github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/runtime/cgocall.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) locks g to m, calls entersyscall
    12  // so as not to block other goroutines or the garbage collector,
    13  // and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go. If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF calls crosscall2(_cgoexp_GoF, frame, framesize).  Crosscall2
    39  // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
    40  // adapter from the gcc function call ABI to the 6c function call ABI.
    41  // It is called from gcc to call 6c functions. In this case it calls
    42  // _cgoexp_GoF(frame, framesize), still running on m->g0's stack
    43  // and outside the $GOMAXPROCS limit. Thus, this code cannot yet
    44  // call arbitrary Go code directly and must be careful not to allocate
    45  // memory or use up m->g0's stack.
    46  //
    47  // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize, ctxt).
    48  // (The reason for having _cgoexp_GoF instead of writing a crosscall3
    49  // to make this call directly is that _cgoexp_GoF, because it is compiled
    50  // with 6c instead of gcc, can refer to dotted names like
    51  // runtime.cgocallback and p.GoF.)
    52  //
    53  // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
    54  // stack to the original g (m->curg)'s stack, on which it calls
    55  // runtime.cgocallbackg(p.GoF, frame, framesize).
    56  // As part of the stack switch, runtime.cgocallback saves the current
    57  // SP as m->g0->sched.sp, so that any use of m->g0's stack during the
    58  // execution of the callback will be done below the existing stack frames.
    59  // Before overwriting m->g0->sched.sp, it pushes the old value on the
    60  // m->g0 stack, so that it can be restored later.
    61  //
    62  // runtime.cgocallbackg (below) is now running on a real goroutine
    63  // stack (not an m->g0 stack).  First it calls runtime.exitsyscall, which will
    64  // block until the $GOMAXPROCS limit allows running this goroutine.
    65  // Once exitsyscall has returned, it is safe to do things like call the memory
    66  // allocator or invoke the Go callback function p.GoF.  runtime.cgocallbackg
    67  // first defers a function to unwind m->g0.sched.sp, so that if p.GoF
    68  // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
    69  // and the m->curg stack will be unwound in lock step.
    70  // Then it calls p.GoF.  Finally it pops but does not execute the deferred
    71  // function, calls runtime.entersyscall, and returns to runtime.cgocallback.
    72  //
    73  // After it regains control, runtime.cgocallback switches back to
    74  // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
    75  // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
    76  //
    77  // _cgoexp_GoF immediately returns to crosscall2, which restores the
    78  // callee-save registers for gcc and returns to GoF, which returns to f.
    79  
    80  package runtime
    81  
    82  import (
    83  	"runtime/internal/atomic"
    84  	"runtime/internal/sys"
    85  	"unsafe"
    86  )
    87  
    88  // Addresses collected in a cgo backtrace when crashing.
    89  // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c.
    90  type cgoCallers [32]uintptr
    91  
    92  // Call from Go to C.
    93  //go:nosplit
    94  func cgocall(fn, arg unsafe.Pointer) int32 {
    95  	if !iscgo && GOOS != "solaris" && GOOS != "windows" {
    96  		throw("cgocall unavailable")
    97  	}
    98  
    99  	if fn == nil {
   100  		throw("cgocall nil")
   101  	}
   102  
   103  	if raceenabled {
   104  		racereleasemerge(unsafe.Pointer(&racecgosync))
   105  	}
   106  
   107  	/*
   108  	 * Lock g to m to ensure we stay on the same stack if we do a
   109  	 * cgo callback. Add entry to defer stack in case of panic.
   110  	 */
   111  	lockOSThread()
   112  	mp := getg().m
   113  	mp.ncgocall++
   114  	mp.ncgo++
   115  	defer endcgo(mp)
   116  
   117  	// Reset traceback.
   118  	mp.cgoCallers[0] = 0
   119  
   120  	/*
   121  	 * Announce we are entering a system call
   122  	 * so that the scheduler knows to create another
   123  	 * M to run goroutines while we are in the
   124  	 * foreign code.
   125  	 *
   126  	 * The call to asmcgocall is guaranteed not to
   127  	 * split the stack and does not allocate memory,
   128  	 * so it is safe to call while "in a system call", outside
   129  	 * the $GOMAXPROCS accounting.
   130  	 */
   131  	entersyscall(0)
   132  	errno := asmcgocall(fn, arg)
   133  	exitsyscall(0)
   134  
   135  	return errno
   136  }
   137  
   138  //go:nosplit
   139  func endcgo(mp *m) {
   140  	mp.ncgo--
   141  
   142  	if raceenabled {
   143  		raceacquire(unsafe.Pointer(&racecgosync))
   144  	}
   145  
   146  	unlockOSThread() // invalidates mp
   147  }
   148  
   149  // Call from C back to Go.
   150  //go:nosplit
   151  func cgocallbackg(ctxt uintptr) {
   152  	gp := getg()
   153  	if gp != gp.m.curg {
   154  		println("runtime: bad g in cgocallback")
   155  		exit(2)
   156  	}
   157  
   158  	// Save current syscall parameters, so m.syscall can be
   159  	// used again if callback decide to make syscall.
   160  	syscall := gp.m.syscall
   161  
   162  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   163  	// stack. However, since we're returning to an earlier stack frame and
   164  	// need to pair with the entersyscall() call made by cgocall, we must
   165  	// save syscall* and let reentersyscall restore them.
   166  	savedsp := unsafe.Pointer(gp.syscallsp)
   167  	savedpc := gp.syscallpc
   168  	exitsyscall(0) // coming out of cgo call
   169  
   170  	cgocallbackg1(ctxt)
   171  
   172  	// going back to cgo call
   173  	reentersyscall(savedpc, uintptr(savedsp))
   174  
   175  	gp.m.syscall = syscall
   176  }
   177  
   178  func cgocallbackg1(ctxt uintptr) {
   179  	gp := getg()
   180  	if gp.m.needextram || atomic.Load(&extraMWaiters) > 0 {
   181  		gp.m.needextram = false
   182  		systemstack(newextram)
   183  	}
   184  
   185  	if ctxt != 0 {
   186  		s := append(gp.cgoCtxt, ctxt)
   187  
   188  		// Now we need to set gp.cgoCtxt = s, but we could get
   189  		// a SIGPROF signal while manipulating the slice, and
   190  		// the SIGPROF handler could pick up gp.cgoCtxt while
   191  		// tracing up the stack.  We need to ensure that the
   192  		// handler always sees a valid slice, so set the
   193  		// values in an order such that it always does.
   194  		p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   195  		atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0]))
   196  		p.cap = cap(s)
   197  		p.len = len(s)
   198  
   199  		defer func(gp *g) {
   200  			// Decrease the length of the slice by one, safely.
   201  			p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   202  			p.len--
   203  		}(gp)
   204  	}
   205  
   206  	if gp.m.ncgo == 0 {
   207  		// The C call to Go came from a thread not currently running
   208  		// any Go. In the case of -buildmode=c-archive or c-shared,
   209  		// this call may be coming in before package initialization
   210  		// is complete. Wait until it is.
   211  		<-main_init_done
   212  	}
   213  
   214  	// Add entry to defer stack in case of panic.
   215  	restore := true
   216  	defer unwindm(&restore)
   217  
   218  	if raceenabled {
   219  		raceacquire(unsafe.Pointer(&racecgosync))
   220  	}
   221  
   222  	type args struct {
   223  		fn      *funcval
   224  		arg     unsafe.Pointer
   225  		argsize uintptr
   226  	}
   227  	var cb *args
   228  
   229  	// Location of callback arguments depends on stack frame layout
   230  	// and size of stack frame of cgocallback_gofunc.
   231  	sp := gp.m.g0.sched.sp
   232  	switch GOARCH {
   233  	default:
   234  		throw("cgocallbackg is unimplemented on arch")
   235  	case "arm":
   236  		// On arm, stack frame is two words and there's a saved LR between
   237  		// SP and the stack frame and between the stack frame and the arguments.
   238  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   239  	case "arm64":
   240  		// On arm64, stack frame is four words and there's a saved LR between
   241  		// SP and the stack frame and between the stack frame and the arguments.
   242  		cb = (*args)(unsafe.Pointer(sp + 5*sys.PtrSize))
   243  	case "amd64":
   244  		// On amd64, stack frame is two words, plus caller PC.
   245  		if framepointer_enabled {
   246  			// In this case, there's also saved BP.
   247  			cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   248  			break
   249  		}
   250  		cb = (*args)(unsafe.Pointer(sp + 3*sys.PtrSize))
   251  	case "386":
   252  		// On 386, stack frame is three words, plus caller PC.
   253  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   254  	case "ppc64", "ppc64le", "s390x":
   255  		// On ppc64 and s390x, the callback arguments are in the arguments area of
   256  		// cgocallback's stack frame. The stack looks like this:
   257  		// +--------------------+------------------------------+
   258  		// |                    | ...                          |
   259  		// | cgoexp_$fn         +------------------------------+
   260  		// |                    | fixed frame area             |
   261  		// +--------------------+------------------------------+
   262  		// |                    | arguments area               |
   263  		// | cgocallback        +------------------------------+ <- sp + 2*minFrameSize + 2*ptrSize
   264  		// |                    | fixed frame area             |
   265  		// +--------------------+------------------------------+ <- sp + minFrameSize + 2*ptrSize
   266  		// |                    | local variables (2 pointers) |
   267  		// | cgocallback_gofunc +------------------------------+ <- sp + minFrameSize
   268  		// |                    | fixed frame area             |
   269  		// +--------------------+------------------------------+ <- sp
   270  		cb = (*args)(unsafe.Pointer(sp + 2*sys.MinFrameSize + 2*sys.PtrSize))
   271  	case "mips64", "mips64le":
   272  		// On mips64x, stack frame is two words and there's a saved LR between
   273  		// SP and the stack frame and between the stack frame and the arguments.
   274  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   275  	}
   276  
   277  	// Invoke callback.
   278  	// NOTE(rsc): passing nil for argtype means that the copying of the
   279  	// results back into cb.arg happens without any corresponding write barriers.
   280  	// For cgo, cb.arg points into a C stack frame and therefore doesn't
   281  	// hold any pointers that the GC can find anyway - the write barrier
   282  	// would be a no-op.
   283  	reflectcall(nil, unsafe.Pointer(cb.fn), cb.arg, uint32(cb.argsize), 0)
   284  
   285  	if raceenabled {
   286  		racereleasemerge(unsafe.Pointer(&racecgosync))
   287  	}
   288  	if msanenabled {
   289  		// Tell msan that we wrote to the entire argument block.
   290  		// This tells msan that we set the results.
   291  		// Since we have already called the function it doesn't
   292  		// matter that we are writing to the non-result parameters.
   293  		msanwrite(cb.arg, cb.argsize)
   294  	}
   295  
   296  	// Do not unwind m->g0->sched.sp.
   297  	// Our caller, cgocallback, will do that.
   298  	restore = false
   299  }
   300  
   301  func unwindm(restore *bool) {
   302  	if !*restore {
   303  		return
   304  	}
   305  	// Restore sp saved by cgocallback during
   306  	// unwind of g's stack (see comment at top of file).
   307  	mp := acquirem()
   308  	sched := &mp.g0.sched
   309  	switch GOARCH {
   310  	default:
   311  		throw("unwindm not implemented")
   312  	case "386", "amd64", "arm", "ppc64", "ppc64le", "mips64", "mips64le", "s390x":
   313  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize))
   314  	case "arm64":
   315  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16))
   316  	}
   317  	releasem(mp)
   318  }
   319  
   320  // called from assembly
   321  func badcgocallback() {
   322  	throw("misaligned stack in cgocallback")
   323  }
   324  
   325  // called from (incomplete) assembly
   326  func cgounimpl() {
   327  	throw("cgo not implemented")
   328  }
   329  
   330  var racecgosync uint64 // represents possible synchronization in C code
   331  
   332  // Pointer checking for cgo code.
   333  
   334  // We want to detect all cases where a program that does not use
   335  // unsafe makes a cgo call passing a Go pointer to memory that
   336  // contains a Go pointer. Here a Go pointer is defined as a pointer
   337  // to memory allocated by the Go runtime. Programs that use unsafe
   338  // can evade this restriction easily, so we don't try to catch them.
   339  // The cgo program will rewrite all possibly bad pointer arguments to
   340  // call cgoCheckPointer, where we can catch cases of a Go pointer
   341  // pointing to a Go pointer.
   342  
   343  // Complicating matters, taking the address of a slice or array
   344  // element permits the C program to access all elements of the slice
   345  // or array. In that case we will see a pointer to a single element,
   346  // but we need to check the entire data structure.
   347  
   348  // The cgoCheckPointer call takes additional arguments indicating that
   349  // it was called on an address expression. An additional argument of
   350  // true means that it only needs to check a single element. An
   351  // additional argument of a slice or array means that it needs to
   352  // check the entire slice/array, but nothing else. Otherwise, the
   353  // pointer could be anything, and we check the entire heap object,
   354  // which is conservative but safe.
   355  
   356  // When and if we implement a moving garbage collector,
   357  // cgoCheckPointer will pin the pointer for the duration of the cgo
   358  // call.  (This is necessary but not sufficient; the cgo program will
   359  // also have to change to pin Go pointers that cannot point to Go
   360  // pointers.)
   361  
   362  // cgoCheckPointer checks if the argument contains a Go pointer that
   363  // points to a Go pointer, and panics if it does. It returns the pointer.
   364  func cgoCheckPointer(ptr interface{}, args ...interface{}) interface{} {
   365  	if debug.cgocheck == 0 {
   366  		return ptr
   367  	}
   368  
   369  	ep := (*eface)(unsafe.Pointer(&ptr))
   370  	t := ep._type
   371  
   372  	top := true
   373  	if len(args) > 0 && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
   374  		p := ep.data
   375  		if t.kind&kindDirectIface == 0 {
   376  			p = *(*unsafe.Pointer)(p)
   377  		}
   378  		if !cgoIsGoPointer(p) {
   379  			return ptr
   380  		}
   381  		aep := (*eface)(unsafe.Pointer(&args[0]))
   382  		switch aep._type.kind & kindMask {
   383  		case kindBool:
   384  			if t.kind&kindMask == kindUnsafePointer {
   385  				// We don't know the type of the element.
   386  				break
   387  			}
   388  			pt := (*ptrtype)(unsafe.Pointer(t))
   389  			cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
   390  			return ptr
   391  		case kindSlice:
   392  			// Check the slice rather than the pointer.
   393  			ep = aep
   394  			t = ep._type
   395  		case kindArray:
   396  			// Check the array rather than the pointer.
   397  			// Pass top as false since we have a pointer
   398  			// to the array.
   399  			ep = aep
   400  			t = ep._type
   401  			top = false
   402  		default:
   403  			throw("can't happen")
   404  		}
   405  	}
   406  
   407  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
   408  	return ptr
   409  }
   410  
   411  const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
   412  const cgoResultFail = "cgo result has Go pointer"
   413  
   414  // cgoCheckArg is the real work of cgoCheckPointer. The argument p
   415  // is either a pointer to the value (of type t), or the value itself,
   416  // depending on indir. The top parameter is whether we are at the top
   417  // level, where Go pointers are allowed.
   418  func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
   419  	if t.kind&kindNoPointers != 0 {
   420  		// If the type has no pointers there is nothing to do.
   421  		return
   422  	}
   423  
   424  	switch t.kind & kindMask {
   425  	default:
   426  		throw("can't happen")
   427  	case kindArray:
   428  		at := (*arraytype)(unsafe.Pointer(t))
   429  		if !indir {
   430  			if at.len != 1 {
   431  				throw("can't happen")
   432  			}
   433  			cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
   434  			return
   435  		}
   436  		for i := uintptr(0); i < at.len; i++ {
   437  			cgoCheckArg(at.elem, p, true, top, msg)
   438  			p = add(p, at.elem.size)
   439  		}
   440  	case kindChan, kindMap:
   441  		// These types contain internal pointers that will
   442  		// always be allocated in the Go heap. It's never OK
   443  		// to pass them to C.
   444  		panic(errorString(msg))
   445  	case kindFunc:
   446  		if indir {
   447  			p = *(*unsafe.Pointer)(p)
   448  		}
   449  		if !cgoIsGoPointer(p) {
   450  			return
   451  		}
   452  		panic(errorString(msg))
   453  	case kindInterface:
   454  		it := *(**_type)(p)
   455  		if it == nil {
   456  			return
   457  		}
   458  		// A type known at compile time is OK since it's
   459  		// constant. A type not known at compile time will be
   460  		// in the heap and will not be OK.
   461  		if inheap(uintptr(unsafe.Pointer(it))) {
   462  			panic(errorString(msg))
   463  		}
   464  		p = *(*unsafe.Pointer)(add(p, sys.PtrSize))
   465  		if !cgoIsGoPointer(p) {
   466  			return
   467  		}
   468  		if !top {
   469  			panic(errorString(msg))
   470  		}
   471  		cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
   472  	case kindSlice:
   473  		st := (*slicetype)(unsafe.Pointer(t))
   474  		s := (*slice)(p)
   475  		p = s.array
   476  		if !cgoIsGoPointer(p) {
   477  			return
   478  		}
   479  		if !top {
   480  			panic(errorString(msg))
   481  		}
   482  		if st.elem.kind&kindNoPointers != 0 {
   483  			return
   484  		}
   485  		for i := 0; i < s.cap; i++ {
   486  			cgoCheckArg(st.elem, p, true, false, msg)
   487  			p = add(p, st.elem.size)
   488  		}
   489  	case kindString:
   490  		ss := (*stringStruct)(p)
   491  		if !cgoIsGoPointer(ss.str) {
   492  			return
   493  		}
   494  		if !top {
   495  			panic(errorString(msg))
   496  		}
   497  	case kindStruct:
   498  		st := (*structtype)(unsafe.Pointer(t))
   499  		if !indir {
   500  			if len(st.fields) != 1 {
   501  				throw("can't happen")
   502  			}
   503  			cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
   504  			return
   505  		}
   506  		for _, f := range st.fields {
   507  			cgoCheckArg(f.typ, add(p, f.offset), true, top, msg)
   508  		}
   509  	case kindPtr, kindUnsafePointer:
   510  		if indir {
   511  			p = *(*unsafe.Pointer)(p)
   512  		}
   513  
   514  		if !cgoIsGoPointer(p) {
   515  			return
   516  		}
   517  		if !top {
   518  			panic(errorString(msg))
   519  		}
   520  
   521  		cgoCheckUnknownPointer(p, msg)
   522  	}
   523  }
   524  
   525  // cgoCheckUnknownPointer is called for an arbitrary pointer into Go
   526  // memory. It checks whether that Go memory contains any other
   527  // pointer into Go memory. If it does, we panic.
   528  // The return values are unused but useful to see in panic tracebacks.
   529  func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
   530  	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
   531  		if !inheap(uintptr(p)) {
   532  			// On 32-bit systems it is possible for C's allocated memory
   533  			// to have addresses between arena_start and arena_used.
   534  			// Either this pointer is a stack or an unused span or it's
   535  			// a C allocation. Escape analysis should prevent the first,
   536  			// garbage collection should prevent the second,
   537  			// and the third is completely OK.
   538  			return
   539  		}
   540  
   541  		b, hbits, span, _ := heapBitsForObject(uintptr(p), 0, 0)
   542  		base = b
   543  		if base == 0 {
   544  			return
   545  		}
   546  		n := span.elemsize
   547  		for i = uintptr(0); i < n; i += sys.PtrSize {
   548  			if i != 1*sys.PtrSize && !hbits.morePointers() {
   549  				// No more possible pointers.
   550  				break
   551  			}
   552  			if hbits.isPointer() {
   553  				if cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
   554  					panic(errorString(msg))
   555  				}
   556  			}
   557  			hbits = hbits.next()
   558  		}
   559  
   560  		return
   561  	}
   562  
   563  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   564  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   565  			// We have no way to know the size of the object.
   566  			// We have to assume that it might contain a pointer.
   567  			panic(errorString(msg))
   568  		}
   569  		// In the text or noptr sections, we know that the
   570  		// pointer does not point to a Go pointer.
   571  	}
   572  
   573  	return
   574  }
   575  
   576  // cgoIsGoPointer returns whether the pointer is a Go pointer--a
   577  // pointer to Go memory. We only care about Go memory that might
   578  // contain pointers.
   579  //go:nosplit
   580  //go:nowritebarrierrec
   581  func cgoIsGoPointer(p unsafe.Pointer) bool {
   582  	if p == nil {
   583  		return false
   584  	}
   585  
   586  	if inHeapOrStack(uintptr(p)) {
   587  		return true
   588  	}
   589  
   590  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   591  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   592  			return true
   593  		}
   594  	}
   595  
   596  	return false
   597  }
   598  
   599  // cgoInRange returns whether p is between start and end.
   600  //go:nosplit
   601  //go:nowritebarrierrec
   602  func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
   603  	return start <= uintptr(p) && uintptr(p) < end
   604  }
   605  
   606  // cgoCheckResult is called to check the result parameter of an
   607  // exported Go function. It panics if the result is or contains a Go
   608  // pointer.
   609  func cgoCheckResult(val interface{}) {
   610  	if debug.cgocheck == 0 {
   611  		return
   612  	}
   613  
   614  	ep := (*eface)(unsafe.Pointer(&val))
   615  	t := ep._type
   616  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
   617  }