github.com/sean-/go@v0.0.0-20151219100004-97f854cd7bb6/src/crypto/rsa/pkcs1v15.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package rsa
     6  
     7  import (
     8  	"crypto"
     9  	"crypto/subtle"
    10  	"errors"
    11  	"io"
    12  	"math/big"
    13  )
    14  
    15  // This file implements encryption and decryption using PKCS#1 v1.5 padding.
    16  
    17  // PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using
    18  // the crypto.Decrypter interface.
    19  type PKCS1v15DecryptOptions struct {
    20  	// SessionKeyLen is the length of the session key that is being
    21  	// decrypted. If not zero, then a padding error during decryption will
    22  	// cause a random plaintext of this length to be returned rather than
    23  	// an error. These alternatives happen in constant time.
    24  	SessionKeyLen int
    25  }
    26  
    27  // EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5.
    28  // The message must be no longer than the length of the public modulus minus 11 bytes.
    29  // WARNING: use of this function to encrypt plaintexts other than session keys
    30  // is dangerous. Use RSA OAEP in new protocols.
    31  func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) {
    32  	if err := checkPub(pub); err != nil {
    33  		return nil, err
    34  	}
    35  	k := (pub.N.BitLen() + 7) / 8
    36  	if len(msg) > k-11 {
    37  		err = ErrMessageTooLong
    38  		return
    39  	}
    40  
    41  	// EM = 0x00 || 0x02 || PS || 0x00 || M
    42  	em := make([]byte, k)
    43  	em[1] = 2
    44  	ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
    45  	err = nonZeroRandomBytes(ps, rand)
    46  	if err != nil {
    47  		return
    48  	}
    49  	em[len(em)-len(msg)-1] = 0
    50  	copy(mm, msg)
    51  
    52  	m := new(big.Int).SetBytes(em)
    53  	c := encrypt(new(big.Int), pub, m)
    54  
    55  	copyWithLeftPad(em, c.Bytes())
    56  	out = em
    57  	return
    58  }
    59  
    60  // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
    61  // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
    62  func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) {
    63  	if err := checkPub(&priv.PublicKey); err != nil {
    64  		return nil, err
    65  	}
    66  	valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
    67  	if err != nil {
    68  		return
    69  	}
    70  	if valid == 0 {
    71  		return nil, ErrDecryption
    72  	}
    73  	out = out[index:]
    74  	return
    75  }
    76  
    77  // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
    78  // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
    79  // It returns an error if the ciphertext is the wrong length or if the
    80  // ciphertext is greater than the public modulus. Otherwise, no error is
    81  // returned. If the padding is valid, the resulting plaintext message is copied
    82  // into key. Otherwise, key is unchanged. These alternatives occur in constant
    83  // time. It is intended that the user of this function generate a random
    84  // session key beforehand and continue the protocol with the resulting value.
    85  // This will remove any possibility that an attacker can learn any information
    86  // about the plaintext.
    87  // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
    88  // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
    89  // (Crypto '98).
    90  func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) {
    91  	if err := checkPub(&priv.PublicKey); err != nil {
    92  		return err
    93  	}
    94  	k := (priv.N.BitLen() + 7) / 8
    95  	if k-(len(key)+3+8) < 0 {
    96  		return ErrDecryption
    97  	}
    98  
    99  	valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
   100  	if err != nil {
   101  		return
   102  	}
   103  
   104  	if len(em) != k {
   105  		// This should be impossible because decryptPKCS1v15 always
   106  		// returns the full slice.
   107  		return ErrDecryption
   108  	}
   109  
   110  	valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
   111  	subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
   112  	return
   113  }
   114  
   115  // decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
   116  // rand is not nil. It returns one or zero in valid that indicates whether the
   117  // plaintext was correctly structured. In either case, the plaintext is
   118  // returned in em so that it may be read independently of whether it was valid
   119  // in order to maintain constant memory access patterns. If the plaintext was
   120  // valid then index contains the index of the original message in em.
   121  func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
   122  	k := (priv.N.BitLen() + 7) / 8
   123  	if k < 11 {
   124  		err = ErrDecryption
   125  		return
   126  	}
   127  
   128  	c := new(big.Int).SetBytes(ciphertext)
   129  	m, err := decrypt(rand, priv, c)
   130  	if err != nil {
   131  		return
   132  	}
   133  
   134  	em = leftPad(m.Bytes(), k)
   135  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   136  	secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
   137  
   138  	// The remainder of the plaintext must be a string of non-zero random
   139  	// octets, followed by a 0, followed by the message.
   140  	//   lookingForIndex: 1 iff we are still looking for the zero.
   141  	//   index: the offset of the first zero byte.
   142  	lookingForIndex := 1
   143  
   144  	for i := 2; i < len(em); i++ {
   145  		equals0 := subtle.ConstantTimeByteEq(em[i], 0)
   146  		index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
   147  		lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
   148  	}
   149  
   150  	// The PS padding must be at least 8 bytes long, and it starts two
   151  	// bytes into em.
   152  	validPS := subtle.ConstantTimeLessOrEq(2+8, index)
   153  
   154  	valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
   155  	index = subtle.ConstantTimeSelect(valid, index+1, 0)
   156  	return valid, em, index, nil
   157  }
   158  
   159  // nonZeroRandomBytes fills the given slice with non-zero random octets.
   160  func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
   161  	_, err = io.ReadFull(rand, s)
   162  	if err != nil {
   163  		return
   164  	}
   165  
   166  	for i := 0; i < len(s); i++ {
   167  		for s[i] == 0 {
   168  			_, err = io.ReadFull(rand, s[i:i+1])
   169  			if err != nil {
   170  				return
   171  			}
   172  			// In tests, the PRNG may return all zeros so we do
   173  			// this to break the loop.
   174  			s[i] ^= 0x42
   175  		}
   176  	}
   177  
   178  	return
   179  }
   180  
   181  // These are ASN1 DER structures:
   182  //   DigestInfo ::= SEQUENCE {
   183  //     digestAlgorithm AlgorithmIdentifier,
   184  //     digest OCTET STRING
   185  //   }
   186  // For performance, we don't use the generic ASN1 encoder. Rather, we
   187  // precompute a prefix of the digest value that makes a valid ASN1 DER string
   188  // with the correct contents.
   189  var hashPrefixes = map[crypto.Hash][]byte{
   190  	crypto.MD5:       {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
   191  	crypto.SHA1:      {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
   192  	crypto.SHA224:    {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
   193  	crypto.SHA256:    {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
   194  	crypto.SHA384:    {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
   195  	crypto.SHA512:    {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
   196  	crypto.MD5SHA1:   {}, // A special TLS case which doesn't use an ASN1 prefix.
   197  	crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
   198  }
   199  
   200  // SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5.
   201  // Note that hashed must be the result of hashing the input message using the
   202  // given hash function. If hash is zero, hashed is signed directly. This isn't
   203  // advisable except for interoperability.
   204  func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) {
   205  	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
   206  	if err != nil {
   207  		return
   208  	}
   209  
   210  	tLen := len(prefix) + hashLen
   211  	k := (priv.N.BitLen() + 7) / 8
   212  	if k < tLen+11 {
   213  		return nil, ErrMessageTooLong
   214  	}
   215  
   216  	// EM = 0x00 || 0x01 || PS || 0x00 || T
   217  	em := make([]byte, k)
   218  	em[1] = 1
   219  	for i := 2; i < k-tLen-1; i++ {
   220  		em[i] = 0xff
   221  	}
   222  	copy(em[k-tLen:k-hashLen], prefix)
   223  	copy(em[k-hashLen:k], hashed)
   224  
   225  	m := new(big.Int).SetBytes(em)
   226  	c, err := decryptAndCheck(rand, priv, m)
   227  	if err != nil {
   228  		return
   229  	}
   230  
   231  	copyWithLeftPad(em, c.Bytes())
   232  	s = em
   233  	return
   234  }
   235  
   236  // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
   237  // hashed is the result of hashing the input message using the given hash
   238  // function and sig is the signature. A valid signature is indicated by
   239  // returning a nil error. If hash is zero then hashed is used directly. This
   240  // isn't advisable except for interoperability.
   241  func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) {
   242  	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
   243  	if err != nil {
   244  		return
   245  	}
   246  
   247  	tLen := len(prefix) + hashLen
   248  	k := (pub.N.BitLen() + 7) / 8
   249  	if k < tLen+11 {
   250  		err = ErrVerification
   251  		return
   252  	}
   253  
   254  	c := new(big.Int).SetBytes(sig)
   255  	m := encrypt(new(big.Int), pub, c)
   256  	em := leftPad(m.Bytes(), k)
   257  	// EM = 0x00 || 0x01 || PS || 0x00 || T
   258  
   259  	ok := subtle.ConstantTimeByteEq(em[0], 0)
   260  	ok &= subtle.ConstantTimeByteEq(em[1], 1)
   261  	ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
   262  	ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
   263  	ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
   264  
   265  	for i := 2; i < k-tLen-1; i++ {
   266  		ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
   267  	}
   268  
   269  	if ok != 1 {
   270  		return ErrVerification
   271  	}
   272  
   273  	return nil
   274  }
   275  
   276  func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
   277  	// Special case: crypto.Hash(0) is used to indicate that the data is
   278  	// signed directly.
   279  	if hash == 0 {
   280  		return inLen, nil, nil
   281  	}
   282  
   283  	hashLen = hash.Size()
   284  	if inLen != hashLen {
   285  		return 0, nil, errors.New("crypto/rsa: input must be hashed message")
   286  	}
   287  	prefix, ok := hashPrefixes[hash]
   288  	if !ok {
   289  		return 0, nil, errors.New("crypto/rsa: unsupported hash function")
   290  	}
   291  	return
   292  }
   293  
   294  // copyWithLeftPad copies src to the end of dest, padding with zero bytes as
   295  // needed.
   296  func copyWithLeftPad(dest, src []byte) {
   297  	numPaddingBytes := len(dest) - len(src)
   298  	for i := 0; i < numPaddingBytes; i++ {
   299  		dest[i] = 0
   300  	}
   301  	copy(dest[numPaddingBytes:], src)
   302  }