github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/math/big/ratconv_test.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package big 6 7 import ( 8 "bytes" 9 "fmt" 10 "math" 11 "strconv" 12 "strings" 13 "testing" 14 ) 15 16 type StringTest struct { 17 in, out string 18 ok bool 19 } 20 21 var setStringTests = []StringTest{ 22 {"0", "0", true}, 23 {"-0", "0", true}, 24 {"1", "1", true}, 25 {"-1", "-1", true}, 26 {"1.", "1", true}, 27 {"1e0", "1", true}, 28 {"1.e1", "10", true}, 29 {in: "1e"}, 30 {in: "1.e"}, 31 {in: "1e+14e-5"}, 32 {in: "1e4.5"}, 33 {in: "r"}, 34 {in: "a/b"}, 35 {in: "a.b"}, 36 {"-0.1", "-1/10", true}, 37 {"-.1", "-1/10", true}, 38 {"2/4", "1/2", true}, 39 {".25", "1/4", true}, 40 {"-1/5", "-1/5", true}, 41 {"8129567.7690E14", "812956776900000000000", true}, 42 {"78189e+4", "781890000", true}, 43 {"553019.8935e+8", "55301989350000", true}, 44 {"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true}, 45 {"9877861857500000E-7", "3951144743/4", true}, 46 {"2169378.417e-3", "2169378417/1000000", true}, 47 {"884243222337379604041632732738665534", "884243222337379604041632732738665534", true}, 48 {"53/70893980658822810696", "53/70893980658822810696", true}, 49 {"106/141787961317645621392", "53/70893980658822810696", true}, 50 {"204211327800791583.81095", "4084226556015831676219/20000", true}, 51 {"0e9999999999", "0", true}, // issue #16176 52 {in: "1/0"}, 53 } 54 55 // These are not supported by fmt.Fscanf. 56 var setStringTests2 = []StringTest{ 57 {"0x10", "16", true}, 58 {"-010/1", "-8", true}, // TODO(gri) should we even permit octal here? 59 {"-010.", "-10", true}, 60 {"0x10/0x20", "1/2", true}, 61 {"0b1000/3", "8/3", true}, 62 // TODO(gri) add more tests 63 } 64 65 func TestRatSetString(t *testing.T) { 66 var tests []StringTest 67 tests = append(tests, setStringTests...) 68 tests = append(tests, setStringTests2...) 69 70 for i, test := range tests { 71 x, ok := new(Rat).SetString(test.in) 72 73 if ok { 74 if !test.ok { 75 t.Errorf("#%d SetString(%q) expected failure", i, test.in) 76 } else if x.RatString() != test.out { 77 t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out) 78 } 79 } else if x != nil { 80 t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x) 81 } 82 } 83 } 84 85 func TestRatScan(t *testing.T) { 86 var buf bytes.Buffer 87 for i, test := range setStringTests { 88 x := new(Rat) 89 buf.Reset() 90 buf.WriteString(test.in) 91 92 _, err := fmt.Fscanf(&buf, "%v", x) 93 if err == nil != test.ok { 94 if test.ok { 95 t.Errorf("#%d (%s) error: %s", i, test.in, err) 96 } else { 97 t.Errorf("#%d (%s) expected error", i, test.in) 98 } 99 continue 100 } 101 if err == nil && x.RatString() != test.out { 102 t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) 103 } 104 } 105 } 106 107 var floatStringTests = []struct { 108 in string 109 prec int 110 out string 111 }{ 112 {"0", 0, "0"}, 113 {"0", 4, "0.0000"}, 114 {"1", 0, "1"}, 115 {"1", 2, "1.00"}, 116 {"-1", 0, "-1"}, 117 {"0.05", 1, "0.1"}, 118 {"-0.05", 1, "-0.1"}, 119 {".25", 2, "0.25"}, 120 {".25", 1, "0.3"}, 121 {".25", 3, "0.250"}, 122 {"-1/3", 3, "-0.333"}, 123 {"-2/3", 4, "-0.6667"}, 124 {"0.96", 1, "1.0"}, 125 {"0.999", 2, "1.00"}, 126 {"0.9", 0, "1"}, 127 {".25", -1, "0"}, 128 {".55", -1, "1"}, 129 } 130 131 func TestFloatString(t *testing.T) { 132 for i, test := range floatStringTests { 133 x, _ := new(Rat).SetString(test.in) 134 135 if x.FloatString(test.prec) != test.out { 136 t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out) 137 } 138 } 139 } 140 141 // Test inputs to Rat.SetString. The prefix "long:" causes the test 142 // to be skipped in --test.short mode. (The threshold is about 500us.) 143 var float64inputs = []string{ 144 // Constants plundered from strconv/testfp.txt. 145 146 // Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP 147 "5e+125", 148 "69e+267", 149 "999e-026", 150 "7861e-034", 151 "75569e-254", 152 "928609e-261", 153 "9210917e+080", 154 "84863171e+114", 155 "653777767e+273", 156 "5232604057e-298", 157 "27235667517e-109", 158 "653532977297e-123", 159 "3142213164987e-294", 160 "46202199371337e-072", 161 "231010996856685e-073", 162 "9324754620109615e+212", 163 "78459735791271921e+049", 164 "272104041512242479e+200", 165 "6802601037806061975e+198", 166 "20505426358836677347e-221", 167 "836168422905420598437e-234", 168 "4891559871276714924261e+222", 169 170 // Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP 171 "9e-265", 172 "85e-037", 173 "623e+100", 174 "3571e+263", 175 "81661e+153", 176 "920657e-023", 177 "4603285e-024", 178 "87575437e-309", 179 "245540327e+122", 180 "6138508175e+120", 181 "83356057653e+193", 182 "619534293513e+124", 183 "2335141086879e+218", 184 "36167929443327e-159", 185 "609610927149051e-255", 186 "3743626360493413e-165", 187 "94080055902682397e-242", 188 "899810892172646163e+283", 189 "7120190517612959703e+120", 190 "25188282901709339043e-252", 191 "308984926168550152811e-052", 192 "6372891218502368041059e+064", 193 194 // Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP 195 "5e-20", 196 "67e+14", 197 "985e+15", 198 "7693e-42", 199 "55895e-16", 200 "996622e-44", 201 "7038531e-32", 202 "60419369e-46", 203 "702990899e-20", 204 "6930161142e-48", 205 "25933168707e+13", 206 "596428896559e+20", 207 208 // Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP 209 "3e-23", 210 "57e+18", 211 "789e-35", 212 "2539e-18", 213 "76173e+28", 214 "887745e-11", 215 "5382571e-37", 216 "82381273e-35", 217 "750486563e-38", 218 "3752432815e-39", 219 "75224575729e-45", 220 "459926601011e+15", 221 222 // Constants plundered from strconv/atof_test.go. 223 224 "0", 225 "1", 226 "+1", 227 "1e23", 228 "1E23", 229 "100000000000000000000000", 230 "1e-100", 231 "123456700", 232 "99999999999999974834176", 233 "100000000000000000000001", 234 "100000000000000008388608", 235 "100000000000000016777215", 236 "100000000000000016777216", 237 "-1", 238 "-0.1", 239 "-0", // NB: exception made for this input 240 "1e-20", 241 "625e-3", 242 243 // largest float64 244 "1.7976931348623157e308", 245 "-1.7976931348623157e308", 246 // next float64 - too large 247 "1.7976931348623159e308", 248 "-1.7976931348623159e308", 249 // the border is ...158079 250 // borderline - okay 251 "1.7976931348623158e308", 252 "-1.7976931348623158e308", 253 // borderline - too large 254 "1.797693134862315808e308", 255 "-1.797693134862315808e308", 256 257 // a little too large 258 "1e308", 259 "2e308", 260 "1e309", 261 262 // way too large 263 "1e310", 264 "-1e310", 265 "1e400", 266 "-1e400", 267 "long:1e400000", 268 "long:-1e400000", 269 270 // denormalized 271 "1e-305", 272 "1e-306", 273 "1e-307", 274 "1e-308", 275 "1e-309", 276 "1e-310", 277 "1e-322", 278 // smallest denormal 279 "5e-324", 280 "4e-324", 281 "3e-324", 282 // too small 283 "2e-324", 284 // way too small 285 "1e-350", 286 "long:1e-400000", 287 // way too small, negative 288 "-1e-350", 289 "long:-1e-400000", 290 291 // try to overflow exponent 292 // [Disabled: too slow and memory-hungry with rationals.] 293 // "1e-4294967296", 294 // "1e+4294967296", 295 // "1e-18446744073709551616", 296 // "1e+18446744073709551616", 297 298 // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ 299 "2.2250738585072012e-308", 300 // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/ 301 "2.2250738585072011e-308", 302 303 // A very large number (initially wrongly parsed by the fast algorithm). 304 "4.630813248087435e+307", 305 306 // A different kind of very large number. 307 "22.222222222222222", 308 "long:2." + strings.Repeat("2", 4000) + "e+1", 309 310 // Exactly halfway between 1 and math.Nextafter(1, 2). 311 // Round to even (down). 312 "1.00000000000000011102230246251565404236316680908203125", 313 // Slightly lower; still round down. 314 "1.00000000000000011102230246251565404236316680908203124", 315 // Slightly higher; round up. 316 "1.00000000000000011102230246251565404236316680908203126", 317 // Slightly higher, but you have to read all the way to the end. 318 "long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1", 319 320 // Smallest denormal, 2^(-1022-52) 321 "4.940656458412465441765687928682213723651e-324", 322 // Half of smallest denormal, 2^(-1022-53) 323 "2.470328229206232720882843964341106861825e-324", 324 // A little more than the exact half of smallest denormal 325 // 2^-1075 + 2^-1100. (Rounds to 1p-1074.) 326 "2.470328302827751011111470718709768633275e-324", 327 // The exact halfway between smallest normal and largest denormal: 328 // 2^-1022 - 2^-1075. (Rounds to 2^-1022.) 329 "2.225073858507201136057409796709131975935e-308", 330 331 "1152921504606846975", // 1<<60 - 1 332 "-1152921504606846975", // -(1<<60 - 1) 333 "1152921504606846977", // 1<<60 + 1 334 "-1152921504606846977", // -(1<<60 + 1) 335 336 "1/3", 337 } 338 339 // isFinite reports whether f represents a finite rational value. 340 // It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0). 341 func isFinite(f float64) bool { 342 return math.Abs(f) <= math.MaxFloat64 343 } 344 345 func TestFloat32SpecialCases(t *testing.T) { 346 for _, input := range float64inputs { 347 if strings.HasPrefix(input, "long:") { 348 if testing.Short() { 349 continue 350 } 351 input = input[len("long:"):] 352 } 353 354 r, ok := new(Rat).SetString(input) 355 if !ok { 356 t.Errorf("Rat.SetString(%q) failed", input) 357 continue 358 } 359 f, exact := r.Float32() 360 361 // 1. Check string -> Rat -> float32 conversions are 362 // consistent with strconv.ParseFloat. 363 // Skip this check if the input uses "a/b" rational syntax. 364 if !strings.Contains(input, "/") { 365 e64, _ := strconv.ParseFloat(input, 32) 366 e := float32(e64) 367 368 // Careful: negative Rats too small for 369 // float64 become -0, but Rat obviously cannot 370 // preserve the sign from SetString("-0"). 371 switch { 372 case math.Float32bits(e) == math.Float32bits(f): 373 // Ok: bitwise equal. 374 case f == 0 && r.Num().BitLen() == 0: 375 // Ok: Rat(0) is equivalent to both +/- float64(0). 376 default: 377 t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e) 378 } 379 } 380 381 if !isFinite(float64(f)) { 382 continue 383 } 384 385 // 2. Check f is best approximation to r. 386 if !checkIsBestApprox32(t, f, r) { 387 // Append context information. 388 t.Errorf("(input was %q)", input) 389 } 390 391 // 3. Check f->R->f roundtrip is non-lossy. 392 checkNonLossyRoundtrip32(t, f) 393 394 // 4. Check exactness using slow algorithm. 395 if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact { 396 t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact) 397 } 398 } 399 } 400 401 func TestFloat64SpecialCases(t *testing.T) { 402 for _, input := range float64inputs { 403 if strings.HasPrefix(input, "long:") { 404 if testing.Short() { 405 continue 406 } 407 input = input[len("long:"):] 408 } 409 410 r, ok := new(Rat).SetString(input) 411 if !ok { 412 t.Errorf("Rat.SetString(%q) failed", input) 413 continue 414 } 415 f, exact := r.Float64() 416 417 // 1. Check string -> Rat -> float64 conversions are 418 // consistent with strconv.ParseFloat. 419 // Skip this check if the input uses "a/b" rational syntax. 420 if !strings.Contains(input, "/") { 421 e, _ := strconv.ParseFloat(input, 64) 422 423 // Careful: negative Rats too small for 424 // float64 become -0, but Rat obviously cannot 425 // preserve the sign from SetString("-0"). 426 switch { 427 case math.Float64bits(e) == math.Float64bits(f): 428 // Ok: bitwise equal. 429 case f == 0 && r.Num().BitLen() == 0: 430 // Ok: Rat(0) is equivalent to both +/- float64(0). 431 default: 432 t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e) 433 } 434 } 435 436 if !isFinite(f) { 437 continue 438 } 439 440 // 2. Check f is best approximation to r. 441 if !checkIsBestApprox64(t, f, r) { 442 // Append context information. 443 t.Errorf("(input was %q)", input) 444 } 445 446 // 3. Check f->R->f roundtrip is non-lossy. 447 checkNonLossyRoundtrip64(t, f) 448 449 // 4. Check exactness using slow algorithm. 450 if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact { 451 t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact) 452 } 453 } 454 }