github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/crypto/tls/cipher_suites.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package tls
     6  
     7  import (
     8  	"crypto/aes"
     9  	"crypto/cipher"
    10  	"crypto/des"
    11  	"crypto/hmac"
    12  	"crypto/rc4"
    13  	"crypto/sha1"
    14  	"crypto/sha256"
    15  	"crypto/x509"
    16  	"hash"
    17  )
    18  
    19  // a keyAgreement implements the client and server side of a TLS key agreement
    20  // protocol by generating and processing key exchange messages.
    21  type keyAgreement interface {
    22  	// On the server side, the first two methods are called in order.
    23  
    24  	// In the case that the key agreement protocol doesn't use a
    25  	// ServerKeyExchange message, generateServerKeyExchange can return nil,
    26  	// nil.
    27  	generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
    28  	processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
    29  
    30  	// On the client side, the next two methods are called in order.
    31  
    32  	// This method may not be called if the server doesn't send a
    33  	// ServerKeyExchange message.
    34  	processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
    35  	generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
    36  }
    37  
    38  const (
    39  	// suiteECDH indicates that the cipher suite involves elliptic curve
    40  	// Diffie-Hellman. This means that it should only be selected when the
    41  	// client indicates that it supports ECC with a curve and point format
    42  	// that we're happy with.
    43  	suiteECDHE = 1 << iota
    44  	// suiteECDSA indicates that the cipher suite involves an ECDSA
    45  	// signature and therefore may only be selected when the server's
    46  	// certificate is ECDSA. If this is not set then the cipher suite is
    47  	// RSA based.
    48  	suiteECDSA
    49  	// suiteTLS12 indicates that the cipher suite should only be advertised
    50  	// and accepted when using TLS 1.2.
    51  	suiteTLS12
    52  	// suiteSHA384 indicates that the cipher suite uses SHA384 as the
    53  	// handshake hash.
    54  	suiteSHA384
    55  	// suiteDefaultOff indicates that this cipher suite is not included by
    56  	// default.
    57  	suiteDefaultOff
    58  )
    59  
    60  // A cipherSuite is a specific combination of key agreement, cipher and MAC
    61  // function. All cipher suites currently assume RSA key agreement.
    62  type cipherSuite struct {
    63  	id uint16
    64  	// the lengths, in bytes, of the key material needed for each component.
    65  	keyLen int
    66  	macLen int
    67  	ivLen  int
    68  	ka     func(version uint16) keyAgreement
    69  	// flags is a bitmask of the suite* values, above.
    70  	flags  int
    71  	cipher func(key, iv []byte, isRead bool) interface{}
    72  	mac    func(version uint16, macKey []byte) macFunction
    73  	aead   func(key, fixedNonce []byte) cipher.AEAD
    74  }
    75  
    76  var cipherSuites = []*cipherSuite{
    77  	// Ciphersuite order is chosen so that ECDHE comes before plain RSA and
    78  	// GCM is top preference.
    79  	{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
    80  	{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
    81  	{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
    82  	{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
    83  	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil},
    84  	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
    85  	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, cipherAES, macSHA256, nil},
    86  	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
    87  	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
    88  	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
    89  	{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
    90  	{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
    91  	{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
    92  	{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
    93  	{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
    94  	{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
    95  	{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
    96  
    97  	// RC4-based cipher suites are disabled by default.
    98  	{TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteDefaultOff, cipherRC4, macSHA1, nil},
    99  	{TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteDefaultOff, cipherRC4, macSHA1, nil},
   100  	{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteDefaultOff, cipherRC4, macSHA1, nil},
   101  }
   102  
   103  func cipherRC4(key, iv []byte, isRead bool) interface{} {
   104  	cipher, _ := rc4.NewCipher(key)
   105  	return cipher
   106  }
   107  
   108  func cipher3DES(key, iv []byte, isRead bool) interface{} {
   109  	block, _ := des.NewTripleDESCipher(key)
   110  	if isRead {
   111  		return cipher.NewCBCDecrypter(block, iv)
   112  	}
   113  	return cipher.NewCBCEncrypter(block, iv)
   114  }
   115  
   116  func cipherAES(key, iv []byte, isRead bool) interface{} {
   117  	block, _ := aes.NewCipher(key)
   118  	if isRead {
   119  		return cipher.NewCBCDecrypter(block, iv)
   120  	}
   121  	return cipher.NewCBCEncrypter(block, iv)
   122  }
   123  
   124  // macSHA1 returns a macFunction for the given protocol version.
   125  func macSHA1(version uint16, key []byte) macFunction {
   126  	if version == VersionSSL30 {
   127  		mac := ssl30MAC{
   128  			h:   sha1.New(),
   129  			key: make([]byte, len(key)),
   130  		}
   131  		copy(mac.key, key)
   132  		return mac
   133  	}
   134  	return tls10MAC{hmac.New(sha1.New, key)}
   135  }
   136  
   137  // macSHA256 returns a SHA-256 based MAC. These are only supported in TLS 1.2
   138  // so the given version is ignored.
   139  func macSHA256(version uint16, key []byte) macFunction {
   140  	return tls10MAC{hmac.New(sha256.New, key)}
   141  }
   142  
   143  type macFunction interface {
   144  	Size() int
   145  	MAC(digestBuf, seq, header, data []byte) []byte
   146  }
   147  
   148  // fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
   149  // each call.
   150  type fixedNonceAEAD struct {
   151  	// sealNonce and openNonce are buffers where the larger nonce will be
   152  	// constructed. Since a seal and open operation may be running
   153  	// concurrently, there is a separate buffer for each.
   154  	sealNonce, openNonce []byte
   155  	aead                 cipher.AEAD
   156  }
   157  
   158  func (f *fixedNonceAEAD) NonceSize() int { return 8 }
   159  func (f *fixedNonceAEAD) Overhead() int  { return f.aead.Overhead() }
   160  
   161  func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
   162  	copy(f.sealNonce[len(f.sealNonce)-8:], nonce)
   163  	return f.aead.Seal(out, f.sealNonce, plaintext, additionalData)
   164  }
   165  
   166  func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
   167  	copy(f.openNonce[len(f.openNonce)-8:], nonce)
   168  	return f.aead.Open(out, f.openNonce, plaintext, additionalData)
   169  }
   170  
   171  func aeadAESGCM(key, fixedNonce []byte) cipher.AEAD {
   172  	aes, err := aes.NewCipher(key)
   173  	if err != nil {
   174  		panic(err)
   175  	}
   176  	aead, err := cipher.NewGCM(aes)
   177  	if err != nil {
   178  		panic(err)
   179  	}
   180  
   181  	nonce1, nonce2 := make([]byte, 12), make([]byte, 12)
   182  	copy(nonce1, fixedNonce)
   183  	copy(nonce2, fixedNonce)
   184  
   185  	return &fixedNonceAEAD{nonce1, nonce2, aead}
   186  }
   187  
   188  // ssl30MAC implements the SSLv3 MAC function, as defined in
   189  // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1
   190  type ssl30MAC struct {
   191  	h   hash.Hash
   192  	key []byte
   193  }
   194  
   195  func (s ssl30MAC) Size() int {
   196  	return s.h.Size()
   197  }
   198  
   199  var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36}
   200  
   201  var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
   202  
   203  func (s ssl30MAC) MAC(digestBuf, seq, header, data []byte) []byte {
   204  	padLength := 48
   205  	if s.h.Size() == 20 {
   206  		padLength = 40
   207  	}
   208  
   209  	s.h.Reset()
   210  	s.h.Write(s.key)
   211  	s.h.Write(ssl30Pad1[:padLength])
   212  	s.h.Write(seq)
   213  	s.h.Write(header[:1])
   214  	s.h.Write(header[3:5])
   215  	s.h.Write(data)
   216  	digestBuf = s.h.Sum(digestBuf[:0])
   217  
   218  	s.h.Reset()
   219  	s.h.Write(s.key)
   220  	s.h.Write(ssl30Pad2[:padLength])
   221  	s.h.Write(digestBuf)
   222  	return s.h.Sum(digestBuf[:0])
   223  }
   224  
   225  // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3.
   226  type tls10MAC struct {
   227  	h hash.Hash
   228  }
   229  
   230  func (s tls10MAC) Size() int {
   231  	return s.h.Size()
   232  }
   233  
   234  func (s tls10MAC) MAC(digestBuf, seq, header, data []byte) []byte {
   235  	s.h.Reset()
   236  	s.h.Write(seq)
   237  	s.h.Write(header)
   238  	s.h.Write(data)
   239  	return s.h.Sum(digestBuf[:0])
   240  }
   241  
   242  func rsaKA(version uint16) keyAgreement {
   243  	return rsaKeyAgreement{}
   244  }
   245  
   246  func ecdheECDSAKA(version uint16) keyAgreement {
   247  	return &ecdheKeyAgreement{
   248  		sigType: signatureECDSA,
   249  		version: version,
   250  	}
   251  }
   252  
   253  func ecdheRSAKA(version uint16) keyAgreement {
   254  	return &ecdheKeyAgreement{
   255  		sigType: signatureRSA,
   256  		version: version,
   257  	}
   258  }
   259  
   260  // mutualCipherSuite returns a cipherSuite given a list of supported
   261  // ciphersuites and the id requested by the peer.
   262  func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
   263  	for _, id := range have {
   264  		if id == want {
   265  			for _, suite := range cipherSuites {
   266  				if suite.id == want {
   267  					return suite
   268  				}
   269  			}
   270  			return nil
   271  		}
   272  	}
   273  	return nil
   274  }
   275  
   276  // A list of cipher suite IDs that are, or have been, implemented by this
   277  // package.
   278  //
   279  // Taken from http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
   280  const (
   281  	TLS_RSA_WITH_RC4_128_SHA                uint16 = 0x0005
   282  	TLS_RSA_WITH_3DES_EDE_CBC_SHA           uint16 = 0x000a
   283  	TLS_RSA_WITH_AES_128_CBC_SHA            uint16 = 0x002f
   284  	TLS_RSA_WITH_AES_256_CBC_SHA            uint16 = 0x0035
   285  	TLS_RSA_WITH_AES_128_CBC_SHA256         uint16 = 0x003c
   286  	TLS_RSA_WITH_AES_128_GCM_SHA256         uint16 = 0x009c
   287  	TLS_RSA_WITH_AES_256_GCM_SHA384         uint16 = 0x009d
   288  	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA        uint16 = 0xc007
   289  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA    uint16 = 0xc009
   290  	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA    uint16 = 0xc00a
   291  	TLS_ECDHE_RSA_WITH_RC4_128_SHA          uint16 = 0xc011
   292  	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA     uint16 = 0xc012
   293  	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA      uint16 = 0xc013
   294  	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA      uint16 = 0xc014
   295  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
   296  	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256   uint16 = 0xc027
   297  	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256   uint16 = 0xc02f
   298  	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
   299  	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384   uint16 = 0xc030
   300  	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
   301  
   302  	// TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
   303  	// that the client is doing version fallback. See
   304  	// https://tools.ietf.org/html/rfc7507.
   305  	TLS_FALLBACK_SCSV uint16 = 0x5600
   306  )