github.com/sean-/go@v0.0.0-20151219100004-97f854cd7bb6/src/cmd/link/internal/ppc64/asm.go (about) 1 // Inferno utils/5l/asm.c 2 // http://code.google.com/p/inferno-os/source/browse/utils/5l/asm.c 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 package ppc64 32 33 import ( 34 "cmd/internal/obj" 35 "cmd/link/internal/ld" 36 "encoding/binary" 37 "fmt" 38 "log" 39 ) 40 41 func genplt() { 42 var s *ld.LSym 43 var stub *ld.LSym 44 var pprevtextp **ld.LSym 45 var r *ld.Reloc 46 var n string 47 var o1 uint32 48 var i int 49 50 // The ppc64 ABI PLT has similar concepts to other 51 // architectures, but is laid out quite differently. When we 52 // see an R_PPC64_REL24 relocation to a dynamic symbol 53 // (indicating that the call needs to go through the PLT), we 54 // generate up to three stubs and reserve a PLT slot. 55 // 56 // 1) The call site will be bl x; nop (where the relocation 57 // applies to the bl). We rewrite this to bl x_stub; ld 58 // r2,24(r1). The ld is necessary because x_stub will save 59 // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). 60 // 61 // 2) We reserve space for a pointer in the .plt section (once 62 // per referenced dynamic function). .plt is a data 63 // section filled solely by the dynamic linker (more like 64 // .plt.got on other architectures). Initially, the 65 // dynamic linker will fill each slot with a pointer to the 66 // corresponding x@plt entry point. 67 // 68 // 3) We generate the "call stub" x_stub (once per dynamic 69 // function/object file pair). This saves the TOC in the 70 // TOC save slot, reads the function pointer from x's .plt 71 // slot and calls it like any other global entry point 72 // (including setting r12 to the function address). 73 // 74 // 4) We generate the "symbol resolver stub" x@plt (once per 75 // dynamic function). This is solely a branch to the glink 76 // resolver stub. 77 // 78 // 5) We generate the glink resolver stub (only once). This 79 // computes which symbol resolver stub we came through and 80 // invokes the dynamic resolver via a pointer provided by 81 // the dynamic linker. This will patch up the .plt slot to 82 // point directly at the function so future calls go 83 // straight from the call stub to the real function, and 84 // then call the function. 85 86 // NOTE: It's possible we could make ppc64 closer to other 87 // architectures: ppc64's .plt is like .plt.got on other 88 // platforms and ppc64's .glink is like .plt on other 89 // platforms. 90 91 // Find all R_PPC64_REL24 relocations that reference dynamic 92 // imports. Reserve PLT entries for these symbols and 93 // generate call stubs. The call stubs need to live in .text, 94 // which is why we need to do this pass this early. 95 // 96 // This assumes "case 1" from the ABI, where the caller needs 97 // us to save and restore the TOC pointer. 98 pprevtextp = &ld.Ctxt.Textp 99 100 for s = *pprevtextp; s != nil; pprevtextp, s = &s.Next, s.Next { 101 for i = range s.R { 102 r = &s.R[i] 103 if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != obj.SDYNIMPORT { 104 continue 105 } 106 107 // Reserve PLT entry and generate symbol 108 // resolver 109 addpltsym(ld.Ctxt, r.Sym) 110 111 // Generate call stub 112 n = fmt.Sprintf("%s.%s", s.Name, r.Sym.Name) 113 114 stub = ld.Linklookup(ld.Ctxt, n, 0) 115 stub.Reachable = stub.Reachable || s.Reachable 116 if stub.Size == 0 { 117 // Need outer to resolve .TOC. 118 stub.Outer = s 119 120 // Link in to textp before s (we could 121 // do it after, but would have to skip 122 // the subsymbols) 123 *pprevtextp = stub 124 125 stub.Next = s 126 pprevtextp = &stub.Next 127 128 gencallstub(1, stub, r.Sym) 129 } 130 131 // Update the relocation to use the call stub 132 r.Sym = stub 133 134 // Restore TOC after bl. The compiler put a 135 // nop here for us to overwrite. 136 o1 = 0xe8410018 // ld r2,24(r1) 137 ld.Ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1) 138 } 139 } 140 141 } 142 143 func genaddmoduledata() { 144 addmoduledata := ld.Linkrlookup(ld.Ctxt, "runtime.addmoduledata", 0) 145 if addmoduledata.Type == obj.STEXT { 146 return 147 } 148 addmoduledata.Reachable = true 149 initfunc := ld.Linklookup(ld.Ctxt, "go.link.addmoduledata", 0) 150 initfunc.Type = obj.STEXT 151 initfunc.Local = true 152 initfunc.Reachable = true 153 o := func(op uint32) { 154 ld.Adduint32(ld.Ctxt, initfunc, op) 155 } 156 // addis r2, r12, .TOC.-func@ha 157 rel := ld.Addrel(initfunc) 158 rel.Off = int32(initfunc.Size) 159 rel.Siz = 8 160 rel.Sym = ld.Linklookup(ld.Ctxt, ".TOC.", 0) 161 rel.Type = obj.R_ADDRPOWER_PCREL 162 o(0x3c4c0000) 163 // addi r2, r2, .TOC.-func@l 164 o(0x38420000) 165 // mflr r31 166 o(0x7c0802a6) 167 // stdu r31, -32(r1) 168 o(0xf801ffe1) 169 // addis r3, r2, local.moduledata@got@ha 170 rel = ld.Addrel(initfunc) 171 rel.Off = int32(initfunc.Size) 172 rel.Siz = 8 173 rel.Sym = ld.Linklookup(ld.Ctxt, "local.moduledata", 0) 174 rel.Type = obj.R_ADDRPOWER_GOT 175 o(0x3c620000) 176 // ld r3, local.moduledata@got@l(r3) 177 o(0xe8630000) 178 // bl runtime.addmoduledata 179 rel = ld.Addrel(initfunc) 180 rel.Off = int32(initfunc.Size) 181 rel.Siz = 4 182 rel.Sym = addmoduledata 183 rel.Type = obj.R_CALLPOWER 184 o(0x48000001) 185 // nop 186 o(0x60000000) 187 // ld r31, 0(r1) 188 o(0xe8010000) 189 // mtlr r31 190 o(0x7c0803a6) 191 // addi r1,r1,32 192 o(0x38210020) 193 // blr 194 o(0x4e800020) 195 196 if ld.Ctxt.Etextp != nil { 197 ld.Ctxt.Etextp.Next = initfunc 198 } else { 199 ld.Ctxt.Textp = initfunc 200 } 201 ld.Ctxt.Etextp = initfunc 202 203 initarray_entry := ld.Linklookup(ld.Ctxt, "go.link.addmoduledatainit", 0) 204 initarray_entry.Reachable = true 205 initarray_entry.Local = true 206 initarray_entry.Type = obj.SINITARR 207 ld.Addaddr(ld.Ctxt, initarray_entry, initfunc) 208 } 209 210 func gentext() { 211 if ld.DynlinkingGo() { 212 genaddmoduledata() 213 } 214 215 if ld.Linkmode == ld.LinkInternal { 216 genplt() 217 } 218 } 219 220 // Construct a call stub in stub that calls symbol targ via its PLT 221 // entry. 222 func gencallstub(abicase int, stub *ld.LSym, targ *ld.LSym) { 223 if abicase != 1 { 224 // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC 225 // relocations, we'll need to implement cases 2 and 3. 226 log.Fatalf("gencallstub only implements case 1 calls") 227 } 228 229 plt := ld.Linklookup(ld.Ctxt, ".plt", 0) 230 231 stub.Type = obj.STEXT 232 233 // Save TOC pointer in TOC save slot 234 ld.Adduint32(ld.Ctxt, stub, 0xf8410018) // std r2,24(r1) 235 236 // Load the function pointer from the PLT. 237 r := ld.Addrel(stub) 238 239 r.Off = int32(stub.Size) 240 r.Sym = plt 241 r.Add = int64(targ.Plt) 242 r.Siz = 2 243 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { 244 r.Off += int32(r.Siz) 245 } 246 r.Type = obj.R_POWER_TOC 247 r.Variant = ld.RV_POWER_HA 248 ld.Adduint32(ld.Ctxt, stub, 0x3d820000) // addis r12,r2,targ@plt@toc@ha 249 r = ld.Addrel(stub) 250 r.Off = int32(stub.Size) 251 r.Sym = plt 252 r.Add = int64(targ.Plt) 253 r.Siz = 2 254 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { 255 r.Off += int32(r.Siz) 256 } 257 r.Type = obj.R_POWER_TOC 258 r.Variant = ld.RV_POWER_LO 259 ld.Adduint32(ld.Ctxt, stub, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) 260 261 // Jump to the loaded pointer 262 ld.Adduint32(ld.Ctxt, stub, 0x7d8903a6) // mtctr r12 263 ld.Adduint32(ld.Ctxt, stub, 0x4e800420) // bctr 264 } 265 266 func adddynrela(rel *ld.LSym, s *ld.LSym, r *ld.Reloc) { 267 log.Fatalf("adddynrela not implemented") 268 } 269 270 func adddynrel(s *ld.LSym, r *ld.Reloc) { 271 targ := r.Sym 272 ld.Ctxt.Cursym = s 273 274 switch r.Type { 275 default: 276 if r.Type >= 256 { 277 ld.Diag("unexpected relocation type %d", r.Type) 278 return 279 } 280 281 // Handle relocations found in ELF object files. 282 case 256 + ld.R_PPC64_REL24: 283 r.Type = obj.R_CALLPOWER 284 285 // This is a local call, so the caller isn't setting 286 // up r12 and r2 is the same for the caller and 287 // callee. Hence, we need to go to the local entry 288 // point. (If we don't do this, the callee will try 289 // to use r12 to compute r2.) 290 r.Add += int64(r.Sym.Localentry) * 4 291 292 if targ.Type == obj.SDYNIMPORT { 293 // Should have been handled in elfsetupplt 294 ld.Diag("unexpected R_PPC64_REL24 for dyn import") 295 } 296 297 return 298 299 case 256 + ld.R_PPC_REL32: 300 r.Type = obj.R_PCREL 301 r.Add += 4 302 303 if targ.Type == obj.SDYNIMPORT { 304 ld.Diag("unexpected R_PPC_REL32 for dyn import") 305 } 306 307 return 308 309 case 256 + ld.R_PPC64_ADDR64: 310 r.Type = obj.R_ADDR 311 if targ.Type == obj.SDYNIMPORT { 312 // These happen in .toc sections 313 ld.Adddynsym(ld.Ctxt, targ) 314 315 rela := ld.Linklookup(ld.Ctxt, ".rela", 0) 316 ld.Addaddrplus(ld.Ctxt, rela, s, int64(r.Off)) 317 ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64)) 318 ld.Adduint64(ld.Ctxt, rela, uint64(r.Add)) 319 r.Type = 256 // ignore during relocsym 320 } 321 322 return 323 324 case 256 + ld.R_PPC64_TOC16: 325 r.Type = obj.R_POWER_TOC 326 r.Variant = ld.RV_POWER_LO | ld.RV_CHECK_OVERFLOW 327 return 328 329 case 256 + ld.R_PPC64_TOC16_LO: 330 r.Type = obj.R_POWER_TOC 331 r.Variant = ld.RV_POWER_LO 332 return 333 334 case 256 + ld.R_PPC64_TOC16_HA: 335 r.Type = obj.R_POWER_TOC 336 r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW 337 return 338 339 case 256 + ld.R_PPC64_TOC16_HI: 340 r.Type = obj.R_POWER_TOC 341 r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW 342 return 343 344 case 256 + ld.R_PPC64_TOC16_DS: 345 r.Type = obj.R_POWER_TOC 346 r.Variant = ld.RV_POWER_DS | ld.RV_CHECK_OVERFLOW 347 return 348 349 case 256 + ld.R_PPC64_TOC16_LO_DS: 350 r.Type = obj.R_POWER_TOC 351 r.Variant = ld.RV_POWER_DS 352 return 353 354 case 256 + ld.R_PPC64_REL16_LO: 355 r.Type = obj.R_PCREL 356 r.Variant = ld.RV_POWER_LO 357 r.Add += 2 // Compensate for relocation size of 2 358 return 359 360 case 256 + ld.R_PPC64_REL16_HI: 361 r.Type = obj.R_PCREL 362 r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW 363 r.Add += 2 364 return 365 366 case 256 + ld.R_PPC64_REL16_HA: 367 r.Type = obj.R_PCREL 368 r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW 369 r.Add += 2 370 return 371 } 372 373 // Handle references to ELF symbols from our own object files. 374 if targ.Type != obj.SDYNIMPORT { 375 return 376 } 377 378 // TODO(austin): Translate our relocations to ELF 379 380 ld.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type) 381 } 382 383 func elfreloc1(r *ld.Reloc, sectoff int64) int { 384 ld.Thearch.Vput(uint64(sectoff)) 385 386 elfsym := r.Xsym.ElfsymForReloc() 387 switch r.Type { 388 default: 389 return -1 390 391 case obj.R_ADDR: 392 switch r.Siz { 393 case 4: 394 ld.Thearch.Vput(ld.R_PPC64_ADDR32 | uint64(elfsym)<<32) 395 case 8: 396 ld.Thearch.Vput(ld.R_PPC64_ADDR64 | uint64(elfsym)<<32) 397 default: 398 return -1 399 } 400 401 case obj.R_POWER_TLS: 402 ld.Thearch.Vput(ld.R_PPC64_TLS | uint64(elfsym)<<32) 403 404 case obj.R_POWER_TLS_LE: 405 ld.Thearch.Vput(ld.R_PPC64_TPREL16 | uint64(elfsym)<<32) 406 407 case obj.R_POWER_TLS_IE: 408 ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_HA | uint64(elfsym)<<32) 409 ld.Thearch.Vput(uint64(r.Xadd)) 410 ld.Thearch.Vput(uint64(sectoff + 4)) 411 ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_LO_DS | uint64(elfsym)<<32) 412 413 case obj.R_ADDRPOWER: 414 ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32) 415 ld.Thearch.Vput(uint64(r.Xadd)) 416 ld.Thearch.Vput(uint64(sectoff + 4)) 417 ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO | uint64(elfsym)<<32) 418 419 case obj.R_ADDRPOWER_DS: 420 ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32) 421 ld.Thearch.Vput(uint64(r.Xadd)) 422 ld.Thearch.Vput(uint64(sectoff + 4)) 423 ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO_DS | uint64(elfsym)<<32) 424 425 case obj.R_ADDRPOWER_GOT: 426 ld.Thearch.Vput(ld.R_PPC64_GOT16_HA | uint64(elfsym)<<32) 427 ld.Thearch.Vput(uint64(r.Xadd)) 428 ld.Thearch.Vput(uint64(sectoff + 4)) 429 ld.Thearch.Vput(ld.R_PPC64_GOT16_LO_DS | uint64(elfsym)<<32) 430 431 case obj.R_ADDRPOWER_PCREL: 432 ld.Thearch.Vput(ld.R_PPC64_REL16_HA | uint64(elfsym)<<32) 433 ld.Thearch.Vput(uint64(r.Xadd)) 434 ld.Thearch.Vput(uint64(sectoff + 4)) 435 ld.Thearch.Vput(ld.R_PPC64_REL16_LO | uint64(elfsym)<<32) 436 r.Xadd += 4 437 438 case obj.R_ADDRPOWER_TOCREL: 439 ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32) 440 ld.Thearch.Vput(uint64(r.Xadd)) 441 ld.Thearch.Vput(uint64(sectoff + 4)) 442 ld.Thearch.Vput(ld.R_PPC64_TOC16_LO | uint64(elfsym)<<32) 443 444 case obj.R_ADDRPOWER_TOCREL_DS: 445 ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32) 446 ld.Thearch.Vput(uint64(r.Xadd)) 447 ld.Thearch.Vput(uint64(sectoff + 4)) 448 ld.Thearch.Vput(ld.R_PPC64_TOC16_LO_DS | uint64(elfsym)<<32) 449 450 case obj.R_CALLPOWER: 451 if r.Siz != 4 { 452 return -1 453 } 454 ld.Thearch.Vput(ld.R_PPC64_REL24 | uint64(elfsym)<<32) 455 456 } 457 ld.Thearch.Vput(uint64(r.Xadd)) 458 459 return 0 460 } 461 462 func elfsetupplt() { 463 plt := ld.Linklookup(ld.Ctxt, ".plt", 0) 464 if plt.Size == 0 { 465 // The dynamic linker stores the address of the 466 // dynamic resolver and the DSO identifier in the two 467 // doublewords at the beginning of the .plt section 468 // before the PLT array. Reserve space for these. 469 plt.Size = 16 470 } 471 } 472 473 func machoreloc1(r *ld.Reloc, sectoff int64) int { 474 return -1 475 } 476 477 // Return the value of .TOC. for symbol s 478 func symtoc(s *ld.LSym) int64 { 479 var toc *ld.LSym 480 481 if s.Outer != nil { 482 toc = ld.Linkrlookup(ld.Ctxt, ".TOC.", int(s.Outer.Version)) 483 } else { 484 toc = ld.Linkrlookup(ld.Ctxt, ".TOC.", int(s.Version)) 485 } 486 487 if toc == nil { 488 ld.Diag("TOC-relative relocation in object without .TOC.") 489 return 0 490 } 491 492 return toc.Value 493 } 494 495 func archrelocaddr(r *ld.Reloc, s *ld.LSym, val *int64) int { 496 var o1, o2 uint32 497 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { 498 o1 = uint32(*val >> 32) 499 o2 = uint32(*val) 500 } else { 501 o1 = uint32(*val) 502 o2 = uint32(*val >> 32) 503 } 504 505 // We are spreading a 31-bit address across two instructions, putting the 506 // high (adjusted) part in the low 16 bits of the first instruction and the 507 // low part in the low 16 bits of the second instruction, or, in the DS case, 508 // bits 15-2 (inclusive) of the address into bits 15-2 of the second 509 // instruction (it is an error in this case if the low 2 bits of the address 510 // are non-zero). 511 512 t := ld.Symaddr(r.Sym) + r.Add 513 if t < 0 || t >= 1<<31 { 514 ld.Ctxt.Diag("relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym)) 515 } 516 if t&0x8000 != 0 { 517 t += 0x10000 518 } 519 520 switch r.Type { 521 case obj.R_ADDRPOWER: 522 o1 |= (uint32(t) >> 16) & 0xffff 523 o2 |= uint32(t) & 0xffff 524 525 case obj.R_ADDRPOWER_DS: 526 o1 |= (uint32(t) >> 16) & 0xffff 527 if t&3 != 0 { 528 ld.Ctxt.Diag("bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) 529 } 530 o2 |= uint32(t) & 0xfffc 531 532 default: 533 return -1 534 } 535 536 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { 537 *val = int64(o1)<<32 | int64(o2) 538 } else { 539 *val = int64(o2)<<32 | int64(o1) 540 } 541 return 0 542 } 543 544 func archreloc(r *ld.Reloc, s *ld.LSym, val *int64) int { 545 if ld.Linkmode == ld.LinkExternal { 546 switch r.Type { 547 default: 548 return -1 549 550 case obj.R_POWER_TLS, obj.R_POWER_TLS_LE, obj.R_POWER_TLS_IE: 551 r.Done = 0 552 // check Outer is nil, Type is TLSBSS? 553 r.Xadd = r.Add 554 r.Xsym = r.Sym 555 return 0 556 557 case obj.R_ADDRPOWER, 558 obj.R_ADDRPOWER_DS, 559 obj.R_ADDRPOWER_TOCREL, 560 obj.R_ADDRPOWER_TOCREL_DS, 561 obj.R_ADDRPOWER_GOT, 562 obj.R_ADDRPOWER_PCREL: 563 r.Done = 0 564 565 // set up addend for eventual relocation via outer symbol. 566 rs := r.Sym 567 r.Xadd = r.Add 568 for rs.Outer != nil { 569 r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) 570 rs = rs.Outer 571 } 572 573 if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { 574 ld.Diag("missing section for %s", rs.Name) 575 } 576 r.Xsym = rs 577 578 return 0 579 580 case obj.R_CALLPOWER: 581 r.Done = 0 582 r.Xsym = r.Sym 583 r.Xadd = r.Add 584 return 0 585 } 586 } 587 588 switch r.Type { 589 case obj.R_CONST: 590 *val = r.Add 591 return 0 592 593 case obj.R_GOTOFF: 594 *val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ld.Linklookup(ld.Ctxt, ".got", 0)) 595 return 0 596 597 case obj.R_ADDRPOWER, obj.R_ADDRPOWER_DS: 598 return archrelocaddr(r, s, val) 599 600 case obj.R_CALLPOWER: 601 // Bits 6 through 29 = (S + A - P) >> 2 602 603 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 604 if t&3 != 0 { 605 ld.Ctxt.Diag("relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 606 } 607 if int64(int32(t<<6)>>6) != t { 608 // TODO(austin) This can happen if text > 32M. 609 // Add a call trampoline to .text in that case. 610 ld.Ctxt.Diag("relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) 611 } 612 613 *val |= int64(uint32(t) &^ 0xfc000003) 614 return 0 615 616 case obj.R_POWER_TOC: // S + A - .TOC. 617 *val = ld.Symaddr(r.Sym) + r.Add - symtoc(s) 618 619 return 0 620 621 case obj.R_POWER_TLS_LE: 622 // The thread pointer points 0x7000 bytes after the start of the the 623 // thread local storage area as documented in section "3.7.2 TLS 624 // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI 625 // Specification". 626 v := r.Sym.Value - 0x7000 627 if int64(int16(v)) != v { 628 ld.Diag("TLS offset out of range %d", v) 629 } 630 *val = (*val &^ 0xffff) | (v & 0xffff) 631 return 0 632 } 633 634 return -1 635 } 636 637 func archrelocvariant(r *ld.Reloc, s *ld.LSym, t int64) int64 { 638 switch r.Variant & ld.RV_TYPE_MASK { 639 default: 640 ld.Diag("unexpected relocation variant %d", r.Variant) 641 fallthrough 642 643 case ld.RV_NONE: 644 return t 645 646 case ld.RV_POWER_LO: 647 if r.Variant&ld.RV_CHECK_OVERFLOW != 0 { 648 // Whether to check for signed or unsigned 649 // overflow depends on the instruction 650 var o1 uint32 651 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { 652 o1 = ld.Be32(s.P[r.Off-2:]) 653 } else { 654 o1 = ld.Le32(s.P[r.Off:]) 655 } 656 switch o1 >> 26 { 657 case 24, // ori 658 26, // xori 659 28: // andi 660 if t>>16 != 0 { 661 goto overflow 662 } 663 664 default: 665 if int64(int16(t)) != t { 666 goto overflow 667 } 668 } 669 } 670 671 return int64(int16(t)) 672 673 case ld.RV_POWER_HA: 674 t += 0x8000 675 fallthrough 676 677 // Fallthrough 678 case ld.RV_POWER_HI: 679 t >>= 16 680 681 if r.Variant&ld.RV_CHECK_OVERFLOW != 0 { 682 // Whether to check for signed or unsigned 683 // overflow depends on the instruction 684 var o1 uint32 685 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { 686 o1 = ld.Be32(s.P[r.Off-2:]) 687 } else { 688 o1 = ld.Le32(s.P[r.Off:]) 689 } 690 switch o1 >> 26 { 691 case 25, // oris 692 27, // xoris 693 29: // andis 694 if t>>16 != 0 { 695 goto overflow 696 } 697 698 default: 699 if int64(int16(t)) != t { 700 goto overflow 701 } 702 } 703 } 704 705 return int64(int16(t)) 706 707 case ld.RV_POWER_DS: 708 var o1 uint32 709 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { 710 o1 = uint32(ld.Be16(s.P[r.Off:])) 711 } else { 712 o1 = uint32(ld.Le16(s.P[r.Off:])) 713 } 714 if t&3 != 0 { 715 ld.Diag("relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 716 } 717 if (r.Variant&ld.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { 718 goto overflow 719 } 720 return int64(o1)&0x3 | int64(int16(t)) 721 } 722 723 overflow: 724 ld.Diag("relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) 725 return t 726 } 727 728 func addpltsym(ctxt *ld.Link, s *ld.LSym) { 729 if s.Plt >= 0 { 730 return 731 } 732 733 ld.Adddynsym(ctxt, s) 734 735 if ld.Iself { 736 plt := ld.Linklookup(ctxt, ".plt", 0) 737 rela := ld.Linklookup(ctxt, ".rela.plt", 0) 738 if plt.Size == 0 { 739 elfsetupplt() 740 } 741 742 // Create the glink resolver if necessary 743 glink := ensureglinkresolver() 744 745 // Write symbol resolver stub (just a branch to the 746 // glink resolver stub) 747 r := ld.Addrel(glink) 748 749 r.Sym = glink 750 r.Off = int32(glink.Size) 751 r.Siz = 4 752 r.Type = obj.R_CALLPOWER 753 ld.Adduint32(ctxt, glink, 0x48000000) // b .glink 754 755 // In the ppc64 ABI, the dynamic linker is responsible 756 // for writing the entire PLT. We just need to 757 // reserve 8 bytes for each PLT entry and generate a 758 // JMP_SLOT dynamic relocation for it. 759 // 760 // TODO(austin): ABI v1 is different 761 s.Plt = int32(plt.Size) 762 763 plt.Size += 8 764 765 ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt)) 766 ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT)) 767 ld.Adduint64(ctxt, rela, 0) 768 } else { 769 ld.Diag("addpltsym: unsupported binary format") 770 } 771 } 772 773 // Generate the glink resolver stub if necessary and return the .glink section 774 func ensureglinkresolver() *ld.LSym { 775 glink := ld.Linklookup(ld.Ctxt, ".glink", 0) 776 if glink.Size != 0 { 777 return glink 778 } 779 780 // This is essentially the resolver from the ppc64 ELF ABI. 781 // At entry, r12 holds the address of the symbol resolver stub 782 // for the target routine and the argument registers hold the 783 // arguments for the target routine. 784 // 785 // This stub is PIC, so first get the PC of label 1 into r11. 786 // Other things will be relative to this. 787 ld.Adduint32(ld.Ctxt, glink, 0x7c0802a6) // mflr r0 788 ld.Adduint32(ld.Ctxt, glink, 0x429f0005) // bcl 20,31,1f 789 ld.Adduint32(ld.Ctxt, glink, 0x7d6802a6) // 1: mflr r11 790 ld.Adduint32(ld.Ctxt, glink, 0x7c0803a6) // mtlf r0 791 792 // Compute the .plt array index from the entry point address. 793 // Because this is PIC, everything is relative to label 1b (in 794 // r11): 795 // r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4 796 ld.Adduint32(ld.Ctxt, glink, 0x3800ffd0) // li r0,-(res_0-1b)=-48 797 ld.Adduint32(ld.Ctxt, glink, 0x7c006214) // add r0,r0,r12 798 ld.Adduint32(ld.Ctxt, glink, 0x7c0b0050) // sub r0,r0,r11 799 ld.Adduint32(ld.Ctxt, glink, 0x7800f082) // srdi r0,r0,2 800 801 // r11 = address of the first byte of the PLT 802 r := ld.Addrel(glink) 803 804 r.Off = int32(glink.Size) 805 r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0) 806 r.Siz = 8 807 r.Type = obj.R_ADDRPOWER 808 809 ld.Adduint32(ld.Ctxt, glink, 0x3d600000) // addis r11,0,.plt@ha 810 ld.Adduint32(ld.Ctxt, glink, 0x396b0000) // addi r11,r11,.plt@l 811 812 // Load r12 = dynamic resolver address and r11 = DSO 813 // identifier from the first two doublewords of the PLT. 814 ld.Adduint32(ld.Ctxt, glink, 0xe98b0000) // ld r12,0(r11) 815 ld.Adduint32(ld.Ctxt, glink, 0xe96b0008) // ld r11,8(r11) 816 817 // Jump to the dynamic resolver 818 ld.Adduint32(ld.Ctxt, glink, 0x7d8903a6) // mtctr r12 819 ld.Adduint32(ld.Ctxt, glink, 0x4e800420) // bctr 820 821 // The symbol resolvers must immediately follow. 822 // res_0: 823 824 // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes 825 // before the first symbol resolver stub. 826 s := ld.Linklookup(ld.Ctxt, ".dynamic", 0) 827 828 ld.Elfwritedynentsymplus(s, ld.DT_PPC64_GLINK, glink, glink.Size-32) 829 830 return glink 831 } 832 833 func asmb() { 834 if ld.Debug['v'] != 0 { 835 fmt.Fprintf(&ld.Bso, "%5.2f asmb\n", obj.Cputime()) 836 } 837 ld.Bso.Flush() 838 839 if ld.Iself { 840 ld.Asmbelfsetup() 841 } 842 843 sect := ld.Segtext.Sect 844 ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) 845 ld.Codeblk(int64(sect.Vaddr), int64(sect.Length)) 846 for sect = sect.Next; sect != nil; sect = sect.Next { 847 ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) 848 ld.Datblk(int64(sect.Vaddr), int64(sect.Length)) 849 } 850 851 if ld.Segrodata.Filelen > 0 { 852 if ld.Debug['v'] != 0 { 853 fmt.Fprintf(&ld.Bso, "%5.2f rodatblk\n", obj.Cputime()) 854 } 855 ld.Bso.Flush() 856 857 ld.Cseek(int64(ld.Segrodata.Fileoff)) 858 ld.Datblk(int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) 859 } 860 861 if ld.Debug['v'] != 0 { 862 fmt.Fprintf(&ld.Bso, "%5.2f datblk\n", obj.Cputime()) 863 } 864 ld.Bso.Flush() 865 866 ld.Cseek(int64(ld.Segdata.Fileoff)) 867 ld.Datblk(int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) 868 869 /* output symbol table */ 870 ld.Symsize = 0 871 872 ld.Lcsize = 0 873 symo := uint32(0) 874 if ld.Debug['s'] == 0 { 875 // TODO: rationalize 876 if ld.Debug['v'] != 0 { 877 fmt.Fprintf(&ld.Bso, "%5.2f sym\n", obj.Cputime()) 878 } 879 ld.Bso.Flush() 880 switch ld.HEADTYPE { 881 default: 882 if ld.Iself { 883 symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) 884 symo = uint32(ld.Rnd(int64(symo), int64(ld.INITRND))) 885 } 886 887 case obj.Hplan9: 888 symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) 889 } 890 891 ld.Cseek(int64(symo)) 892 switch ld.HEADTYPE { 893 default: 894 if ld.Iself { 895 if ld.Debug['v'] != 0 { 896 fmt.Fprintf(&ld.Bso, "%5.2f elfsym\n", obj.Cputime()) 897 } 898 ld.Asmelfsym() 899 ld.Cflush() 900 ld.Cwrite(ld.Elfstrdat) 901 902 if ld.Debug['v'] != 0 { 903 fmt.Fprintf(&ld.Bso, "%5.2f dwarf\n", obj.Cputime()) 904 } 905 ld.Dwarfemitdebugsections() 906 907 if ld.Linkmode == ld.LinkExternal { 908 ld.Elfemitreloc() 909 } 910 } 911 912 case obj.Hplan9: 913 ld.Asmplan9sym() 914 ld.Cflush() 915 916 sym := ld.Linklookup(ld.Ctxt, "pclntab", 0) 917 if sym != nil { 918 ld.Lcsize = int32(len(sym.P)) 919 for i := 0; int32(i) < ld.Lcsize; i++ { 920 ld.Cput(uint8(sym.P[i])) 921 } 922 923 ld.Cflush() 924 } 925 } 926 } 927 928 ld.Ctxt.Cursym = nil 929 if ld.Debug['v'] != 0 { 930 fmt.Fprintf(&ld.Bso, "%5.2f header\n", obj.Cputime()) 931 } 932 ld.Bso.Flush() 933 ld.Cseek(0) 934 switch ld.HEADTYPE { 935 default: 936 case obj.Hplan9: /* plan 9 */ 937 ld.Thearch.Lput(0x647) /* magic */ 938 ld.Thearch.Lput(uint32(ld.Segtext.Filelen)) /* sizes */ 939 ld.Thearch.Lput(uint32(ld.Segdata.Filelen)) 940 ld.Thearch.Lput(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) 941 ld.Thearch.Lput(uint32(ld.Symsize)) /* nsyms */ 942 ld.Thearch.Lput(uint32(ld.Entryvalue())) /* va of entry */ 943 ld.Thearch.Lput(0) 944 ld.Thearch.Lput(uint32(ld.Lcsize)) 945 946 case obj.Hlinux, 947 obj.Hfreebsd, 948 obj.Hnetbsd, 949 obj.Hopenbsd, 950 obj.Hnacl: 951 ld.Asmbelf(int64(symo)) 952 } 953 954 ld.Cflush() 955 if ld.Debug['c'] != 0 { 956 fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) 957 fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) 958 fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) 959 fmt.Printf("symsize=%d\n", ld.Symsize) 960 fmt.Printf("lcsize=%d\n", ld.Lcsize) 961 fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) 962 } 963 }