github.com/sbinet/go@v0.0.0-20160827155028-54d7de7dd62b/src/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // if err := pprof.StartCPUProfile(f); err != nil { 32 // log.Fatal("could not start CPU profile: ", err) 33 // } 34 // defer pprof.StopCPUProfile() 35 // } 36 // ... 37 // if *memprofile != "" { 38 // f, err := os.Create(*memprofile) 39 // if err != nil { 40 // log.Fatal("could not create memory profile: ", err) 41 // } 42 // runtime.GC() // get up-to-date statistics 43 // if err := pprof.WriteHeapProfile(f); err != nil { 44 // log.Fatal("could not write memory profile: ", err) 45 // } 46 // f.Close() 47 // } 48 // } 49 // 50 // There is also a standard HTTP interface to profiling data. Adding 51 // the following line will install handlers under the /debug/pprof/ 52 // URL to download live profiles: 53 // 54 // import _ "net/http/pprof" 55 // 56 // See the net/http/pprof package for more details. 57 // 58 // Profiles can then be visualized with the pprof tool: 59 // 60 // go tool pprof cpu.prof 61 // 62 // There are many commands available from the pprof command line. 63 // Commonly used commands include "top", which prints a summary of the 64 // top program hot-spots, and "web", which opens an interactive graph 65 // of hot-spots and their call graphs. Use "help" for information on 66 // all pprof commands. 67 // 68 // For more information about pprof, see 69 // https://github.com/google/pprof/blob/master/doc/pprof.md. 70 package pprof 71 72 import ( 73 "bufio" 74 "bytes" 75 "fmt" 76 "io" 77 "os" 78 "runtime" 79 "sort" 80 "strings" 81 "sync" 82 "text/tabwriter" 83 ) 84 85 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 86 // See https://golang.org/issue/13841 for details about known problems. 87 88 // A Profile is a collection of stack traces showing the call sequences 89 // that led to instances of a particular event, such as allocation. 90 // Packages can create and maintain their own profiles; the most common 91 // use is for tracking resources that must be explicitly closed, such as files 92 // or network connections. 93 // 94 // A Profile's methods can be called from multiple goroutines simultaneously. 95 // 96 // Each Profile has a unique name. A few profiles are predefined: 97 // 98 // goroutine - stack traces of all current goroutines 99 // heap - a sampling of all heap allocations 100 // threadcreate - stack traces that led to the creation of new OS threads 101 // block - stack traces that led to blocking on synchronization primitives 102 // 103 // These predefined profiles maintain themselves and panic on an explicit 104 // Add or Remove method call. 105 // 106 // The heap profile reports statistics as of the most recently completed 107 // garbage collection; it elides more recent allocation to avoid skewing 108 // the profile away from live data and toward garbage. 109 // If there has been no garbage collection at all, the heap profile reports 110 // all known allocations. This exception helps mainly in programs running 111 // without garbage collection enabled, usually for debugging purposes. 112 // 113 // The CPU profile is not available as a Profile. It has a special API, 114 // the StartCPUProfile and StopCPUProfile functions, because it streams 115 // output to a writer during profiling. 116 // 117 type Profile struct { 118 name string 119 mu sync.Mutex 120 m map[interface{}][]uintptr 121 count func() int 122 write func(io.Writer, int) error 123 } 124 125 // profiles records all registered profiles. 126 var profiles struct { 127 mu sync.Mutex 128 m map[string]*Profile 129 } 130 131 var goroutineProfile = &Profile{ 132 name: "goroutine", 133 count: countGoroutine, 134 write: writeGoroutine, 135 } 136 137 var threadcreateProfile = &Profile{ 138 name: "threadcreate", 139 count: countThreadCreate, 140 write: writeThreadCreate, 141 } 142 143 var heapProfile = &Profile{ 144 name: "heap", 145 count: countHeap, 146 write: writeHeap, 147 } 148 149 var blockProfile = &Profile{ 150 name: "block", 151 count: countBlock, 152 write: writeBlock, 153 } 154 155 func lockProfiles() { 156 profiles.mu.Lock() 157 if profiles.m == nil { 158 // Initial built-in profiles. 159 profiles.m = map[string]*Profile{ 160 "goroutine": goroutineProfile, 161 "threadcreate": threadcreateProfile, 162 "heap": heapProfile, 163 "block": blockProfile, 164 } 165 } 166 } 167 168 func unlockProfiles() { 169 profiles.mu.Unlock() 170 } 171 172 // NewProfile creates a new profile with the given name. 173 // If a profile with that name already exists, NewProfile panics. 174 // The convention is to use a 'import/path.' prefix to create 175 // separate name spaces for each package. 176 func NewProfile(name string) *Profile { 177 lockProfiles() 178 defer unlockProfiles() 179 if name == "" { 180 panic("pprof: NewProfile with empty name") 181 } 182 if profiles.m[name] != nil { 183 panic("pprof: NewProfile name already in use: " + name) 184 } 185 p := &Profile{ 186 name: name, 187 m: map[interface{}][]uintptr{}, 188 } 189 profiles.m[name] = p 190 return p 191 } 192 193 // Lookup returns the profile with the given name, or nil if no such profile exists. 194 func Lookup(name string) *Profile { 195 lockProfiles() 196 defer unlockProfiles() 197 return profiles.m[name] 198 } 199 200 // Profiles returns a slice of all the known profiles, sorted by name. 201 func Profiles() []*Profile { 202 lockProfiles() 203 defer unlockProfiles() 204 205 var all []*Profile 206 for _, p := range profiles.m { 207 all = append(all, p) 208 } 209 210 sort.Sort(byName(all)) 211 return all 212 } 213 214 type byName []*Profile 215 216 func (x byName) Len() int { return len(x) } 217 func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 218 func (x byName) Less(i, j int) bool { return x[i].name < x[j].name } 219 220 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 221 func (p *Profile) Name() string { 222 return p.name 223 } 224 225 // Count returns the number of execution stacks currently in the profile. 226 func (p *Profile) Count() int { 227 p.mu.Lock() 228 defer p.mu.Unlock() 229 if p.count != nil { 230 return p.count() 231 } 232 return len(p.m) 233 } 234 235 // Add adds the current execution stack to the profile, associated with value. 236 // Add stores value in an internal map, so value must be suitable for use as 237 // a map key and will not be garbage collected until the corresponding 238 // call to Remove. Add panics if the profile already contains a stack for value. 239 // 240 // The skip parameter has the same meaning as runtime.Caller's skip 241 // and controls where the stack trace begins. Passing skip=0 begins the 242 // trace in the function calling Add. For example, given this 243 // execution stack: 244 // 245 // Add 246 // called from rpc.NewClient 247 // called from mypkg.Run 248 // called from main.main 249 // 250 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 251 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 252 // 253 func (p *Profile) Add(value interface{}, skip int) { 254 if p.name == "" { 255 panic("pprof: use of uninitialized Profile") 256 } 257 if p.write != nil { 258 panic("pprof: Add called on built-in Profile " + p.name) 259 } 260 261 stk := make([]uintptr, 32) 262 n := runtime.Callers(skip+1, stk[:]) 263 264 p.mu.Lock() 265 defer p.mu.Unlock() 266 if p.m[value] != nil { 267 panic("pprof: Profile.Add of duplicate value") 268 } 269 p.m[value] = stk[:n] 270 } 271 272 // Remove removes the execution stack associated with value from the profile. 273 // It is a no-op if the value is not in the profile. 274 func (p *Profile) Remove(value interface{}) { 275 p.mu.Lock() 276 defer p.mu.Unlock() 277 delete(p.m, value) 278 } 279 280 // WriteTo writes a pprof-formatted snapshot of the profile to w. 281 // If a write to w returns an error, WriteTo returns that error. 282 // Otherwise, WriteTo returns nil. 283 // 284 // The debug parameter enables additional output. 285 // Passing debug=0 prints only the hexadecimal addresses that pprof needs. 286 // Passing debug=1 adds comments translating addresses to function names 287 // and line numbers, so that a programmer can read the profile without tools. 288 // 289 // The predefined profiles may assign meaning to other debug values; 290 // for example, when printing the "goroutine" profile, debug=2 means to 291 // print the goroutine stacks in the same form that a Go program uses 292 // when dying due to an unrecovered panic. 293 func (p *Profile) WriteTo(w io.Writer, debug int) error { 294 if p.name == "" { 295 panic("pprof: use of zero Profile") 296 } 297 if p.write != nil { 298 return p.write(w, debug) 299 } 300 301 // Obtain consistent snapshot under lock; then process without lock. 302 var all [][]uintptr 303 p.mu.Lock() 304 for _, stk := range p.m { 305 all = append(all, stk) 306 } 307 p.mu.Unlock() 308 309 // Map order is non-deterministic; make output deterministic. 310 sort.Sort(stackProfile(all)) 311 312 return printCountProfile(w, debug, p.name, stackProfile(all)) 313 } 314 315 type stackProfile [][]uintptr 316 317 func (x stackProfile) Len() int { return len(x) } 318 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 319 func (x stackProfile) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 320 func (x stackProfile) Less(i, j int) bool { 321 t, u := x[i], x[j] 322 for k := 0; k < len(t) && k < len(u); k++ { 323 if t[k] != u[k] { 324 return t[k] < u[k] 325 } 326 } 327 return len(t) < len(u) 328 } 329 330 // A countProfile is a set of stack traces to be printed as counts 331 // grouped by stack trace. There are multiple implementations: 332 // all that matters is that we can find out how many traces there are 333 // and obtain each trace in turn. 334 type countProfile interface { 335 Len() int 336 Stack(i int) []uintptr 337 } 338 339 // printCountProfile prints a countProfile at the specified debug level. 340 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 341 b := bufio.NewWriter(w) 342 var tw *tabwriter.Writer 343 w = b 344 if debug > 0 { 345 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 346 w = tw 347 } 348 349 fmt.Fprintf(w, "%s profile: total %d\n", name, p.Len()) 350 351 // Build count of each stack. 352 var buf bytes.Buffer 353 key := func(stk []uintptr) string { 354 buf.Reset() 355 fmt.Fprintf(&buf, "@") 356 for _, pc := range stk { 357 fmt.Fprintf(&buf, " %#x", pc) 358 } 359 return buf.String() 360 } 361 count := map[string]int{} 362 index := map[string]int{} 363 var keys []string 364 n := p.Len() 365 for i := 0; i < n; i++ { 366 k := key(p.Stack(i)) 367 if count[k] == 0 { 368 index[k] = i 369 keys = append(keys, k) 370 } 371 count[k]++ 372 } 373 374 sort.Sort(&keysByCount{keys, count}) 375 376 for _, k := range keys { 377 fmt.Fprintf(w, "%d %s\n", count[k], k) 378 if debug > 0 { 379 printStackRecord(w, p.Stack(index[k]), false) 380 } 381 } 382 383 if tw != nil { 384 tw.Flush() 385 } 386 return b.Flush() 387 } 388 389 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 390 type keysByCount struct { 391 keys []string 392 count map[string]int 393 } 394 395 func (x *keysByCount) Len() int { return len(x.keys) } 396 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 397 func (x *keysByCount) Less(i, j int) bool { 398 ki, kj := x.keys[i], x.keys[j] 399 ci, cj := x.count[ki], x.count[kj] 400 if ci != cj { 401 return ci > cj 402 } 403 return ki < kj 404 } 405 406 // printStackRecord prints the function + source line information 407 // for a single stack trace. 408 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 409 show := allFrames 410 frames := runtime.CallersFrames(stk) 411 for { 412 frame, more := frames.Next() 413 name := frame.Function 414 if name == "" { 415 show = true 416 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 417 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 418 // Hide runtime.goexit and any runtime functions at the beginning. 419 // This is useful mainly for allocation traces. 420 show = true 421 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 422 } 423 if !more { 424 break 425 } 426 } 427 if !show { 428 // We didn't print anything; do it again, 429 // and this time include runtime functions. 430 printStackRecord(w, stk, true) 431 return 432 } 433 fmt.Fprintf(w, "\n") 434 } 435 436 // Interface to system profiles. 437 438 type byInUseBytes []runtime.MemProfileRecord 439 440 func (x byInUseBytes) Len() int { return len(x) } 441 func (x byInUseBytes) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 442 func (x byInUseBytes) Less(i, j int) bool { return x[i].InUseBytes() > x[j].InUseBytes() } 443 444 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 445 // It is preserved for backwards compatibility. 446 func WriteHeapProfile(w io.Writer) error { 447 return writeHeap(w, 0) 448 } 449 450 // countHeap returns the number of records in the heap profile. 451 func countHeap() int { 452 n, _ := runtime.MemProfile(nil, true) 453 return n 454 } 455 456 // writeHeap writes the current runtime heap profile to w. 457 func writeHeap(w io.Writer, debug int) error { 458 // Find out how many records there are (MemProfile(nil, true)), 459 // allocate that many records, and get the data. 460 // There's a race—more records might be added between 461 // the two calls—so allocate a few extra records for safety 462 // and also try again if we're very unlucky. 463 // The loop should only execute one iteration in the common case. 464 var p []runtime.MemProfileRecord 465 n, ok := runtime.MemProfile(nil, true) 466 for { 467 // Allocate room for a slightly bigger profile, 468 // in case a few more entries have been added 469 // since the call to MemProfile. 470 p = make([]runtime.MemProfileRecord, n+50) 471 n, ok = runtime.MemProfile(p, true) 472 if ok { 473 p = p[0:n] 474 break 475 } 476 // Profile grew; try again. 477 } 478 479 sort.Sort(byInUseBytes(p)) 480 481 b := bufio.NewWriter(w) 482 var tw *tabwriter.Writer 483 w = b 484 if debug > 0 { 485 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 486 w = tw 487 } 488 489 var total runtime.MemProfileRecord 490 for i := range p { 491 r := &p[i] 492 total.AllocBytes += r.AllocBytes 493 total.AllocObjects += r.AllocObjects 494 total.FreeBytes += r.FreeBytes 495 total.FreeObjects += r.FreeObjects 496 } 497 498 // Technically the rate is MemProfileRate not 2*MemProfileRate, 499 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 500 // so that's what pprof has come to expect. 501 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 502 total.InUseObjects(), total.InUseBytes(), 503 total.AllocObjects, total.AllocBytes, 504 2*runtime.MemProfileRate) 505 506 for i := range p { 507 r := &p[i] 508 fmt.Fprintf(w, "%d: %d [%d: %d] @", 509 r.InUseObjects(), r.InUseBytes(), 510 r.AllocObjects, r.AllocBytes) 511 for _, pc := range r.Stack() { 512 fmt.Fprintf(w, " %#x", pc) 513 } 514 fmt.Fprintf(w, "\n") 515 if debug > 0 { 516 printStackRecord(w, r.Stack(), false) 517 } 518 } 519 520 // Print memstats information too. 521 // Pprof will ignore, but useful for people 522 s := new(runtime.MemStats) 523 runtime.ReadMemStats(s) 524 fmt.Fprintf(w, "\n# runtime.MemStats\n") 525 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 526 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 527 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 528 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 529 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 530 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 531 532 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 533 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 534 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 535 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 536 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 537 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 538 539 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 540 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 541 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 542 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 543 544 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 545 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 546 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 547 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 548 549 if tw != nil { 550 tw.Flush() 551 } 552 return b.Flush() 553 } 554 555 // countThreadCreate returns the size of the current ThreadCreateProfile. 556 func countThreadCreate() int { 557 n, _ := runtime.ThreadCreateProfile(nil) 558 return n 559 } 560 561 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 562 func writeThreadCreate(w io.Writer, debug int) error { 563 return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) 564 } 565 566 // countGoroutine returns the number of goroutines. 567 func countGoroutine() int { 568 return runtime.NumGoroutine() 569 } 570 571 // writeGoroutine writes the current runtime GoroutineProfile to w. 572 func writeGoroutine(w io.Writer, debug int) error { 573 if debug >= 2 { 574 return writeGoroutineStacks(w) 575 } 576 return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) 577 } 578 579 func writeGoroutineStacks(w io.Writer) error { 580 // We don't know how big the buffer needs to be to collect 581 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 582 // Give up and use a truncated trace if 64 MB is not enough. 583 buf := make([]byte, 1<<20) 584 for i := 0; ; i++ { 585 n := runtime.Stack(buf, true) 586 if n < len(buf) { 587 buf = buf[:n] 588 break 589 } 590 if len(buf) >= 64<<20 { 591 // Filled 64 MB - stop there. 592 break 593 } 594 buf = make([]byte, 2*len(buf)) 595 } 596 _, err := w.Write(buf) 597 return err 598 } 599 600 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { 601 // Find out how many records there are (fetch(nil)), 602 // allocate that many records, and get the data. 603 // There's a race—more records might be added between 604 // the two calls—so allocate a few extra records for safety 605 // and also try again if we're very unlucky. 606 // The loop should only execute one iteration in the common case. 607 var p []runtime.StackRecord 608 n, ok := fetch(nil) 609 for { 610 // Allocate room for a slightly bigger profile, 611 // in case a few more entries have been added 612 // since the call to ThreadProfile. 613 p = make([]runtime.StackRecord, n+10) 614 n, ok = fetch(p) 615 if ok { 616 p = p[0:n] 617 break 618 } 619 // Profile grew; try again. 620 } 621 622 return printCountProfile(w, debug, name, runtimeProfile(p)) 623 } 624 625 type runtimeProfile []runtime.StackRecord 626 627 func (p runtimeProfile) Len() int { return len(p) } 628 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } 629 630 var cpu struct { 631 sync.Mutex 632 profiling bool 633 done chan bool 634 } 635 636 // StartCPUProfile enables CPU profiling for the current process. 637 // While profiling, the profile will be buffered and written to w. 638 // StartCPUProfile returns an error if profiling is already enabled. 639 // 640 // On Unix-like systems, StartCPUProfile does not work by default for 641 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 642 // StartCPUProfile relies on the SIGPROF signal, but that signal will 643 // be delivered to the main program's SIGPROF signal handler (if any) 644 // not to the one used by Go. To make it work, call os/signal.Notify 645 // for syscall.SIGPROF, but note that doing so may break any profiling 646 // being done by the main program. 647 func StartCPUProfile(w io.Writer) error { 648 // The runtime routines allow a variable profiling rate, 649 // but in practice operating systems cannot trigger signals 650 // at more than about 500 Hz, and our processing of the 651 // signal is not cheap (mostly getting the stack trace). 652 // 100 Hz is a reasonable choice: it is frequent enough to 653 // produce useful data, rare enough not to bog down the 654 // system, and a nice round number to make it easy to 655 // convert sample counts to seconds. Instead of requiring 656 // each client to specify the frequency, we hard code it. 657 const hz = 100 658 659 cpu.Lock() 660 defer cpu.Unlock() 661 if cpu.done == nil { 662 cpu.done = make(chan bool) 663 } 664 // Double-check. 665 if cpu.profiling { 666 return fmt.Errorf("cpu profiling already in use") 667 } 668 cpu.profiling = true 669 runtime.SetCPUProfileRate(hz) 670 go profileWriter(w) 671 return nil 672 } 673 674 func profileWriter(w io.Writer) { 675 for { 676 data := runtime.CPUProfile() 677 if data == nil { 678 break 679 } 680 w.Write(data) 681 } 682 683 // We are emitting the legacy profiling format, which permits 684 // a memory map following the CPU samples. The memory map is 685 // simply a copy of the GNU/Linux /proc/self/maps file. The 686 // profiler uses the memory map to map PC values in shared 687 // libraries to a shared library in the filesystem, in order 688 // to report the correct function and, if the shared library 689 // has debug info, file/line. This is particularly useful for 690 // PIE (position independent executables) as on ELF systems a 691 // PIE is simply an executable shared library. 692 // 693 // Because the profiling format expects the memory map in 694 // GNU/Linux format, we only do this on GNU/Linux for now. To 695 // add support for profiling PIE on other ELF-based systems, 696 // it may be necessary to map the system-specific mapping 697 // information to the GNU/Linux format. For a reasonably 698 // portable C++ version, see the FillProcSelfMaps function in 699 // https://github.com/gperftools/gperftools/blob/master/src/base/sysinfo.cc 700 // 701 // The code that parses this mapping for the pprof tool is 702 // ParseMemoryMap in cmd/internal/pprof/legacy_profile.go, but 703 // don't change that code, as similar code exists in other 704 // (non-Go) pprof readers. Change this code so that that code works. 705 // 706 // We ignore errors reading or copying the memory map; the 707 // profile is likely usable without it, and we have no good way 708 // to report errors. 709 if runtime.GOOS == "linux" { 710 f, err := os.Open("/proc/self/maps") 711 if err == nil { 712 io.WriteString(w, "\nMAPPED_LIBRARIES:\n") 713 io.Copy(w, f) 714 f.Close() 715 } 716 } 717 718 cpu.done <- true 719 } 720 721 // StopCPUProfile stops the current CPU profile, if any. 722 // StopCPUProfile only returns after all the writes for the 723 // profile have completed. 724 func StopCPUProfile() { 725 cpu.Lock() 726 defer cpu.Unlock() 727 728 if !cpu.profiling { 729 return 730 } 731 cpu.profiling = false 732 runtime.SetCPUProfileRate(0) 733 <-cpu.done 734 } 735 736 type byCycles []runtime.BlockProfileRecord 737 738 func (x byCycles) Len() int { return len(x) } 739 func (x byCycles) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 740 func (x byCycles) Less(i, j int) bool { return x[i].Cycles > x[j].Cycles } 741 742 // countBlock returns the number of records in the blocking profile. 743 func countBlock() int { 744 n, _ := runtime.BlockProfile(nil) 745 return n 746 } 747 748 // writeBlock writes the current blocking profile to w. 749 func writeBlock(w io.Writer, debug int) error { 750 var p []runtime.BlockProfileRecord 751 n, ok := runtime.BlockProfile(nil) 752 for { 753 p = make([]runtime.BlockProfileRecord, n+50) 754 n, ok = runtime.BlockProfile(p) 755 if ok { 756 p = p[:n] 757 break 758 } 759 } 760 761 sort.Sort(byCycles(p)) 762 763 b := bufio.NewWriter(w) 764 var tw *tabwriter.Writer 765 w = b 766 if debug > 0 { 767 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 768 w = tw 769 } 770 771 fmt.Fprintf(w, "--- contention:\n") 772 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 773 for i := range p { 774 r := &p[i] 775 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 776 for _, pc := range r.Stack() { 777 fmt.Fprintf(w, " %#x", pc) 778 } 779 fmt.Fprint(w, "\n") 780 if debug > 0 { 781 printStackRecord(w, r.Stack(), true) 782 } 783 } 784 785 if tw != nil { 786 tw.Flush() 787 } 788 return b.Flush() 789 } 790 791 func runtime_cyclesPerSecond() int64