  		// memory state is observed if the panic happens.
  3037  		s.rtcall(fn, false, nil)
  3038  	}
  3039  	b.AddEdgeTo(bNext)
  3040  	b.AddEdgeTo(bPanic)
  3041  	s.startBlock(bNext)
  3042  }
  3043  
  3044  // rtcall issues a call to the given runtime function fn with the listed args.
  3045  // Returns a slice of results of the given result types.
  3046  // The call is added to the end of the current block.
  3047  // If returns is false, the block is marked as an exit block.
  3048  // If returns is true, the block is marked as a call block. A new block
  3049  // is started to load the return values.
  3050  func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
  3051  	// Write args to the stack
  3052  	off := Ctxt.FixedFrameSize()
  3053  	for _, arg := range args {
  3054  		t := arg.Type
  3055  		off = Rnd(off, t.Alignment())
  3056  		ptr := s.sp
  3057  		if off != 0 {
  3058  			ptr = s.newValue1I(ssa.OpOffPtr, t.PtrTo(), off, s.sp)
  3059  		}
  3060  		size := t.Size()
  3061  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
  3062  		off += size
  3063  	}
  3064  	off = Rnd(off, int64(Widthptr))
  3065  	if Thearch.LinkArch.Name == "amd64p32" {
  3066  		// amd64p32 wants 8-byte alignment of the start of the return values.
  3067  		off = Rnd(off, 8)
  3068  	}
  3069  
  3070  	// Issue call
  3071  	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem())
  3072  	s.vars[&memVar] = call
  3073  
  3074  	// Finish block
  3075  	b := s.endBlock()
  3076  	if !returns {
  3077  		b.Kind = ssa.BlockExit
  3078  		b.SetControl(call)
  3079  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3080  		if len(results) > 0 {
  3081  			Fatalf("panic call can't have results")
  3082  		}
  3083  		return nil
  3084  	}
  3085  	b.Kind = ssa.BlockCall
  3086  	b.SetControl(call)
  3087  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3088  	b.AddEdgeTo(bNext)
  3089  	s.startBlock(bNext)
  3090  
  3091  	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
  3092  	for _, n := range s.ptrargs {
  3093  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  3094  	}
  3095  
  3096  	// Load results
  3097  	res := make([]*ssa.Value, len(results))
  3098  	for i, t := range results {
  3099  		off = Rnd(off, t.Alignment())
  3100  		ptr := s.sp
  3101  		if off != 0 {
  3102  			ptr = s.newValue1I(ssa.OpOffPtr, Ptrto(t), off, s.sp)
  3103  		}
  3104  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3105  		off += t.Size()
  3106  	}
  3107  	off = Rnd(off, int64(Widthptr))
  3108  
  3109  	// Remember how much callee stack space we needed.
  3110  	call.AuxInt = off
  3111  
  3112  	return res
  3113  }
  3114  
  3115  // insertWBmove inserts the assignment *left = *right including a write barrier.
  3116  // t is the type being assigned.
  3117  func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) {
  3118  	// if writeBarrier.enabled {
  3119  	//   typedmemmove(&t, left, right)
  3120  	// } else {
  3121  	//   *left = *right
  3122  	// }
  3123  
  3124  	if s.noWB {
  3125  		s.Fatalf("write barrier prohibited")
  3126  	}
  3127  	if s.WBLineno == 0 {
  3128  		s.WBLineno = left.Line
  3129  	}
  3130  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3131  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3132  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3133  
  3134  	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
  3135  	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
  3136  	// Load word, test word, avoiding partial register write from load byte.
  3137  	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
  3138  	flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
  3139  	b := s.endBlock()
  3140  	b.Kind = ssa.BlockIf
  3141  	b.Likely = ssa.BranchUnlikely
  3142  	b.SetControl(flag)
  3143  	b.AddEdgeTo(bThen)
  3144  	b.AddEdgeTo(bElse)
  3145  
  3146  	s.startBlock(bThen)
  3147  
  3148  	if !rightIsVolatile {
  3149  		// Issue typedmemmove call.
  3150  		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
  3151  		s.rtcall(typedmemmove, true, nil, taddr, left, right)
  3152  	} else {
  3153  		// Copy to temp location if the source is volatile (will be clobbered by
  3154  		// a function call).  Marshaling the args to typedmemmove might clobber the
  3155  		// value we're trying to move.
  3156  		tmp := temp(t)
  3157  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
  3158  		tmpaddr, _ := s.addr(tmp, true)
  3159  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), tmpaddr, right, s.mem())
  3160  		// Issue typedmemmove call.
  3161  		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
  3162  		s.rtcall(typedmemmove, true, nil, taddr, left, tmpaddr)
  3163  		// Mark temp as dead.
  3164  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
  3165  	}
  3166  	s.endBlock().AddEdgeTo(bEnd)
  3167  
  3168  	s.startBlock(bElse)
  3169  	s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), left, right, s.mem())
  3170  	s.endBlock().AddEdgeTo(bEnd)
  3171  
  3172  	s.startBlock(bEnd)
  3173  
  3174  	if Debug_wb > 0 {
  3175  		Warnl(line, "write barrier")
  3176  	}
  3177  }
  3178  
  3179  // insertWBstore inserts the assignment *left = right including a write barrier.
  3180  // t is the type being assigned.
  3181  func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) {
  3182  	// store scalar fields
  3183  	// if writeBarrier.enabled {
  3184  	//   writebarrierptr for pointer fields
  3185  	// } else {
  3186  	//   store pointer fields
  3187  	// }
  3188  
  3189  	if s.noWB {
  3190  		s.Fatalf("write barrier prohibited")
  3191  	}
  3192  	if s.WBLineno == 0 {
  3193  		s.WBLineno = left.Line
  3194  	}
  3195  	s.storeTypeScalars(t, left, right, skip)
  3196  
  3197  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3198  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3199  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3200  
  3201  	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
  3202  	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
  3203  	// Load word, test word, avoiding partial register write from load byte.
  3204  	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
  3205  	flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
  3206  	b := s.endBlock()
  3207  	b.Kind = ssa.BlockIf
  3208  	b.Likely = ssa.BranchUnlikely
  3209  	b.SetControl(flag)
  3210  	b.AddEdgeTo(bThen)
  3211  	b.AddEdgeTo(bElse)
  3212  
  3213  	// Issue write barriers for pointer writes.
  3214  	s.startBlock(bThen)
  3215  	s.storeTypePtrsWB(t, left, right)
  3216  	s.endBlock().AddEdgeTo(bEnd)
  3217  
  3218  	// Issue regular stores for pointer writes.
  3219  	s.startBlock(bElse)
  3220  	s.storeTypePtrs(t, left, right)
  3221  	s.endBlock().AddEdgeTo(bEnd)
  3222  
  3223  	s.startBlock(bEnd)
  3224  
  3225  	if Debug_wb > 0 {
  3226  		Warnl(line, "write barrier")
  3227  	}
  3228  }
  3229  
  3230  // do *left = right for all scalar (non-pointer) parts of t.
  3231  func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) {
  3232  	switch {
  3233  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3234  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
  3235  	case t.IsPtrShaped():
  3236  		// no scalar fields.
  3237  	case t.IsString():
  3238  		if skip&skipLen != 0 {
  3239  			return
  3240  		}
  3241  		len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
  3242  		lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
  3243  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3244  	case t.IsSlice():
  3245  		if skip&skipLen == 0 {
  3246  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
  3247  			lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
  3248  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3249  		}
  3250  		if skip&skipCap == 0 {
  3251  			cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
  3252  			capAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), 2*s.config.IntSize, left)
  3253  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
  3254  		}
  3255  	case t.IsInterface():
  3256  		// itab field doesn't need a write barrier (even though it is a pointer).
  3257  		itab := s.newValue1(ssa.OpITab, Ptrto(Types[TUINT8]), right)
  3258  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
  3259  	case t.IsStruct():
  3260  		n := t.NumFields()
  3261  		for i := 0; i < n; i++ {
  3262  			ft := t.FieldType(i)
  3263  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3264  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3265  			s.storeTypeScalars(ft.(*Type), addr, val, 0)
  3266  		}
  3267  	default:
  3268  		s.Fatalf("bad write barrier type %s", t)
  3269  	}
  3270  }
  3271  
  3272  // do *left = right for all pointer parts of t.
  3273  func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
  3274  	switch {
  3275  	case t.IsPtrShaped():
  3276  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
  3277  	case t.IsString():
  3278  		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
  3279  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3280  	case t.IsSlice():
  3281  		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
  3282  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3283  	case t.IsInterface():
  3284  		// itab field is treated as a scalar.
  3285  		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
  3286  		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3287  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
  3288  	case t.IsStruct():
  3289  		n := t.NumFields()
  3290  		for i := 0; i < n; i++ {
  3291  			ft := t.FieldType(i)
  3292  			if !haspointers(ft.(*Type)) {
  3293  				continue
  3294  			}
  3295  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3296  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3297  			s.storeTypePtrs(ft.(*Type), addr, val)
  3298  		}
  3299  	default:
  3300  		s.Fatalf("bad write barrier type %s", t)
  3301  	}
  3302  }
  3303  
  3304  // do *left = right with a write barrier for all pointer parts of t.
  3305  func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
  3306  	switch {
  3307  	case t.IsPtrShaped():
  3308  		s.rtcall(writebarrierptr, true, nil, left, right)
  3309  	case t.IsString():
  3310  		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
  3311  		s.rtcall(writebarrierptr, true, nil, left, ptr)
  3312  	case t.IsSlice():
  3313  		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
  3314  		s.rtcall(writebarrierptr, true, nil, left, ptr)
  3315  	case t.IsInterface():
  3316  		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
  3317  		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3318  		s.rtcall(writebarrierptr, true, nil, idataAddr, idata)
  3319  	case t.IsStruct():
  3320  		n := t.NumFields()
  3321  		for i := 0; i < n; i++ {
  3322  			ft := t.FieldType(i)
  3323  			if !haspointers(ft.(*Type)) {
  3324  				continue
  3325  			}
  3326  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3327  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3328  			s.storeTypePtrsWB(ft.(*Type), addr, val)
  3329  		}
  3330  	default:
  3331  		s.Fatalf("bad write barrier type %s", t)
  3332  	}
  3333  }
  3334  
  3335  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3336  // i,j,k may be nil, in which case they are set to their default value.
  3337  // t is a slice, ptr to array, or string type.
  3338  func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3339  	var elemtype *Type
  3340  	var ptrtype *Type
  3341  	var ptr *ssa.Value
  3342  	var len *ssa.Value
  3343  	var cap *ssa.Value
  3344  	zero := s.constInt(Types[TINT], 0)
  3345  	switch {
  3346  	case t.IsSlice():
  3347  		elemtype = t.Elem()
  3348  		ptrtype = Ptrto(elemtype)
  3349  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3350  		len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
  3351  		cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
  3352  	case t.IsString():
  3353  		elemtype = Types[TUINT8]
  3354  		ptrtype = Ptrto(elemtype)
  3355  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3356  		len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
  3357  		cap = len
  3358  	case t.IsPtr():
  3359  		if !t.Elem().IsArray() {
  3360  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3361  		}
  3362  		elemtype = t.Elem().Elem()
  3363  		ptrtype = Ptrto(elemtype)
  3364  		s.nilCheck(v)
  3365  		ptr = v
  3366  		len = s.constInt(Types[TINT], t.Elem().NumElem())
  3367  		cap = len
  3368  	default:
  3369  		s.Fatalf("bad type in slice %v\n", t)
  3370  	}
  3371  
  3372  	// Set default values
  3373  	if i == nil {
  3374  		i = zero
  3375  	}
  3376  	if j == nil {
  3377  		j = len
  3378  	}
  3379  	if k == nil {
  3380  		k = cap
  3381  	}
  3382  
  3383  	// Panic if slice indices are not in bounds.
  3384  	s.sliceBoundsCheck(i, j)
  3385  	if j != k {
  3386  		s.sliceBoundsCheck(j, k)
  3387  	}
  3388  	if k != cap {
  3389  		s.sliceBoundsCheck(k, cap)
  3390  	}
  3391  
  3392  	// Generate the following code assuming that indexes are in bounds.
  3393  	// The conditional is to make sure that we don't generate a slice
  3394  	// that points to the next object in memory.
  3395  	// rlen = j-i
  3396  	// rcap = k-i
  3397  	// delta = i*elemsize
  3398  	// if rcap == 0 {
  3399  	//    delta = 0
  3400  	// }
  3401  	// rptr = p+delta
  3402  	// result = (SliceMake rptr rlen rcap)
  3403  	subOp := s.ssaOp(OSUB, Types[TINT])
  3404  	eqOp := s.ssaOp(OEQ, Types[TINT])
  3405  	mulOp := s.ssaOp(OMUL, Types[TINT])
  3406  	rlen := s.newValue2(subOp, Types[TINT], j, i)
  3407  	var rcap *ssa.Value
  3408  	switch {
  3409  	case t.IsString():
  3410  		// Capacity of the result is unimportant. However, we use
  3411  		// rcap to test if we've generated a zero-length slice.
  3412  		// Use length of strings for that.
  3413  		rcap = rlen
  3414  	case j == k:
  3415  		rcap = rlen
  3416  	default:
  3417  		rcap = s.newValue2(subOp, Types[TINT], k, i)
  3418  	}
  3419  
  3420  	// delta = # of elements to offset pointer by.
  3421  	s.vars[&deltaVar] = i
  3422  
  3423  	// Generate code to set delta=0 if the resulting capacity is zero.
  3424  	if !((i.Op == ssa.OpConst64 && i.AuxInt == 0) ||
  3425  		(i.Op == ssa.OpConst32 && int32(i.AuxInt) == 0)) {
  3426  		cmp := s.newValue2(eqOp, Types[TBOOL], rcap, zero)
  3427  
  3428  		b := s.endBlock()
  3429  		b.Kind = ssa.BlockIf
  3430  		b.Likely = ssa.BranchUnlikely
  3431  		b.SetControl(cmp)
  3432  
  3433  		// Generate block which zeros the delta variable.
  3434  		nz := s.f.NewBlock(ssa.BlockPlain)
  3435  		b.AddEdgeTo(nz)
  3436  		s.startBlock(nz)
  3437  		s.vars[&deltaVar] = zero
  3438  		s.endBlock()
  3439  
  3440  		// All done.
  3441  		merge := s.f.NewBlock(ssa.BlockPlain)
  3442  		b.AddEdgeTo(merge)
  3443  		nz.AddEdgeTo(merge)
  3444  		s.startBlock(merge)
  3445  
  3446  		// TODO: use conditional moves somehow?
  3447  	}
  3448  
  3449  	// Compute rptr = ptr + delta * elemsize
  3450  	rptr := s.newValue2(ssa.OpAddPtr, ptrtype, ptr, s.newValue2(mulOp, Types[TINT], s.variable(&deltaVar, Types[TINT]), s.constInt(Types[TINT], elemtype.Width)))
  3451  	delete(s.vars, &deltaVar)
  3452  	return rptr, rlen, rcap
  3453  }
  3454  
  3455  type u2fcvtTab struct {
  3456  	geq, cvt2F, and, rsh, or, add ssa.Op
  3457  	one                           func(*state, ssa.Type, int64) *ssa.Value
  3458  }
  3459  
  3460  var u64_f64 u2fcvtTab = u2fcvtTab{
  3461  	geq:   ssa.OpGeq64,
  3462  	cvt2F: ssa.OpCvt64to64F,
  3463  	and:   ssa.OpAnd64,
  3464  	rsh:   ssa.OpRsh64Ux64,
  3465  	or:    ssa.OpOr64,
  3466  	add:   ssa.OpAdd64F,
  3467  	one:   (*state).constInt64,
  3468  }
  3469  
  3470  var u64_f32 u2fcvtTab = u2fcvtTab{
  3471  	geq:   ssa.OpGeq64,
  3472  	cvt2F: ssa.OpCvt64to32F,
  3473  	and:   ssa.OpAnd64,
  3474  	rsh:   ssa.OpRsh64Ux64,
  3475  	or:    ssa.OpOr64,
  3476  	add:   ssa.OpAdd32F,
  3477  	one:   (*state).constInt64,
  3478  }
  3479  
  3480  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3481  	return s.uintTofloat(&u64_f64, n, x, ft, tt)
  3482  }
  3483  
  3484  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3485  	return s.uintTofloat(&u64_f32, n, x, ft, tt)
  3486  }
  3487  
  3488  func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3489  	// if x >= 0 {
  3490  	//    result = (floatY) x
  3491  	// } else {
  3492  	// 	  y = uintX(x) ; y = x & 1
  3493  	// 	  z = uintX(x) ; z = z >> 1
  3494  	// 	  z = z >> 1
  3495  	// 	  z = z | y
  3496  	// 	  result = floatY(z)
  3497  	// 	  result = result + result
  3498  	// }
  3499  	//
  3500  	// Code borrowed from old code generator.
  3501  	// What's going on: large 64-bit "unsigned" looks like
  3502  	// negative number to hardware's integer-to-float
  3503  	// conversion. However, because the mantissa is only
  3504  	// 63 bits, we don't need the LSB, so instead we do an
  3505  	// unsigned right shift (divide by two), convert, and
  3506  	// double. However, before we do that, we need to be
  3507  	// sure that we do not lose a "1" if that made the
  3508  	// difference in the resulting rounding. Therefore, we
  3509  	// preserve it, and OR (not ADD) it back in. The case
  3510  	// that matters is when the eleven discarded bits are
  3511  	// equal to 10000000001; that rounds up, and the 1 cannot
  3512  	// be lost else it would round down if the LSB of the
  3513  	// candidate mantissa is 0.
  3514  	cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
  3515  	b := s.endBlock()
  3516  	b.Kind = ssa.BlockIf
  3517  	b.SetControl(cmp)
  3518  	b.Likely = ssa.BranchLikely
  3519  
  3520  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3521  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3522  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3523  
  3524  	b.AddEdgeTo(bThen)
  3525  	s.startBlock(bThen)
  3526  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3527  	s.vars[n] = a0
  3528  	s.endBlock()
  3529  	bThen.AddEdgeTo(bAfter)
  3530  
  3531  	b.AddEdgeTo(bElse)
  3532  	s.startBlock(bElse)
  3533  	one := cvttab.one(s, ft, 1)
  3534  	y := s.newValue2(cvttab.and, ft, x, one)
  3535  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3536  	z = s.newValue2(cvttab.or, ft, z, y)
  3537  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3538  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3539  	s.vars[n] = a1
  3540  	s.endBlock()
  3541  	bElse.AddEdgeTo(bAfter)
  3542  
  3543  	s.startBlock(bAfter)
  3544  	return s.variable(n, n.Type)
  3545  }
  3546  
  3547  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3548  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3549  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3550  		s.Fatalf("node must be a map or a channel")
  3551  	}
  3552  	// if n == nil {
  3553  	//   return 0
  3554  	// } else {
  3555  	//   // len
  3556  	//   return *((*int)n)
  3557  	//   // cap
  3558  	//   return *(((*int)n)+1)
  3559  	// }
  3560  	lenType := n.Type
  3561  	nilValue := s.constNil(Types[TUINTPTR])
  3562  	cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
  3563  	b := s.endBlock()
  3564  	b.Kind = ssa.BlockIf
  3565  	b.SetControl(cmp)
  3566  	b.Likely = ssa.BranchUnlikely
  3567  
  3568  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3569  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3570  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3571  
  3572  	// length/capacity of a nil map/chan is zero
  3573  	b.AddEdgeTo(bThen)
  3574  	s.startBlock(bThen)
  3575  	s.vars[n] = s.zeroVal(lenType)
  3576  	s.endBlock()
  3577  	bThen.AddEdgeTo(bAfter)
  3578  
  3579  	b.AddEdgeTo(bElse)
  3580  	s.startBlock(bElse)
  3581  	if n.Op == OLEN {
  3582  		// length is stored in the first word for map/chan
  3583  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3584  	} else if n.Op == OCAP {
  3585  		// capacity is stored in the second word for chan
  3586  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3587  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  3588  	} else {
  3589  		s.Fatalf("op must be OLEN or OCAP")
  3590  	}
  3591  	s.endBlock()
  3592  	bElse.AddEdgeTo(bAfter)
  3593  
  3594  	s.startBlock(bAfter)
  3595  	return s.variable(n, lenType)
  3596  }
  3597  
  3598  type f2uCvtTab struct {
  3599  	ltf, cvt2U, subf ssa.Op
  3600  	value            func(*state, ssa.Type, float64) *ssa.Value
  3601  }
  3602  
  3603  var f32_u64 f2uCvtTab = f2uCvtTab{
  3604  	ltf:   ssa.OpLess32F,
  3605  	cvt2U: ssa.OpCvt32Fto64,
  3606  	subf:  ssa.OpSub32F,
  3607  	value: (*state).constFloat32,
  3608  }
  3609  
  3610  var f64_u64 f2uCvtTab = f2uCvtTab{
  3611  	ltf:   ssa.OpLess64F,
  3612  	cvt2U: ssa.OpCvt64Fto64,
  3613  	subf:  ssa.OpSub64F,
  3614  	value: (*state).constFloat64,
  3615  }
  3616  
  3617  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3618  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  3619  }
  3620  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3621  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  3622  }
  3623  
  3624  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3625  	// if x < 9223372036854775808.0 {
  3626  	// 	result = uintY(x)
  3627  	// } else {
  3628  	// 	y = x - 9223372036854775808.0
  3629  	// 	z = uintY(y)
  3630  	// 	result = z | -9223372036854775808
  3631  	// }
  3632  	twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0)
  3633  	cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63)
  3634  	b := s.endBlock()
  3635  	b.Kind = ssa.BlockIf
  3636  	b.SetControl(cmp)
  3637  	b.Likely = ssa.BranchLikely
  3638  
  3639  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3640  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3641  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3642  
  3643  	b.AddEdgeTo(bThen)
  3644  	s.startBlock(bThen)
  3645  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  3646  	s.vars[n] = a0
  3647  	s.endBlock()
  3648  	bThen.AddEdgeTo(bAfter)
  3649  
  3650  	b.AddEdgeTo(bElse)
  3651  	s.startBlock(bElse)
  3652  	y := s.newValue2(cvttab.subf, ft, x, twoToThe63)
  3653  	y = s.newValue1(cvttab.cvt2U, tt, y)
  3654  	z := s.constInt64(tt, -9223372036854775808)
  3655  	a1 := s.newValue2(ssa.OpOr64, tt, y, z)
  3656  	s.vars[n] = a1
  3657  	s.endBlock()
  3658  	bElse.AddEdgeTo(bAfter)
  3659  
  3660  	s.startBlock(bAfter)
  3661  	return s.variable(n, n.Type)
  3662  }
  3663  
  3664  // ifaceType returns the value for the word containing the type.
  3665  // n is the node for the interface expression.
  3666  // v is the corresponding value.
  3667  func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value {
  3668  	byteptr := Ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte)
  3669  
  3670  	if n.Type.IsEmptyInterface() {
  3671  		// Have *eface. The type is the first word in the struct.
  3672  		return s.newValue1(ssa.OpITab, byteptr, v)
  3673  	}
  3674  
  3675  	// Have *iface.
  3676  	// The first word in the struct is the *itab.
  3677  	// If the *itab is nil, return 0.
  3678  	// Otherwise, the second word in the *itab is the type.
  3679  
  3680  	tab := s.newValue1(ssa.OpITab, byteptr, v)
  3681  	s.vars[&typVar] = tab
  3682  	isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr))
  3683  	b := s.endBlock()
  3684  	b.Kind = ssa.BlockIf
  3685  	b.SetControl(isnonnil)
  3686  	b.Likely = ssa.BranchLikely
  3687  
  3688  	bLoad := s.f.NewBlock(ssa.BlockPlain)
  3689  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3690  
  3691  	b.AddEdgeTo(bLoad)
  3692  	b.AddEdgeTo(bEnd)
  3693  	bLoad.AddEdgeTo(bEnd)
  3694  
  3695  	s.startBlock(bLoad)
  3696  	off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab)
  3697  	s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  3698  	s.endBlock()
  3699  
  3700  	s.startBlock(bEnd)
  3701  	typ := s.variable(&typVar, byteptr)
  3702  	delete(s.vars, &typVar)
  3703  	return typ
  3704  }
  3705  
  3706  // dottype generates SSA for a type assertion node.
  3707  // commaok indicates whether to panic or return a bool.
  3708  // If commaok is false, resok will be nil.
  3709  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  3710  	iface := s.expr(n.Left)
  3711  	typ := s.ifaceType(n.Left, iface)  // actual concrete type
  3712  	target := s.expr(typename(n.Type)) // target type
  3713  	if !isdirectiface(n.Type) {
  3714  		// walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case.
  3715  		Fatalf("dottype needs a direct iface type %s", n.Type)
  3716  	}
  3717  
  3718  	if Debug_typeassert > 0 {
  3719  		Warnl(n.Lineno, "type assertion inlined")
  3720  	}
  3721  
  3722  	// TODO:  If we have a nonempty interface and its itab field is nil,
  3723  	// then this test is redundant and ifaceType should just branch directly to bFail.
  3724  	cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target)
  3725  	b := s.endBlock()
  3726  	b.Kind = ssa.BlockIf
  3727  	b.SetControl(cond)
  3728  	b.Likely = ssa.BranchLikely
  3729  
  3730  	byteptr := Ptrto(Types[TUINT8])
  3731  
  3732  	bOk := s.f.NewBlock(ssa.BlockPlain)
  3733  	bFail := s.f.NewBlock(ssa.BlockPlain)
  3734  	b.AddEdgeTo(bOk)
  3735  	b.AddEdgeTo(bFail)
  3736  
  3737  	if !commaok {
  3738  		// on failure, panic by calling panicdottype
  3739  		s.startBlock(bFail)
  3740  		taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb)
  3741  		s.rtcall(panicdottype, false, nil, typ, target, taddr)
  3742  
  3743  		// on success, return idata field
  3744  		s.startBlock(bOk)
  3745  		return s.newValue1(ssa.OpIData, n.Type, iface), nil
  3746  	}
  3747  
  3748  	// commaok is the more complicated case because we have
  3749  	// a control flow merge point.
  3750  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3751  
  3752  	// type assertion succeeded
  3753  	s.startBlock(bOk)
  3754  	s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  3755  	s.vars[&okVar] = s.constBool(true)
  3756  	s.endBlock()
  3757  	bOk.AddEdgeTo(bEnd)
  3758  
  3759  	// type assertion failed
  3760  	s.startBlock(bFail)
  3761  	s.vars[&idataVar] = s.constNil(byteptr)
  3762  	s.vars[&okVar] = s.constBool(false)
  3763  	s.endBlock()
  3764  	bFail.AddEdgeTo(bEnd)
  3765  
  3766  	// merge point
  3767  	s.startBlock(bEnd)
  3768  	res = s.variable(&idataVar, byteptr)
  3769  	resok = s.variable(&okVar, Types[TBOOL])
  3770  	delete(s.vars, &idataVar)
  3771  	delete(s.vars, &okVar)
  3772  	return res, resok
  3773  }
  3774  
  3775  // checkgoto checks that a goto from from to to does not
  3776  // jump into a block or jump over variable declarations.
  3777  // It is a copy of checkgoto in the pre-SSA backend,
  3778  // modified only for line number handling.
  3779  // TODO: document how this works and why it is designed the way it is.
  3780  func (s *state) checkgoto(from *Node, to *Node) {
  3781  	if from.Sym == to.Sym {
  3782  		return
  3783  	}
  3784  
  3785  	nf := 0
  3786  	for fs := from.Sym; fs != nil; fs = fs.Link {
  3787  		nf++
  3788  	}
  3789  	nt := 0
  3790  	for fs := to.Sym; fs != nil; fs = fs.Link {
  3791  		nt++
  3792  	}
  3793  	fs := from.Sym
  3794  	for ; nf > nt; nf-- {
  3795  		fs = fs.Link
  3796  	}
  3797  	if fs != to.Sym {
  3798  		// decide what to complain about.
  3799  		// prefer to complain about 'into block' over declarations,
  3800  		// so scan backward to find most recent block or else dcl.
  3801  		var block *Sym
  3802  
  3803  		var dcl *Sym
  3804  		ts := to.Sym
  3805  		for ; nt > nf; nt-- {
  3806  			if ts.Pkg == nil {
  3807  				block = ts
  3808  			} else {
  3809  				dcl = ts
  3810  			}
  3811  			ts = ts.Link
  3812  		}
  3813  
  3814  		for ts != fs {
  3815  			if ts.Pkg == nil {
  3816  				block = ts
  3817  			} else {
  3818  				dcl = ts
  3819  			}
  3820  			ts = ts.Link
  3821  			fs = fs.Link
  3822  		}
  3823  
  3824  		lno := from.Left.Lineno
  3825  		if block != nil {
  3826  			yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno))
  3827  		} else {
  3828  			yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno))
  3829  		}
  3830  	}
  3831  }
  3832  
  3833  // variable returns the value of a variable at the current location.
  3834  func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
  3835  	v := s.vars[name]
  3836  	if v == nil {
  3837  		v = s.newValue0A(ssa.OpFwdRef, t, name)
  3838  		s.fwdRefs = append(s.fwdRefs, v)
  3839  		s.vars[name] = v
  3840  		s.addNamedValue(name, v)
  3841  	}
  3842  	return v
  3843  }
  3844  
  3845  func (s *state) mem() *ssa.Value {
  3846  	return s.variable(&memVar, ssa.TypeMem)
  3847  }
  3848  
  3849  func (s *state) linkForwardReferences(dm *sparseDefState) {
  3850  
  3851  	// Build SSA graph. Each variable on its first use in a basic block
  3852  	// leaves a FwdRef in that block representing the incoming value
  3853  	// of that variable. This function links that ref up with possible definitions,
  3854  	// inserting Phi values as needed. This is essentially the algorithm
  3855  	// described by Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
  3856  	// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
  3857  	// Differences:
  3858  	//   - We use FwdRef nodes to postpone phi building until the CFG is
  3859  	//     completely built. That way we can avoid the notion of "sealed"
  3860  	//     blocks.
  3861  	//   - Phi optimization is a separate pass (in ../ssa/phielim.go).
  3862  	for len(s.fwdRefs) > 0 {
  3863  		v := s.fwdRefs[len(s.fwdRefs)-1]
  3864  		s.fwdRefs = s.fwdRefs[:len(s.fwdRefs)-1]
  3865  		s.resolveFwdRef(v, dm)
  3866  	}
  3867  }
  3868  
  3869  // resolveFwdRef modifies v to be the variable's value at the start of its block.
  3870  // v must be a FwdRef op.
  3871  func (s *state) resolveFwdRef(v *ssa.Value, dm *sparseDefState) {
  3872  	b := v.Block
  3873  	name := v.Aux.(*Node)
  3874  	v.Aux = nil
  3875  	if b == s.f.Entry {
  3876  		// Live variable at start of function.
  3877  		if s.canSSA(name) {
  3878  			if strings.HasPrefix(name.Sym.Name, "autotmp_") {
  3879  				// It's likely that this is an uninitialized variable in the entry block.
  3880  				s.Fatalf("Treating auto as if it were arg, func %s, node %v, value %v", b.Func.Name, name, v)
  3881  			}
  3882  			v.Op = ssa.OpArg
  3883  			v.Aux = name
  3884  			return
  3885  		}
  3886  		// Not SSAable. Load it.
  3887  		addr := s.decladdrs[name]
  3888  		if addr == nil {
  3889  			// TODO: closure args reach here.
  3890  			s.Unimplementedf("unhandled closure arg %s at entry to function %s", name, b.Func.Name)
  3891  		}
  3892  		if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok {
  3893  			s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name)
  3894  		}
  3895  		v.Op = ssa.OpLoad
  3896  		v.AddArgs(addr, s.startmem)
  3897  		return
  3898  	}
  3899  	if len(b.Preds) == 0 {
  3900  		// This block is dead; we have no predecessors and we're not the entry block.
  3901  		// It doesn't matter what we use here as long as it is well-formed.
  3902  		v.Op = ssa.OpUnknown
  3903  		return
  3904  	}
  3905  	// Find variable value on each predecessor.
  3906  	var argstore [4]*ssa.Value
  3907  	args := argstore[:0]
  3908  	for _, e := range b.Preds {
  3909  		p := e.Block()
  3910  		p = dm.FindBetterDefiningBlock(name, p) // try sparse improvement on p
  3911  		args = append(args, s.lookupVarOutgoing(p, v.Type, name, v.Line))
  3912  	}
  3913  
  3914  	// Decide if we need a phi or not. We need a phi if there
  3915  	// are two different args (which are both not v).
  3916  	var w *ssa.Value
  3917  	for _, a := range args {
  3918  		if a == v {
  3919  			continue // self-reference
  3920  		}
  3921  		if a == w {
  3922  			continue // already have this witness
  3923  		}
  3924  		if w != nil {
  3925  			// two witnesses, need a phi value
  3926  			v.Op = ssa.OpPhi
  3927  			v.AddArgs(args...)
  3928  			return
  3929  		}
  3930  		w = a // save witness
  3931  	}
  3932  	if w == nil {
  3933  		s.Fatalf("no witness for reachable phi %s", v)
  3934  	}
  3935  	// One witness. Make v a copy of w.
  3936  	v.Op = ssa.OpCopy
  3937  	v.AddArg(w)
  3938  }
  3939  
  3940  // lookupVarOutgoing finds the variable's value at the end of block b.
  3941  func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node, line int32) *ssa.Value {
  3942  	for {
  3943  		if v, ok := s.defvars[b.ID][name]; ok {
  3944  			return v
  3945  		}
  3946  		// The variable is not defined by b and we haven't looked it up yet.
  3947  		// If b has exactly one predecessor, loop to look it up there.
  3948  		// Otherwise, give up and insert a new FwdRef and resolve it later.
  3949  		if len(b.Preds) != 1 {
  3950  			break
  3951  		}
  3952  		b = b.Preds[0].Block()
  3953  	}
  3954  	// Generate a FwdRef for the variable and return that.
  3955  	v := b.NewValue0A(line, ssa.OpFwdRef, t, name)
  3956  	s.fwdRefs = append(s.fwdRefs, v)
  3957  	s.defvars[b.ID][name] = v
  3958  	s.addNamedValue(name, v)
  3959  	return v
  3960  }
  3961  
  3962  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  3963  	if n.Class == Pxxx {
  3964  		// Don't track our dummy nodes (&memVar etc.).
  3965  		return
  3966  	}
  3967  	if strings.HasPrefix(n.Sym.Name, "autotmp_") {
  3968  		// Don't track autotmp_ variables.
  3969  		return
  3970  	}
  3971  	if n.Class == PPARAMOUT {
  3972  		// Don't track named output values.  This prevents return values
  3973  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  3974  		return
  3975  	}
  3976  	if n.Class == PAUTO && n.Xoffset != 0 {
  3977  		s.Fatalf("AUTO var with offset %s %d", n, n.Xoffset)
  3978  	}
  3979  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  3980  	values, ok := s.f.NamedValues[loc]
  3981  	if !ok {
  3982  		s.f.Names = append(s.f.Names, loc)
  3983  	}
  3984  	s.f.NamedValues[loc] = append(values, v)
  3985  }
  3986  
  3987  // Branch is an unresolved branch.
  3988  type Branch struct {
  3989  	P *obj.Prog  // branch instruction
  3990  	B *ssa.Block // target
  3991  }
  3992  
  3993  // SSAGenState contains state needed during Prog generation.
  3994  type SSAGenState struct {
  3995  	// Branches remembers all the branch instructions we've seen
  3996  	// and where they would like to go.
  3997  	Branches []Branch
  3998  
  3999  	// bstart remembers where each block starts (indexed by block ID)
  4000  	bstart []*obj.Prog
  4001  
  4002  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4003  	SSEto387 map[int16]int16
  4004  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4005  	ScratchFpMem *Node
  4006  }
  4007  
  4008  // Pc returns the current Prog.
  4009  func (s *SSAGenState) Pc() *obj.Prog {
  4010  	return Pc
  4011  }
  4012  
  4013  // SetLineno sets the current source line number.
  4014  func (s *SSAGenState) SetLineno(l int32) {
  4015  	lineno = l
  4016  }
  4017  
  4018  // genssa appends entries to ptxt for each instruction in f.
  4019  // gcargs and gclocals are filled in with pointer maps for the frame.
  4020  func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
  4021  	var s SSAGenState
  4022  
  4023  	e := f.Config.Frontend().(*ssaExport)
  4024  	// We're about to emit a bunch of Progs.
  4025  	// Since the only way to get here is to explicitly request it,
  4026  	// just fail on unimplemented instead of trying to unwind our mess.
  4027  	e.mustImplement = true
  4028  
  4029  	// Remember where each block starts.
  4030  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4031  
  4032  	var valueProgs map[*obj.Prog]*ssa.Value
  4033  	var blockProgs map[*obj.Prog]*ssa.Block
  4034  	var logProgs = e.log
  4035  	if logProgs {
  4036  		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4037  		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4038  		f.Logf("genssa %s\n", f.Name)
  4039  		blockProgs[Pc] = f.Blocks[0]
  4040  	}
  4041  
  4042  	if Thearch.Use387 {
  4043  		s.SSEto387 = map[int16]int16{}
  4044  	}
  4045  	if f.Config.NeedsFpScratch {
  4046  		s.ScratchFpMem = temp(Types[TUINT64])
  4047  	}
  4048  
  4049  	// Emit basic blocks
  4050  	for i, b := range f.Blocks {
  4051  		s.bstart[b.ID] = Pc
  4052  		// Emit values in block
  4053  		Thearch.SSAMarkMoves(&s, b)
  4054  		for _, v := range b.Values {
  4055  			x := Pc
  4056  			Thearch.SSAGenValue(&s, v)
  4057  			if logProgs {
  4058  				for ; x != Pc; x = x.Link {
  4059  					valueProgs[x] = v
  4060  				}
  4061  			}
  4062  		}
  4063  		// Emit control flow instructions for block
  4064  		var next *ssa.Block
  4065  		if i < len(f.Blocks)-1 && (Debug['N'] == 0 || b.Kind == ssa.BlockCall) {
  4066  			// If -N, leave next==nil so every block with successors
  4067  			// ends in a JMP (except call blocks - plive doesn't like
  4068  			// select{send,recv} followed by a JMP call).  Helps keep
  4069  			// line numbers for otherwise empty blocks.
  4070  			next = f.Blocks[i+1]
  4071  		}
  4072  		x := Pc
  4073  		Thearch.SSAGenBlock(&s, b, next)
  4074  		if logProgs {
  4075  			for ; x != Pc; x = x.Link {
  4076  				blockProgs[x] = b
  4077  			}
  4078  		}
  4079  	}
  4080  
  4081  	// Resolve branches
  4082  	for _, br := range s.Branches {
  4083  		br.P.To.Val = s.bstart[br.B.ID]
  4084  	}
  4085  
  4086  	if logProgs {
  4087  		for p := ptxt; p != nil; p = p.Link {
  4088  			var s string
  4089  			if v, ok := valueProgs[p]; ok {
  4090  				s = v.String()
  4091  			} else if b, ok := blockProgs[p]; ok {
  4092  				s = b.String()
  4093  			} else {
  4094  				s = "   " // most value and branch strings are 2-3 characters long
  4095  			}
  4096  			f.Logf("%s\t%s\n", s, p)
  4097  		}
  4098  		if f.Config.HTML != nil {
  4099  			saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
  4100  			ptxt.Ctxt.LineHist.PrintFilenameOnly = true
  4101  			var buf bytes.Buffer
  4102  			buf.WriteString("<code>")
  4103  			buf.WriteString("<dl class=\"ssa-gen\">")
  4104  			for p := ptxt; p != nil; p = p.Link {
  4105  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4106  				if v, ok := valueProgs[p]; ok {
  4107  					buf.WriteString(v.HTML())
  4108  				} else if b, ok := blockProgs[p]; ok {
  4109  					buf.WriteString(b.HTML())
  4110  				}
  4111  				buf.WriteString("</dt>")
  4112  				buf.WriteString("<dd class=\"ssa-prog\">")
  4113  				buf.WriteString(html.EscapeString(p.String()))
  4114  				buf.WriteString("</dd>")
  4115  				buf.WriteString("</li>")
  4116  			}
  4117  			buf.WriteString("</dl>")
  4118  			buf.WriteString("</code>")
  4119  			f.Config.HTML.WriteColumn("genssa", buf.String())
  4120  			ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
  4121  		}
  4122  	}
  4123  
  4124  	// Emit static data
  4125  	if f.StaticData != nil {
  4126  		for _, n := range f.StaticData.([]*Node) {
  4127  			if !gen_as_init(n, false) {
  4128  				Fatalf("non-static data marked as static: %v\n\n", n)
  4129  			}
  4130  		}
  4131  	}
  4132  
  4133  	// Allocate stack frame
  4134  	allocauto(ptxt)
  4135  
  4136  	// Generate gc bitmaps.
  4137  	liveness(Curfn, ptxt, gcargs, gclocals)
  4138  
  4139  	// Add frame prologue. Zero ambiguously live variables.
  4140  	Thearch.Defframe(ptxt)
  4141  	if Debug['f'] != 0 {
  4142  		frame(0)
  4143  	}
  4144  
  4145  	// Remove leftover instrumentation from the instruction stream.
  4146  	removevardef(ptxt)
  4147  
  4148  	f.Config.HTML.Close()
  4149  }
  4150  
  4151  type FloatingEQNEJump struct {
  4152  	Jump  obj.As
  4153  	Index int
  4154  }
  4155  
  4156  func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch {
  4157  	p := Prog(jumps.Jump)
  4158  	p.To.Type = obj.TYPE_BRANCH
  4159  	to := jumps.Index
  4160  	branches = append(branches, Branch{p, b.Succs[to].Block()})
  4161  	if to == 1 {
  4162  		likely = -likely
  4163  	}
  4164  	// liblink reorders the instruction stream as it sees fit.
  4165  	// Pass along what we know so liblink can make use of it.
  4166  	// TODO: Once we've fully switched to SSA,
  4167  	// make liblink leave our output alone.
  4168  	switch likely {
  4169  	case ssa.BranchUnlikely:
  4170  		p.From.Type = obj.TYPE_CONST
  4171  		p.From.Offset = 0
  4172  	case ssa.BranchLikely:
  4173  		p.From.Type = obj.TYPE_CONST
  4174  		p.From.Offset = 1
  4175  	}
  4176  	return branches
  4177  }
  4178  
  4179  func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4180  	likely := b.Likely
  4181  	switch next {
  4182  	case b.Succs[0].Block():
  4183  		s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches)
  4184  		s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches)
  4185  	case b.Succs[1].Block():
  4186  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4187  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4188  	default:
  4189  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4190  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4191  		q := Prog(obj.AJMP)
  4192  		q.To.Type = obj.TYPE_BRANCH
  4193  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4194  	}
  4195  }
  4196  
  4197  func AuxOffset(v *ssa.Value) (offset int64) {
  4198  	if v.Aux == nil {
  4199  		return 0
  4200  	}
  4201  	switch sym := v.Aux.(type) {
  4202  
  4203  	case *ssa.AutoSymbol:
  4204  		n := sym.Node.(*Node)
  4205  		return n.Xoffset
  4206  	}
  4207  	return 0
  4208  }
  4209  
  4210  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4211  func AddAux(a *obj.Addr, v *ssa.Value) {
  4212  	AddAux2(a, v, v.AuxInt)
  4213  }
  4214  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4215  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4216  		v.Fatalf("bad AddAux addr %v", a)
  4217  	}
  4218  	// add integer offset
  4219  	a.Offset += offset
  4220  
  4221  	// If no additional symbol offset, we're done.
  4222  	if v.Aux == nil {
  4223  		return
  4224  	}
  4225  	// Add symbol's offset from its base register.
  4226  	switch sym := v.Aux.(type) {
  4227  	case *ssa.ExternSymbol:
  4228  		a.Name = obj.NAME_EXTERN
  4229  		switch s := sym.Sym.(type) {
  4230  		case *Sym:
  4231  			a.Sym = Linksym(s)
  4232  		case *obj.LSym:
  4233  			a.Sym = s
  4234  		default:
  4235  			v.Fatalf("ExternSymbol.Sym is %T", s)
  4236  		}
  4237  	case *ssa.ArgSymbol:
  4238  		n := sym.Node.(*Node)
  4239  		a.Name = obj.NAME_PARAM
  4240  		a.Node = n
  4241  		a.Sym = Linksym(n.Orig.Sym)
  4242  		a.Offset += n.Xoffset // TODO: why do I have to add this here?  I don't for auto variables.
  4243  	case *ssa.AutoSymbol:
  4244  		n := sym.Node.(*Node)
  4245  		a.Name = obj.NAME_AUTO
  4246  		a.Node = n
  4247  		a.Sym = Linksym(n.Sym)
  4248  	default:
  4249  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4250  	}
  4251  }
  4252  
  4253  // SizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t.
  4254  func SizeAlignAuxInt(t *Type) int64 {
  4255  	return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64()
  4256  }
  4257  
  4258  // extendIndex extends v to a full int width.
  4259  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4260  func (s *state) extendIndex(v *ssa.Value, panicfn *Node) *ssa.Value {
  4261  	size := v.Type.Size()
  4262  	if size == s.config.IntSize {
  4263  		return v
  4264  	}
  4265  	if size > s.config.IntSize {
  4266  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4267  		// high word and branch to out-of-bounds failure if it is not 0.
  4268  		if Debug['B'] == 0 {
  4269  			hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v)
  4270  			cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0))
  4271  			s.check(cmp, panicfn)
  4272  		}
  4273  		return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v)
  4274  	}
  4275  
  4276  	// Extend value to the required size
  4277  	var op ssa.Op
  4278  	if v.Type.IsSigned() {
  4279  		switch 10*size + s.config.IntSize {
  4280  		case 14:
  4281  			op = ssa.OpSignExt8to32
  4282  		case 18:
  4283  			op = ssa.OpSignExt8to64
  4284  		case 24:
  4285  			op = ssa.OpSignExt16to32
  4286  		case 28:
  4287  			op = ssa.OpSignExt16to64
  4288  		case 48:
  4289  			op = ssa.OpSignExt32to64
  4290  		default:
  4291  			s.Fatalf("bad signed index extension %s", v.Type)
  4292  		}
  4293  	} else {
  4294  		switch 10*size + s.config.IntSize {
  4295  		case 14:
  4296  			op = ssa.OpZeroExt8to32
  4297  		case 18:
  4298  			op = ssa.OpZeroExt8to64
  4299  		case 24:
  4300  			op = ssa.OpZeroExt16to32
  4301  		case 28:
  4302  			op = ssa.OpZeroExt16to64
  4303  		case 48:
  4304  			op = ssa.OpZeroExt32to64
  4305  		default:
  4306  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4307  		}
  4308  	}
  4309  	return s.newValue1(op, Types[TINT], v)
  4310  }
  4311  
  4312  // SSAReg returns the register to which v has been allocated.
  4313  func SSAReg(v *ssa.Value) *ssa.Register {
  4314  	reg := v.Block.Func.RegAlloc[v.ID]
  4315  	if reg == nil {
  4316  		v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
  4317  	}
  4318  	return reg.(*ssa.Register)
  4319  }
  4320  
  4321  // SSAReg0 returns the register to which the first output of v has been allocated.
  4322  func SSAReg0(v *ssa.Value) *ssa.Register {
  4323  	reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[0]
  4324  	if reg == nil {
  4325  		v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func)
  4326  	}
  4327  	return reg.(*ssa.Register)
  4328  }
  4329  
  4330  // SSAReg1 returns the register to which the second output of v has been allocated.
  4331  func SSAReg1(v *ssa.Value) *ssa.Register {
  4332  	reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[1]
  4333  	if reg == nil {
  4334  		v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func)
  4335  	}
  4336  	return reg.(*ssa.Register)
  4337  }
  4338  
  4339  // SSARegNum returns the register number (in cmd/internal/obj numbering) to which v has been allocated.
  4340  func SSARegNum(v *ssa.Value) int16 {
  4341  	return Thearch.SSARegToReg[SSAReg(v).Num]
  4342  }
  4343  
  4344  // SSARegNum0 returns the register number (in cmd/internal/obj numbering) to which the first output of v has been allocated.
  4345  func SSARegNum0(v *ssa.Value) int16 {
  4346  	return Thearch.SSARegToReg[SSAReg0(v).Num]
  4347  }
  4348  
  4349  // SSARegNum1 returns the register number (in cmd/internal/obj numbering) to which the second output of v has been allocated.
  4350  func SSARegNum1(v *ssa.Value) int16 {
  4351  	return Thearch.SSARegToReg[SSAReg1(v).Num]
  4352  }
  4353  
  4354  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4355  // Called during ssaGenValue.
  4356  func CheckLoweredPhi(v *ssa.Value) {
  4357  	if v.Op != ssa.OpPhi {
  4358  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4359  	}
  4360  	if v.Type.IsMemory() {
  4361  		return
  4362  	}
  4363  	f := v.Block.Func
  4364  	loc := f.RegAlloc[v.ID]
  4365  	for _, a := range v.Args {
  4366  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4367  			v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
  4368  		}
  4369  	}
  4370  }
  4371  
  4372  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4373  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4374  // That register contains the closure pointer on closure entry.
  4375  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4376  	entry := v.Block.Func.Entry
  4377  	if entry != v.Block || entry.Values[0] != v {
  4378  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4379  	}
  4380  }
  4381  
  4382  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4383  // where v should be spilled.
  4384  func AutoVar(v *ssa.Value) (*Node, int64) {
  4385  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4386  	if v.Type.Size() > loc.Type.Size() {
  4387  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4388  	}
  4389  	return loc.N.(*Node), loc.Off
  4390  }
  4391  
  4392  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4393  func fieldIdx(n *Node) int {
  4394  	t := n.Left.Type
  4395  	f := n.Sym
  4396  	if !t.IsStruct() {
  4397  		panic("ODOT's LHS is not a struct")
  4398  	}
  4399  
  4400  	var i int
  4401  	for _, t1 := range t.Fields().Slice() {
  4402  		if t1.Sym != f {
  4403  			i++
  4404  			continue
  4405  		}
  4406  		if t1.Offset != n.Xoffset {
  4407  			panic("field offset doesn't match")
  4408  		}
  4409  		return i
  4410  	}
  4411  	panic(fmt.Sprintf("can't find field in expr %s\n", n))
  4412  
  4413  	// TODO: keep the result of this function somewhere in the ODOT Node
  4414  	// so we don't have to recompute it each time we need it.
  4415  }
  4416  
  4417  // ssaExport exports a bunch of compiler services for the ssa backend.
  4418  type ssaExport struct {
  4419  	log           bool
  4420  	unimplemented bool
  4421  	mustImplement bool
  4422  }
  4423  
  4424  func (s *ssaExport) TypeBool() ssa.Type    { return Types[TBOOL] }
  4425  func (s *ssaExport) TypeInt8() ssa.Type    { return Types[TINT8] }
  4426  func (s *ssaExport) TypeInt16() ssa.Type   { return Types[TINT16] }
  4427  func (s *ssaExport) TypeInt32() ssa.Type   { return Types[TINT32] }
  4428  func (s *ssaExport) TypeInt64() ssa.Type   { return Types[TINT64] }
  4429  func (s *ssaExport) TypeUInt8() ssa.Type   { return Types[TUINT8] }
  4430  func (s *ssaExport) TypeUInt16() ssa.Type  { return Types[TUINT16] }
  4431  func (s *ssaExport) TypeUInt32() ssa.Type  { return Types[TUINT32] }
  4432  func (s *ssaExport) TypeUInt64() ssa.Type  { return Types[TUINT64] }
  4433  func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
  4434  func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
  4435  func (s *ssaExport) TypeInt() ssa.Type     { return Types[TINT] }
  4436  func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
  4437  func (s *ssaExport) TypeString() ssa.Type  { return Types[TSTRING] }
  4438  func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) }
  4439  
  4440  // StringData returns a symbol (a *Sym wrapped in an interface) which
  4441  // is the data component of a global string constant containing s.
  4442  func (*ssaExport) StringData(s string) interface{} {
  4443  	// TODO: is idealstring correct?  It might not matter...
  4444  	_, data := stringsym(s)
  4445  	return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
  4446  }
  4447  
  4448  func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
  4449  	n := temp(t.(*Type))   // Note: adds new auto to Curfn.Func.Dcl list
  4450  	e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here!
  4451  	return n
  4452  }
  4453  
  4454  func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4455  	n := name.N.(*Node)
  4456  	ptrType := Ptrto(Types[TUINT8])
  4457  	lenType := Types[TINT]
  4458  	if n.Class == PAUTO && !n.Addrtaken {
  4459  		// Split this string up into two separate variables.
  4460  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4461  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4462  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
  4463  	}
  4464  	// Return the two parts of the larger variable.
  4465  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  4466  }
  4467  
  4468  func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4469  	n := name.N.(*Node)
  4470  	t := Ptrto(Types[TUINT8])
  4471  	if n.Class == PAUTO && !n.Addrtaken {
  4472  		// Split this interface up into two separate variables.
  4473  		f := ".itab"
  4474  		if n.Type.IsEmptyInterface() {
  4475  			f = ".type"
  4476  		}
  4477  		c := e.namedAuto(n.Sym.Name+f, t)
  4478  		d := e.namedAuto(n.Sym.Name+".data", t)
  4479  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4480  	}
  4481  	// Return the two parts of the larger variable.
  4482  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  4483  }
  4484  
  4485  func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  4486  	n := name.N.(*Node)
  4487  	ptrType := Ptrto(name.Type.ElemType().(*Type))
  4488  	lenType := Types[TINT]
  4489  	if n.Class == PAUTO && !n.Addrtaken {
  4490  		// Split this slice up into three separate variables.
  4491  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4492  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4493  		c := e.namedAuto(n.Sym.Name+".cap", lenType)
  4494  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
  4495  	}
  4496  	// Return the three parts of the larger variable.
  4497  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  4498  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  4499  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  4500  }
  4501  
  4502  func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4503  	n := name.N.(*Node)
  4504  	s := name.Type.Size() / 2
  4505  	var t *Type
  4506  	if s == 8 {
  4507  		t = Types[TFLOAT64]
  4508  	} else {
  4509  		t = Types[TFLOAT32]
  4510  	}
  4511  	if n.Class == PAUTO && !n.Addrtaken {
  4512  		// Split this complex up into two separate variables.
  4513  		c := e.namedAuto(n.Sym.Name+".real", t)
  4514  		d := e.namedAuto(n.Sym.Name+".imag", t)
  4515  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4516  	}
  4517  	// Return the two parts of the larger variable.
  4518  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  4519  }
  4520  
  4521  func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4522  	n := name.N.(*Node)
  4523  	var t *Type
  4524  	if name.Type.IsSigned() {
  4525  		t = Types[TINT32]
  4526  	} else {
  4527  		t = Types[TUINT32]
  4528  	}
  4529  	if n.Class == PAUTO && !n.Addrtaken {
  4530  		// Split this int64 up into two separate variables.
  4531  		h := e.namedAuto(n.Sym.Name+".hi", t)
  4532  		l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32])
  4533  		return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0}
  4534  	}
  4535  	// Return the two parts of the larger variable.
  4536  	// Assuming little endian (we don't support big endian 32-bit architecture yet)
  4537  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off}
  4538  }
  4539  
  4540  func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  4541  	n := name.N.(*Node)
  4542  	st := name.Type
  4543  	ft := st.FieldType(i)
  4544  	if n.Class == PAUTO && !n.Addrtaken {
  4545  		// Note: the _ field may appear several times.  But
  4546  		// have no fear, identically-named but distinct Autos are
  4547  		// ok, albeit maybe confusing for a debugger.
  4548  		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft)
  4549  		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
  4550  	}
  4551  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  4552  }
  4553  
  4554  // namedAuto returns a new AUTO variable with the given name and type.
  4555  func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode {
  4556  	t := typ.(*Type)
  4557  	s := &Sym{Name: name, Pkg: localpkg}
  4558  	n := Nod(ONAME, nil, nil)
  4559  	s.Def = n
  4560  	s.Def.Used = true
  4561  	n.Sym = s
  4562  	n.Type = t
  4563  	n.Class = PAUTO
  4564  	n.Addable = true
  4565  	n.Ullman = 1
  4566  	n.Esc = EscNever
  4567  	n.Xoffset = 0
  4568  	n.Name.Curfn = Curfn
  4569  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  4570  
  4571  	dowidth(t)
  4572  	e.mustImplement = true
  4573  
  4574  	return n
  4575  }
  4576  
  4577  func (e *ssaExport) CanSSA(t ssa.Type) bool {
  4578  	return canSSAType(t.(*Type))
  4579  }
  4580  
  4581  func (e *ssaExport) Line(line int32) string {
  4582  	return linestr(line)
  4583  }
  4584  
  4585  // Log logs a message from the compiler.
  4586  func (e *ssaExport) Logf(msg string, args ...interface{}) {
  4587  	// If e was marked as unimplemented, anything could happen. Ignore.
  4588  	if e.log && !e.unimplemented {
  4589  		fmt.Printf(msg, args...)
  4590  	}
  4591  }
  4592  
  4593  func (e *ssaExport) Log() bool {
  4594  	return e.log
  4595  }
  4596  
  4597  // Fatal reports a compiler error and exits.
  4598  func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) {
  4599  	// If e was marked as unimplemented, anything could happen. Ignore.
  4600  	if !e.unimplemented {
  4601  		lineno = line
  4602  		Fatalf(msg, args...)
  4603  	}
  4604  }
  4605  
  4606  // Unimplemented reports that the function cannot be compiled.
  4607  // It will be removed once SSA work is complete.
  4608  func (e *ssaExport) Unimplementedf(line int32, msg string, args ...interface{}) {
  4609  	if e.mustImplement {
  4610  		lineno = line
  4611  		Fatalf(msg, args...)
  4612  	}
  4613  	const alwaysLog = false // enable to calculate top unimplemented features
  4614  	if !e.unimplemented && (e.log || alwaysLog) {
  4615  		// first implementation failure, print explanation
  4616  		fmt.Printf("SSA unimplemented: "+msg+"\n", args...)
  4617  	}
  4618  	e.unimplemented = true
  4619  }
  4620  
  4621  // Warnl reports a "warning", which is usually flag-triggered
  4622  // logging output for the benefit of tests.
  4623  func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) {
  4624  	Warnl(line, fmt_, args...)
  4625  }
  4626  
  4627  func (e *ssaExport) Debug_checknil() bool {
  4628  	return Debug_checknil != 0
  4629  }
  4630  
  4631  func (n *Node) Typ() ssa.Type {
  4632  	return n.Type
  4633  }