github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 4627. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"fmt"
    18  	"math"
    19  	"reflect"
    20  	"runtime"
    21  	"sort"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"sync/atomic"
    26  	"unicode"
    27  	"unicode/utf8"
    28  )
    29  
    30  // Marshal returns the JSON encoding of v.
    31  //
    32  // Marshal traverses the value v recursively.
    33  // If an encountered value implements the Marshaler interface
    34  // and is not a nil pointer, Marshal calls its MarshalJSON method
    35  // to produce JSON. If no MarshalJSON method is present but the
    36  // value implements encoding.TextMarshaler instead, Marshal calls
    37  // its MarshalText method.
    38  // The nil pointer exception is not strictly necessary
    39  // but mimics a similar, necessary exception in the behavior of
    40  // UnmarshalJSON.
    41  //
    42  // Otherwise, Marshal uses the following type-dependent default encodings:
    43  //
    44  // Boolean values encode as JSON booleans.
    45  //
    46  // Floating point, integer, and Number values encode as JSON numbers.
    47  //
    48  // String values encode as JSON strings coerced to valid UTF-8,
    49  // replacing invalid bytes with the Unicode replacement rune.
    50  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    51  // to keep some browsers from misinterpreting JSON output as HTML.
    52  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    53  // This escaping can be disabled using an Encoder with DisableHTMLEscaping.
    54  //
    55  // Array and slice values encode as JSON arrays, except that
    56  // []byte encodes as a base64-encoded string, and a nil slice
    57  // encodes as the null JSON value.
    58  //
    59  // Struct values encode as JSON objects. Each exported struct field
    60  // becomes a member of the object unless
    61  //   - the field's tag is "-", or
    62  //   - the field is empty and its tag specifies the "omitempty" option.
    63  // The empty values are false, 0, any
    64  // nil pointer or interface value, and any array, slice, map, or string of
    65  // length zero. The object's default key string is the struct field name
    66  // but can be specified in the struct field's tag value. The "json" key in
    67  // the struct field's tag value is the key name, followed by an optional comma
    68  // and options. Examples:
    69  //
    70  //   // Field is ignored by this package.
    71  //   Field int `json:"-"`
    72  //
    73  //   // Field appears in JSON as key "myName".
    74  //   Field int `json:"myName"`
    75  //
    76  //   // Field appears in JSON as key "myName" and
    77  //   // the field is omitted from the object if its value is empty,
    78  //   // as defined above.
    79  //   Field int `json:"myName,omitempty"`
    80  //
    81  //   // Field appears in JSON as key "Field" (the default), but
    82  //   // the field is skipped if empty.
    83  //   // Note the leading comma.
    84  //   Field int `json:",omitempty"`
    85  //
    86  // The "string" option signals that a field is stored as JSON inside a
    87  // JSON-encoded string. It applies only to fields of string, floating point,
    88  // integer, or boolean types. This extra level of encoding is sometimes used
    89  // when communicating with JavaScript programs:
    90  //
    91  //    Int64String int64 `json:",string"`
    92  //
    93  // The key name will be used if it's a non-empty string consisting of
    94  // only Unicode letters, digits, and ASCII punctuation except quotation
    95  // marks, backslash, and comma.
    96  //
    97  // Anonymous struct fields are usually marshaled as if their inner exported fields
    98  // were fields in the outer struct, subject to the usual Go visibility rules amended
    99  // as described in the next paragraph.
   100  // An anonymous struct field with a name given in its JSON tag is treated as
   101  // having that name, rather than being anonymous.
   102  // An anonymous struct field of interface type is treated the same as having
   103  // that type as its name, rather than being anonymous.
   104  //
   105  // The Go visibility rules for struct fields are amended for JSON when
   106  // deciding which field to marshal or unmarshal. If there are
   107  // multiple fields at the same level, and that level is the least
   108  // nested (and would therefore be the nesting level selected by the
   109  // usual Go rules), the following extra rules apply:
   110  //
   111  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   112  // even if there are multiple untagged fields that would otherwise conflict.
   113  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   114  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   115  //
   116  // Handling of anonymous struct fields is new in Go 1.1.
   117  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   118  // an anonymous struct field in both current and earlier versions, give the field
   119  // a JSON tag of "-".
   120  //
   121  // Map values encode as JSON objects. The map's key type must either be a
   122  // string, an integer type, or implement encoding.TextMarshaler. The map keys
   123  // are sorted and used as JSON object keys by applying the following rules,
   124  // subject to the UTF-8 coercion described for string values above:
   125  //   - string keys are used directly
   126  //   - encoding.TextMarshalers are marshaled
   127  //   - integer keys are converted to strings
   128  //
   129  // Pointer values encode as the value pointed to.
   130  // A nil pointer encodes as the null JSON value.
   131  //
   132  // Interface values encode as the value contained in the interface.
   133  // A nil interface value encodes as the null JSON value.
   134  //
   135  // Channel, complex, and function values cannot be encoded in JSON.
   136  // Attempting to encode such a value causes Marshal to return
   137  // an UnsupportedTypeError.
   138  //
   139  // JSON cannot represent cyclic data structures and Marshal does not
   140  // handle them. Passing cyclic structures to Marshal will result in
   141  // an infinite recursion.
   142  //
   143  func Marshal(v interface{}) ([]byte, error) {
   144  	e := &encodeState{}
   145  	err := e.marshal(v, encOpts{escapeHTML: true})
   146  	if err != nil {
   147  		return nil, err
   148  	}
   149  	return e.Bytes(), nil
   150  }
   151  
   152  // MarshalIndent is like Marshal but applies Indent to format the output.
   153  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   154  	b, err := Marshal(v)
   155  	if err != nil {
   156  		return nil, err
   157  	}
   158  	var buf bytes.Buffer
   159  	err = Indent(&buf, b, prefix, indent)
   160  	if err != nil {
   161  		return nil, err
   162  	}
   163  	return buf.Bytes(), nil
   164  }
   165  
   166  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   167  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   168  // so that the JSON will be safe to embed inside HTML <script> tags.
   169  // For historical reasons, web browsers don't honor standard HTML
   170  // escaping within <script> tags, so an alternative JSON encoding must
   171  // be used.
   172  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   173  	// The characters can only appear in string literals,
   174  	// so just scan the string one byte at a time.
   175  	start := 0
   176  	for i, c := range src {
   177  		if c == '<' || c == '>' || c == '&' {
   178  			if start < i {
   179  				dst.Write(src[start:i])
   180  			}
   181  			dst.WriteString(`\u00`)
   182  			dst.WriteByte(hex[c>>4])
   183  			dst.WriteByte(hex[c&0xF])
   184  			start = i + 1
   185  		}
   186  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   187  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   188  			if start < i {
   189  				dst.Write(src[start:i])
   190  			}
   191  			dst.WriteString(`\u202`)
   192  			dst.WriteByte(hex[src[i+2]&0xF])
   193  			start = i + 3
   194  		}
   195  	}
   196  	if start < len(src) {
   197  		dst.Write(src[start:])
   198  	}
   199  }
   200  
   201  // Marshaler is the interface implemented by types that
   202  // can marshal themselves into valid JSON.
   203  type Marshaler interface {
   204  	MarshalJSON() ([]byte, error)
   205  }
   206  
   207  // An UnsupportedTypeError is returned by Marshal when attempting
   208  // to encode an unsupported value type.
   209  type UnsupportedTypeError struct {
   210  	Type reflect.Type
   211  }
   212  
   213  func (e *UnsupportedTypeError) Error() string {
   214  	return "json: unsupported type: " + e.Type.String()
   215  }
   216  
   217  type UnsupportedValueError struct {
   218  	Value reflect.Value
   219  	Str   string
   220  }
   221  
   222  func (e *UnsupportedValueError) Error() string {
   223  	return "json: unsupported value: " + e.Str
   224  }
   225  
   226  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   227  // attempting to encode a string value with invalid UTF-8 sequences.
   228  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   229  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   230  // This error is no longer generated but is kept for backwards compatibility
   231  // with programs that might mention it.
   232  type InvalidUTF8Error struct {
   233  	S string // the whole string value that caused the error
   234  }
   235  
   236  func (e *InvalidUTF8Error) Error() string {
   237  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   238  }
   239  
   240  type MarshalerError struct {
   241  	Type reflect.Type
   242  	Err  error
   243  }
   244  
   245  func (e *MarshalerError) Error() string {
   246  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   247  }
   248  
   249  var hex = "0123456789abcdef"
   250  
   251  // An encodeState encodes JSON into a bytes.Buffer.
   252  type encodeState struct {
   253  	bytes.Buffer // accumulated output
   254  	scratch      [64]byte
   255  }
   256  
   257  var encodeStatePool sync.Pool
   258  
   259  func newEncodeState() *encodeState {
   260  	if v := encodeStatePool.Get(); v != nil {
   261  		e := v.(*encodeState)
   262  		e.Reset()
   263  		return e
   264  	}
   265  	return new(encodeState)
   266  }
   267  
   268  func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
   269  	defer func() {
   270  		if r := recover(); r != nil {
   271  			if _, ok := r.(runtime.Error); ok {
   272  				panic(r)
   273  			}
   274  			if s, ok := r.(string); ok {
   275  				panic(s)
   276  			}
   277  			err = r.(error)
   278  		}
   279  	}()
   280  	e.reflectValue(reflect.ValueOf(v), opts)
   281  	return nil
   282  }
   283  
   284  func (e *encodeState) error(err error) {
   285  	panic(err)
   286  }
   287  
   288  func isEmptyValue(v reflect.Value) bool {
   289  	switch v.Kind() {
   290  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   291  		return v.Len() == 0
   292  	case reflect.Bool:
   293  		return !v.Bool()
   294  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   295  		return v.Int() == 0
   296  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   297  		return v.Uint() == 0
   298  	case reflect.Float32, reflect.Float64:
   299  		return v.Float() == 0
   300  	case reflect.Interface, reflect.Ptr:
   301  		return v.IsNil()
   302  	}
   303  	return false
   304  }
   305  
   306  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   307  	valueEncoder(v)(e, v, opts)
   308  }
   309  
   310  type encOpts struct {
   311  	// quoted causes primitive fields to be encoded inside JSON strings.
   312  	quoted bool
   313  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   314  	escapeHTML bool
   315  }
   316  
   317  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   318  
   319  var encoderCache struct {
   320  	sync.RWMutex
   321  	m map[reflect.Type]encoderFunc
   322  }
   323  
   324  func valueEncoder(v reflect.Value) encoderFunc {
   325  	if !v.IsValid() {
   326  		return invalidValueEncoder
   327  	}
   328  	return typeEncoder(v.Type())
   329  }
   330  
   331  func typeEncoder(t reflect.Type) encoderFunc {
   332  	encoderCache.RLock()
   333  	f := encoderCache.m[t]
   334  	encoderCache.RUnlock()
   335  	if f != nil {
   336  		return f
   337  	}
   338  
   339  	// To deal with recursive types, populate the map with an
   340  	// indirect func before we build it. This type waits on the
   341  	// real func (f) to be ready and then calls it. This indirect
   342  	// func is only used for recursive types.
   343  	encoderCache.Lock()
   344  	if encoderCache.m == nil {
   345  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   346  	}
   347  	var wg sync.WaitGroup
   348  	wg.Add(1)
   349  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, opts encOpts) {
   350  		wg.Wait()
   351  		f(e, v, opts)
   352  	}
   353  	encoderCache.Unlock()
   354  
   355  	// Compute fields without lock.
   356  	// Might duplicate effort but won't hold other computations back.
   357  	f = newTypeEncoder(t, true)
   358  	wg.Done()
   359  	encoderCache.Lock()
   360  	encoderCache.m[t] = f
   361  	encoderCache.Unlock()
   362  	return f
   363  }
   364  
   365  var (
   366  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   367  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   368  )
   369  
   370  // newTypeEncoder constructs an encoderFunc for a type.
   371  // The returned encoder only checks CanAddr when allowAddr is true.
   372  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   373  	if t.Implements(marshalerType) {
   374  		return marshalerEncoder
   375  	}
   376  	if t.Kind() != reflect.Ptr && allowAddr {
   377  		if reflect.PtrTo(t).Implements(marshalerType) {
   378  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   379  		}
   380  	}
   381  
   382  	if t.Implements(textMarshalerType) {
   383  		return textMarshalerEncoder
   384  	}
   385  	if t.Kind() != reflect.Ptr && allowAddr {
   386  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   387  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   388  		}
   389  	}
   390  
   391  	switch t.Kind() {
   392  	case reflect.Bool:
   393  		return boolEncoder
   394  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   395  		return intEncoder
   396  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   397  		return uintEncoder
   398  	case reflect.Float32:
   399  		return float32Encoder
   400  	case reflect.Float64:
   401  		return float64Encoder
   402  	case reflect.String:
   403  		return stringEncoder
   404  	case reflect.Interface:
   405  		return interfaceEncoder
   406  	case reflect.Struct:
   407  		return newStructEncoder(t)
   408  	case reflect.Map:
   409  		return newMapEncoder(t)
   410  	case reflect.Slice:
   411  		return newSliceEncoder(t)
   412  	case reflect.Array:
   413  		return newArrayEncoder(t)
   414  	case reflect.Ptr:
   415  		return newPtrEncoder(t)
   416  	default:
   417  		return unsupportedTypeEncoder
   418  	}
   419  }
   420  
   421  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   422  	e.WriteString("null")
   423  }
   424  
   425  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   426  	if v.Kind() == reflect.Ptr && v.IsNil() {
   427  		e.WriteString("null")
   428  		return
   429  	}
   430  	m := v.Interface().(Marshaler)
   431  	b, err := m.MarshalJSON()
   432  	if err == nil {
   433  		// copy JSON into buffer, checking validity.
   434  		err = compact(&e.Buffer, b, opts.escapeHTML)
   435  	}
   436  	if err != nil {
   437  		e.error(&MarshalerError{v.Type(), err})
   438  	}
   439  }
   440  
   441  func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   442  	va := v.Addr()
   443  	if va.IsNil() {
   444  		e.WriteString("null")
   445  		return
   446  	}
   447  	m := va.Interface().(Marshaler)
   448  	b, err := m.MarshalJSON()
   449  	if err == nil {
   450  		// copy JSON into buffer, checking validity.
   451  		err = compact(&e.Buffer, b, true)
   452  	}
   453  	if err != nil {
   454  		e.error(&MarshalerError{v.Type(), err})
   455  	}
   456  }
   457  
   458  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   459  	if v.Kind() == reflect.Ptr && v.IsNil() {
   460  		e.WriteString("null")
   461  		return
   462  	}
   463  	m := v.Interface().(encoding.TextMarshaler)
   464  	b, err := m.MarshalText()
   465  	if err != nil {
   466  		e.error(&MarshalerError{v.Type(), err})
   467  	}
   468  	e.stringBytes(b, opts.escapeHTML)
   469  }
   470  
   471  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   472  	va := v.Addr()
   473  	if va.IsNil() {
   474  		e.WriteString("null")
   475  		return
   476  	}
   477  	m := va.Interface().(encoding.TextMarshaler)
   478  	b, err := m.MarshalText()
   479  	if err != nil {
   480  		e.error(&MarshalerError{v.Type(), err})
   481  	}
   482  	e.stringBytes(b, opts.escapeHTML)
   483  }
   484  
   485  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   486  	if opts.quoted {
   487  		e.WriteByte('"')
   488  	}
   489  	if v.Bool() {
   490  		e.WriteString("true")
   491  	} else {
   492  		e.WriteString("false")
   493  	}
   494  	if opts.quoted {
   495  		e.WriteByte('"')
   496  	}
   497  }
   498  
   499  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   500  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   501  	if opts.quoted {
   502  		e.WriteByte('"')
   503  	}
   504  	e.Write(b)
   505  	if opts.quoted {
   506  		e.WriteByte('"')
   507  	}
   508  }
   509  
   510  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   511  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   512  	if opts.quoted {
   513  		e.WriteByte('"')
   514  	}
   515  	e.Write(b)
   516  	if opts.quoted {
   517  		e.WriteByte('"')
   518  	}
   519  }
   520  
   521  type floatEncoder int // number of bits
   522  
   523  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   524  	f := v.Float()
   525  	if math.IsInf(f, 0) || math.IsNaN(f) {
   526  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   527  	}
   528  	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
   529  	if opts.quoted {
   530  		e.WriteByte('"')
   531  	}
   532  	e.Write(b)
   533  	if opts.quoted {
   534  		e.WriteByte('"')
   535  	}
   536  }
   537  
   538  var (
   539  	float32Encoder = (floatEncoder(32)).encode
   540  	float64Encoder = (floatEncoder(64)).encode
   541  )
   542  
   543  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   544  	if v.Type() == numberType {
   545  		numStr := v.String()
   546  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   547  		// we keep compatibility so check validity after this.
   548  		if numStr == "" {
   549  			numStr = "0" // Number's zero-val
   550  		}
   551  		if !isValidNumber(numStr) {
   552  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   553  		}
   554  		e.WriteString(numStr)
   555  		return
   556  	}
   557  	if opts.quoted {
   558  		sb, err := Marshal(v.String())
   559  		if err != nil {
   560  			e.error(err)
   561  		}
   562  		e.string(string(sb), opts.escapeHTML)
   563  	} else {
   564  		e.string(v.String(), opts.escapeHTML)
   565  	}
   566  }
   567  
   568  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   569  	if v.IsNil() {
   570  		e.WriteString("null")
   571  		return
   572  	}
   573  	e.reflectValue(v.Elem(), opts)
   574  }
   575  
   576  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   577  	e.error(&UnsupportedTypeError{v.Type()})
   578  }
   579  
   580  type structEncoder struct {
   581  	fields    []field
   582  	fieldEncs []encoderFunc
   583  }
   584  
   585  func (se *structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   586  	e.WriteByte('{')
   587  	first := true
   588  	for i, f := range se.fields {
   589  		fv := fieldByIndex(v, f.index)
   590  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   591  			continue
   592  		}
   593  		if first {
   594  			first = false
   595  		} else {
   596  			e.WriteByte(',')
   597  		}
   598  		e.string(f.name, opts.escapeHTML)
   599  		e.WriteByte(':')
   600  		opts.quoted = f.quoted
   601  		se.fieldEncs[i](e, fv, opts)
   602  	}
   603  	e.WriteByte('}')
   604  }
   605  
   606  func newStructEncoder(t reflect.Type) encoderFunc {
   607  	fields := cachedTypeFields(t)
   608  	se := &structEncoder{
   609  		fields:    fields,
   610  		fieldEncs: make([]encoderFunc, len(fields)),
   611  	}
   612  	for i, f := range fields {
   613  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   614  	}
   615  	return se.encode
   616  }
   617  
   618  type mapEncoder struct {
   619  	elemEnc encoderFunc
   620  }
   621  
   622  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   623  	if v.IsNil() {
   624  		e.WriteString("null")
   625  		return
   626  	}
   627  	e.WriteByte('{')
   628  
   629  	// Extract and sort the keys.
   630  	keys := v.MapKeys()
   631  	sv := make([]reflectWithString, len(keys))
   632  	for i, v := range keys {
   633  		sv[i].v = v
   634  		if err := sv[i].resolve(); err != nil {
   635  			e.error(&MarshalerError{v.Type(), err})
   636  		}
   637  	}
   638  	sort.Sort(byString(sv))
   639  
   640  	for i, kv := range sv {
   641  		if i > 0 {
   642  			e.WriteByte(',')
   643  		}
   644  		e.string(kv.s, opts.escapeHTML)
   645  		e.WriteByte(':')
   646  		me.elemEnc(e, v.MapIndex(kv.v), opts)
   647  	}
   648  	e.WriteByte('}')
   649  }
   650  
   651  func newMapEncoder(t reflect.Type) encoderFunc {
   652  	switch t.Key().Kind() {
   653  	case reflect.String,
   654  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   655  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   656  	default:
   657  		if !t.Key().Implements(textMarshalerType) {
   658  			return unsupportedTypeEncoder
   659  		}
   660  	}
   661  	me := &mapEncoder{typeEncoder(t.Elem())}
   662  	return me.encode
   663  }
   664  
   665  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   666  	if v.IsNil() {
   667  		e.WriteString("null")
   668  		return
   669  	}
   670  	s := v.Bytes()
   671  	e.WriteByte('"')
   672  	if len(s) < 1024 {
   673  		// for small buffers, using Encode directly is much faster.
   674  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   675  		base64.StdEncoding.Encode(dst, s)
   676  		e.Write(dst)
   677  	} else {
   678  		// for large buffers, avoid unnecessary extra temporary
   679  		// buffer space.
   680  		enc := base64.NewEncoder(base64.StdEncoding, e)
   681  		enc.Write(s)
   682  		enc.Close()
   683  	}
   684  	e.WriteByte('"')
   685  }
   686  
   687  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   688  type sliceEncoder struct {
   689  	arrayEnc encoderFunc
   690  }
   691  
   692  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   693  	if v.IsNil() {
   694  		e.WriteString("null")
   695  		return
   696  	}
   697  	se.arrayEnc(e, v, opts)
   698  }
   699  
   700  func newSliceEncoder(t reflect.Type) encoderFunc {
   701  	// Byte slices get special treatment; arrays don't.
   702  	if t.Elem().Kind() == reflect.Uint8 {
   703  		p := reflect.PtrTo(t.Elem())
   704  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   705  			return encodeByteSlice
   706  		}
   707  	}
   708  	enc := &sliceEncoder{newArrayEncoder(t)}
   709  	return enc.encode
   710  }
   711  
   712  type arrayEncoder struct {
   713  	elemEnc encoderFunc
   714  }
   715  
   716  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   717  	e.WriteByte('[')
   718  	n := v.Len()
   719  	for i := 0; i < n; i++ {
   720  		if i > 0 {
   721  			e.WriteByte(',')
   722  		}
   723  		ae.elemEnc(e, v.Index(i), opts)
   724  	}
   725  	e.WriteByte(']')
   726  }
   727  
   728  func newArrayEncoder(t reflect.Type) encoderFunc {
   729  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   730  	return enc.encode
   731  }
   732  
   733  type ptrEncoder struct {
   734  	elemEnc encoderFunc
   735  }
   736  
   737  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   738  	if v.IsNil() {
   739  		e.WriteString("null")
   740  		return
   741  	}
   742  	pe.elemEnc(e, v.Elem(), opts)
   743  }
   744  
   745  func newPtrEncoder(t reflect.Type) encoderFunc {
   746  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   747  	return enc.encode
   748  }
   749  
   750  type condAddrEncoder struct {
   751  	canAddrEnc, elseEnc encoderFunc
   752  }
   753  
   754  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   755  	if v.CanAddr() {
   756  		ce.canAddrEnc(e, v, opts)
   757  	} else {
   758  		ce.elseEnc(e, v, opts)
   759  	}
   760  }
   761  
   762  // newCondAddrEncoder returns an encoder that checks whether its value
   763  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   764  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   765  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   766  	return enc.encode
   767  }
   768  
   769  func isValidTag(s string) bool {
   770  	if s == "" {
   771  		return false
   772  	}
   773  	for _, c := range s {
   774  		switch {
   775  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   776  			// Backslash and quote chars are reserved, but
   777  			// otherwise any punctuation chars are allowed
   778  			// in a tag name.
   779  		default:
   780  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   781  				return false
   782  			}
   783  		}
   784  	}
   785  	return true
   786  }
   787  
   788  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   789  	for _, i := range index {
   790  		if v.Kind() == reflect.Ptr {
   791  			if v.IsNil() {
   792  				return reflect.Value{}
   793  			}
   794  			v = v.Elem()
   795  		}
   796  		v = v.Field(i)
   797  	}
   798  	return v
   799  }
   800  
   801  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   802  	for _, i := range index {
   803  		if t.Kind() == reflect.Ptr {
   804  			t = t.Elem()
   805  		}
   806  		t = t.Field(i).Type
   807  	}
   808  	return t
   809  }
   810  
   811  type reflectWithString struct {
   812  	v reflect.Value
   813  	s string
   814  }
   815  
   816  func (w *reflectWithString) resolve() error {
   817  	if w.v.Kind() == reflect.String {
   818  		w.s = w.v.String()
   819  		return nil
   820  	}
   821  	if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok {
   822  		buf, err := tm.MarshalText()
   823  		w.s = string(buf)
   824  		return err
   825  	}
   826  	switch w.v.Kind() {
   827  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   828  		w.s = strconv.FormatInt(w.v.Int(), 10)
   829  		return nil
   830  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   831  		w.s = strconv.FormatUint(w.v.Uint(), 10)
   832  		return nil
   833  	}
   834  	panic("unexpected map key type")
   835  }
   836  
   837  // byString is a slice of reflectWithString where the reflect.Value is either
   838  // a string or an encoding.TextMarshaler.
   839  // It implements the methods to sort by string.
   840  type byString []reflectWithString
   841  
   842  func (sv byString) Len() int           { return len(sv) }
   843  func (sv byString) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
   844  func (sv byString) Less(i, j int) bool { return sv[i].s < sv[j].s }
   845  
   846  // NOTE: keep in sync with stringBytes below.
   847  func (e *encodeState) string(s string, escapeHTML bool) int {
   848  	len0 := e.Len()
   849  	e.WriteByte('"')
   850  	start := 0
   851  	for i := 0; i < len(s); {
   852  		if b := s[i]; b < utf8.RuneSelf {
   853  			if 0x20 <= b && b != '\\' && b != '"' &&
   854  				(!escapeHTML || b != '<' && b != '>' && b != '&') {
   855  				i++
   856  				continue
   857  			}
   858  			if start < i {
   859  				e.WriteString(s[start:i])
   860  			}
   861  			switch b {
   862  			case '\\', '"':
   863  				e.WriteByte('\\')
   864  				e.WriteByte(b)
   865  			case '\n':
   866  				e.WriteByte('\\')
   867  				e.WriteByte('n')
   868  			case '\r':
   869  				e.WriteByte('\\')
   870  				e.WriteByte('r')
   871  			case '\t':
   872  				e.WriteByte('\\')
   873  				e.WriteByte('t')
   874  			default:
   875  				// This encodes bytes < 0x20 except for \t, \n and \r.
   876  				// If escapeHTML is set, it also escapes <, >, and &
   877  				// because they can lead to security holes when
   878  				// user-controlled strings are rendered into JSON
   879  				// and served to some browsers.
   880  				e.WriteString(`\u00`)
   881  				e.WriteByte(hex[b>>4])
   882  				e.WriteByte(hex[b&0xF])
   883  			}
   884  			i++
   885  			start = i
   886  			continue
   887  		}
   888  		c, size := utf8.DecodeRuneInString(s[i:])
   889  		if c == utf8.RuneError && size == 1 {
   890  			if start < i {
   891  				e.WriteString(s[start:i])
   892  			}
   893  			e.WriteString(`\ufffd`)
   894  			i += size
   895  			start = i
   896  			continue
   897  		}
   898  		// U+2028 is LINE SEPARATOR.
   899  		// U+2029 is PARAGRAPH SEPARATOR.
   900  		// They are both technically valid characters in JSON strings,
   901  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   902  		// and can lead to security holes there. It is valid JSON to
   903  		// escape them, so we do so unconditionally.
   904  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   905  		if c == '\u2028' || c == '\u2029' {
   906  			if start < i {
   907  				e.WriteString(s[start:i])
   908  			}
   909  			e.WriteString(`\u202`)
   910  			e.WriteByte(hex[c&0xF])
   911  			i += size
   912  			start = i
   913  			continue
   914  		}
   915  		i += size
   916  	}
   917  	if start < len(s) {
   918  		e.WriteString(s[start:])
   919  	}
   920  	e.WriteByte('"')
   921  	return e.Len() - len0
   922  }
   923  
   924  // NOTE: keep in sync with string above.
   925  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) int {
   926  	len0 := e.Len()
   927  	e.WriteByte('"')
   928  	start := 0
   929  	for i := 0; i < len(s); {
   930  		if b := s[i]; b < utf8.RuneSelf {
   931  			if 0x20 <= b && b != '\\' && b != '"' &&
   932  				(!escapeHTML || b != '<' && b != '>' && b != '&') {
   933  				i++
   934  				continue
   935  			}
   936  			if start < i {
   937  				e.Write(s[start:i])
   938  			}
   939  			switch b {
   940  			case '\\', '"':
   941  				e.WriteByte('\\')
   942  				e.WriteByte(b)
   943  			case '\n':
   944  				e.WriteByte('\\')
   945  				e.WriteByte('n')
   946  			case '\r':
   947  				e.WriteByte('\\')
   948  				e.WriteByte('r')
   949  			case '\t':
   950  				e.WriteByte('\\')
   951  				e.WriteByte('t')
   952  			default:
   953  				// This encodes bytes < 0x20 except for \t, \n and \r.
   954  				// If escapeHTML is set, it also escapes <, >, and &
   955  				// because they can lead to security holes when
   956  				// user-controlled strings are rendered into JSON
   957  				// and served to some browsers.
   958  				e.WriteString(`\u00`)
   959  				e.WriteByte(hex[b>>4])
   960  				e.WriteByte(hex[b&0xF])
   961  			}
   962  			i++
   963  			start = i
   964  			continue
   965  		}
   966  		c, size := utf8.DecodeRune(s[i:])
   967  		if c == utf8.RuneError && size == 1 {
   968  			if start < i {
   969  				e.Write(s[start:i])
   970  			}
   971  			e.WriteString(`\ufffd`)
   972  			i += size
   973  			start = i
   974  			continue
   975  		}
   976  		// U+2028 is LINE SEPARATOR.
   977  		// U+2029 is PARAGRAPH SEPARATOR.
   978  		// They are both technically valid characters in JSON strings,
   979  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   980  		// and can lead to security holes there. It is valid JSON to
   981  		// escape them, so we do so unconditionally.
   982  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   983  		if c == '\u2028' || c == '\u2029' {
   984  			if start < i {
   985  				e.Write(s[start:i])
   986  			}
   987  			e.WriteString(`\u202`)
   988  			e.WriteByte(hex[c&0xF])
   989  			i += size
   990  			start = i
   991  			continue
   992  		}
   993  		i += size
   994  	}
   995  	if start < len(s) {
   996  		e.Write(s[start:])
   997  	}
   998  	e.WriteByte('"')
   999  	return e.Len() - len0
  1000  }
  1001  
  1002  // A field represents a single field found in a struct.
  1003  type field struct {
  1004  	name      string
  1005  	nameBytes []byte                 // []byte(name)
  1006  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
  1007  
  1008  	tag       bool
  1009  	index     []int
  1010  	typ       reflect.Type
  1011  	omitEmpty bool
  1012  	quoted    bool
  1013  }
  1014  
  1015  func fillField(f field) field {
  1016  	f.nameBytes = []byte(f.name)
  1017  	f.equalFold = foldFunc(f.nameBytes)
  1018  	return f
  1019  }
  1020  
  1021  // byName sorts field by name, breaking ties with depth,
  1022  // then breaking ties with "name came from json tag", then
  1023  // breaking ties with index sequence.
  1024  type byName []field
  1025  
  1026  func (x byName) Len() int { return len(x) }
  1027  
  1028  func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1029  
  1030  func (x byName) Less(i, j int) bool {
  1031  	if x[i].name != x[j].name {
  1032  		return x[i].name < x[j].name
  1033  	}
  1034  	if len(x[i].index) != len(x[j].index) {
  1035  		return len(x[i].index) < len(x[j].index)
  1036  	}
  1037  	if x[i].tag != x[j].tag {
  1038  		return x[i].tag
  1039  	}
  1040  	return byIndex(x).Less(i, j)
  1041  }
  1042  
  1043  // byIndex sorts field by index sequence.
  1044  type byIndex []field
  1045  
  1046  func (x byIndex) Len() int { return len(x) }
  1047  
  1048  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1049  
  1050  func (x byIndex) Less(i, j int) bool {
  1051  	for k, xik := range x[i].index {
  1052  		if k >= len(x[j].index) {
  1053  			return false
  1054  		}
  1055  		if xik != x[j].index[k] {
  1056  			return xik < x[j].index[k]
  1057  		}
  1058  	}
  1059  	return len(x[i].index) < len(x[j].index)
  1060  }
  1061  
  1062  // typeFields returns a list of fields that JSON should recognize for the given type.
  1063  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1064  // and then any reachable anonymous structs.
  1065  func typeFields(t reflect.Type) []field {
  1066  	// Anonymous fields to explore at the current level and the next.
  1067  	current := []field{}
  1068  	next := []field{{typ: t}}
  1069  
  1070  	// Count of queued names for current level and the next.
  1071  	count := map[reflect.Type]int{}
  1072  	nextCount := map[reflect.Type]int{}
  1073  
  1074  	// Types already visited at an earlier level.
  1075  	visited := map[reflect.Type]bool{}
  1076  
  1077  	// Fields found.
  1078  	var fields []field
  1079  
  1080  	for len(next) > 0 {
  1081  		current, next = next, current[:0]
  1082  		count, nextCount = nextCount, map[reflect.Type]int{}
  1083  
  1084  		for _, f := range current {
  1085  			if visited[f.typ] {
  1086  				continue
  1087  			}
  1088  			visited[f.typ] = true
  1089  
  1090  			// Scan f.typ for fields to include.
  1091  			for i := 0; i < f.typ.NumField(); i++ {
  1092  				sf := f.typ.Field(i)
  1093  				if sf.PkgPath != "" && !sf.Anonymous { // unexported
  1094  					continue
  1095  				}
  1096  				tag := sf.Tag.Get("json")
  1097  				if tag == "-" {
  1098  					continue
  1099  				}
  1100  				name, opts := parseTag(tag)
  1101  				if !isValidTag(name) {
  1102  					name = ""
  1103  				}
  1104  				index := make([]int, len(f.index)+1)
  1105  				copy(index, f.index)
  1106  				index[len(f.index)] = i
  1107  
  1108  				ft := sf.Type
  1109  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1110  					// Follow pointer.
  1111  					ft = ft.Elem()
  1112  				}
  1113  
  1114  				// Only strings, floats, integers, and booleans can be quoted.
  1115  				quoted := false
  1116  				if opts.Contains("string") {
  1117  					switch ft.Kind() {
  1118  					case reflect.Bool,
  1119  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1120  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
  1121  						reflect.Float32, reflect.Float64,
  1122  						reflect.String:
  1123  						quoted = true
  1124  					}
  1125  				}
  1126  
  1127  				// Record found field and index sequence.
  1128  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1129  					tagged := name != ""
  1130  					if name == "" {
  1131  						name = sf.Name
  1132  					}
  1133  					fields = append(fields, fillField(field{
  1134  						name:      name,
  1135  						tag:       tagged,
  1136  						index:     index,
  1137  						typ:       ft,
  1138  						omitEmpty: opts.Contains("omitempty"),
  1139  						quoted:    quoted,
  1140  					}))
  1141  					if count[f.typ] > 1 {
  1142  						// If there were multiple instances, add a second,
  1143  						// so that the annihilation code will see a duplicate.
  1144  						// It only cares about the distinction between 1 or 2,
  1145  						// so don't bother generating any more copies.
  1146  						fields = append(fields, fields[len(fields)-1])
  1147  					}
  1148  					continue
  1149  				}
  1150  
  1151  				// Record new anonymous struct to explore in next round.
  1152  				nextCount[ft]++
  1153  				if nextCount[ft] == 1 {
  1154  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1155  				}
  1156  			}
  1157  		}
  1158  	}
  1159  
  1160  	sort.Sort(byName(fields))
  1161  
  1162  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1163  	// except that fields with JSON tags are promoted.
  1164  
  1165  	// The fields are sorted in primary order of name, secondary order
  1166  	// of field index length. Loop over names; for each name, delete
  1167  	// hidden fields by choosing the one dominant field that survives.
  1168  	out := fields[:0]
  1169  	for advance, i := 0, 0; i < len(fields); i += advance {
  1170  		// One iteration per name.
  1171  		// Find the sequence of fields with the name of this first field.
  1172  		fi := fields[i]
  1173  		name := fi.name
  1174  		for advance = 1; i+advance < len(fields); advance++ {
  1175  			fj := fields[i+advance]
  1176  			if fj.name != name {
  1177  				break
  1178  			}
  1179  		}
  1180  		if advance == 1 { // Only one field with this name
  1181  			out = append(out, fi)
  1182  			continue
  1183  		}
  1184  		dominant, ok := dominantField(fields[i : i+advance])
  1185  		if ok {
  1186  			out = append(out, dominant)
  1187  		}
  1188  	}
  1189  
  1190  	fields = out
  1191  	sort.Sort(byIndex(fields))
  1192  
  1193  	return fields
  1194  }
  1195  
  1196  // dominantField looks through the fields, all of which are known to
  1197  // have the same name, to find the single field that dominates the
  1198  // others using Go's embedding rules, modified by the presence of
  1199  // JSON tags. If there are multiple top-level fields, the boolean
  1200  // will be false: This condition is an error in Go and we skip all
  1201  // the fields.
  1202  func dominantField(fields []field) (field, bool) {
  1203  	// The fields are sorted in increasing index-length order. The winner
  1204  	// must therefore be one with the shortest index length. Drop all
  1205  	// longer entries, which is easy: just truncate the slice.
  1206  	length := len(fields[0].index)
  1207  	tagged := -1 // Index of first tagged field.
  1208  	for i, f := range fields {
  1209  		if len(f.index) > length {
  1210  			fields = fields[:i]
  1211  			break
  1212  		}
  1213  		if f.tag {
  1214  			if tagged >= 0 {
  1215  				// Multiple tagged fields at the same level: conflict.
  1216  				// Return no field.
  1217  				return field{}, false
  1218  			}
  1219  			tagged = i
  1220  		}
  1221  	}
  1222  	if tagged >= 0 {
  1223  		return fields[tagged], true
  1224  	}
  1225  	// All remaining fields have the same length. If there's more than one,
  1226  	// we have a conflict (two fields named "X" at the same level) and we
  1227  	// return no field.
  1228  	if len(fields) > 1 {
  1229  		return field{}, false
  1230  	}
  1231  	return fields[0], true
  1232  }
  1233  
  1234  var fieldCache struct {
  1235  	value atomic.Value // map[reflect.Type][]field
  1236  	mu    sync.Mutex   // used only by writers
  1237  }
  1238  
  1239  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1240  func cachedTypeFields(t reflect.Type) []field {
  1241  	m, _ := fieldCache.value.Load().(map[reflect.Type][]field)
  1242  	f := m[t]
  1243  	if f != nil {
  1244  		return f
  1245  	}
  1246  
  1247  	// Compute fields without lock.
  1248  	// Might duplicate effort but won't hold other computations back.
  1249  	f = typeFields(t)
  1250  	if f == nil {
  1251  		f = []field{}
  1252  	}
  1253  
  1254  	fieldCache.mu.Lock()
  1255  	m, _ = fieldCache.value.Load().(map[reflect.Type][]field)
  1256  	newM := make(map[reflect.Type][]field, len(m)+1)
  1257  	for k, v := range m {
  1258  		newM[k] = v
  1259  	}
  1260  	newM[t] = f
  1261  	fieldCache.value.Store(newM)
  1262  	fieldCache.mu.Unlock()
  1263  	return f
  1264  }