github.com/sean-/go@v0.0.0-20151219100004-97f854cd7bb6/src/crypto/rsa/rsa.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package rsa implements RSA encryption as specified in PKCS#1.
     6  package rsa
     7  
     8  import (
     9  	"crypto"
    10  	"crypto/rand"
    11  	"crypto/subtle"
    12  	"errors"
    13  	"hash"
    14  	"io"
    15  	"math/big"
    16  )
    17  
    18  var bigZero = big.NewInt(0)
    19  var bigOne = big.NewInt(1)
    20  
    21  // A PublicKey represents the public part of an RSA key.
    22  type PublicKey struct {
    23  	N *big.Int // modulus
    24  	E int      // public exponent
    25  }
    26  
    27  // OAEPOptions is an interface for passing options to OAEP decryption using the
    28  // crypto.Decrypter interface.
    29  type OAEPOptions struct {
    30  	// Hash is the hash function that will be used when generating the mask.
    31  	Hash crypto.Hash
    32  	// Label is an arbitrary byte string that must be equal to the value
    33  	// used when encrypting.
    34  	Label []byte
    35  }
    36  
    37  var (
    38  	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
    39  	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
    40  	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
    41  )
    42  
    43  // checkPub sanity checks the public key before we use it.
    44  // We require pub.E to fit into a 32-bit integer so that we
    45  // do not have different behavior depending on whether
    46  // int is 32 or 64 bits. See also
    47  // http://www.imperialviolet.org/2012/03/16/rsae.html.
    48  func checkPub(pub *PublicKey) error {
    49  	if pub.N == nil {
    50  		return errPublicModulus
    51  	}
    52  	if pub.E < 2 {
    53  		return errPublicExponentSmall
    54  	}
    55  	if pub.E > 1<<31-1 {
    56  		return errPublicExponentLarge
    57  	}
    58  	return nil
    59  }
    60  
    61  // A PrivateKey represents an RSA key
    62  type PrivateKey struct {
    63  	PublicKey            // public part.
    64  	D         *big.Int   // private exponent
    65  	Primes    []*big.Int // prime factors of N, has >= 2 elements.
    66  
    67  	// Precomputed contains precomputed values that speed up private
    68  	// operations, if available.
    69  	Precomputed PrecomputedValues
    70  }
    71  
    72  // Public returns the public key corresponding to priv.
    73  func (priv *PrivateKey) Public() crypto.PublicKey {
    74  	return &priv.PublicKey
    75  }
    76  
    77  // Sign signs msg with priv, reading randomness from rand. If opts is a
    78  // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
    79  // be used. This method is intended to support keys where the private part is
    80  // kept in, for example, a hardware module. Common uses should use the Sign*
    81  // functions in this package.
    82  func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
    83  	if pssOpts, ok := opts.(*PSSOptions); ok {
    84  		return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
    85  	}
    86  
    87  	return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
    88  }
    89  
    90  // Decrypt decrypts ciphertext with priv. If opts is nil or of type
    91  // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
    92  // opts must have type *OAEPOptions and OAEP decryption is done.
    93  func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
    94  	if opts == nil {
    95  		return DecryptPKCS1v15(rand, priv, ciphertext)
    96  	}
    97  
    98  	switch opts := opts.(type) {
    99  	case *OAEPOptions:
   100  		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
   101  
   102  	case *PKCS1v15DecryptOptions:
   103  		if l := opts.SessionKeyLen; l > 0 {
   104  			plaintext = make([]byte, l)
   105  			if _, err := io.ReadFull(rand, plaintext); err != nil {
   106  				return nil, err
   107  			}
   108  			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
   109  				return nil, err
   110  			}
   111  			return plaintext, nil
   112  		} else {
   113  			return DecryptPKCS1v15(rand, priv, ciphertext)
   114  		}
   115  
   116  	default:
   117  		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
   118  	}
   119  }
   120  
   121  type PrecomputedValues struct {
   122  	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
   123  	Qinv   *big.Int // Q^-1 mod P
   124  
   125  	// CRTValues is used for the 3rd and subsequent primes. Due to a
   126  	// historical accident, the CRT for the first two primes is handled
   127  	// differently in PKCS#1 and interoperability is sufficiently
   128  	// important that we mirror this.
   129  	CRTValues []CRTValue
   130  }
   131  
   132  // CRTValue contains the precomputed Chinese remainder theorem values.
   133  type CRTValue struct {
   134  	Exp   *big.Int // D mod (prime-1).
   135  	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
   136  	R     *big.Int // product of primes prior to this (inc p and q).
   137  }
   138  
   139  // Validate performs basic sanity checks on the key.
   140  // It returns nil if the key is valid, or else an error describing a problem.
   141  func (priv *PrivateKey) Validate() error {
   142  	if err := checkPub(&priv.PublicKey); err != nil {
   143  		return err
   144  	}
   145  
   146  	// Check that Πprimes == n.
   147  	modulus := new(big.Int).Set(bigOne)
   148  	for _, prime := range priv.Primes {
   149  		// Any primes ≤ 1 will cause divide-by-zero panics later.
   150  		if prime.Cmp(bigOne) <= 0 {
   151  			return errors.New("crypto/rsa: invalid prime value")
   152  		}
   153  		modulus.Mul(modulus, prime)
   154  	}
   155  	if modulus.Cmp(priv.N) != 0 {
   156  		return errors.New("crypto/rsa: invalid modulus")
   157  	}
   158  
   159  	// Check that de ≡ 1 mod p-1, for each prime.
   160  	// This implies that e is coprime to each p-1 as e has a multiplicative
   161  	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
   162  	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
   163  	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
   164  	congruence := new(big.Int)
   165  	de := new(big.Int).SetInt64(int64(priv.E))
   166  	de.Mul(de, priv.D)
   167  	for _, prime := range priv.Primes {
   168  		pminus1 := new(big.Int).Sub(prime, bigOne)
   169  		congruence.Mod(de, pminus1)
   170  		if congruence.Cmp(bigOne) != 0 {
   171  			return errors.New("crypto/rsa: invalid exponents")
   172  		}
   173  	}
   174  	return nil
   175  }
   176  
   177  // GenerateKey generates an RSA keypair of the given bit size using the
   178  // random source random (for example, crypto/rand.Reader).
   179  func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
   180  	return GenerateMultiPrimeKey(random, 2, bits)
   181  }
   182  
   183  // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
   184  // size and the given random source, as suggested in [1]. Although the public
   185  // keys are compatible (actually, indistinguishable) from the 2-prime case,
   186  // the private keys are not. Thus it may not be possible to export multi-prime
   187  // private keys in certain formats or to subsequently import them into other
   188  // code.
   189  //
   190  // Table 1 in [2] suggests maximum numbers of primes for a given size.
   191  //
   192  // [1] US patent 4405829 (1972, expired)
   193  // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
   194  func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
   195  	priv = new(PrivateKey)
   196  	priv.E = 65537
   197  
   198  	if nprimes < 2 {
   199  		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
   200  	}
   201  
   202  	primes := make([]*big.Int, nprimes)
   203  
   204  NextSetOfPrimes:
   205  	for {
   206  		todo := bits
   207  		// crypto/rand should set the top two bits in each prime.
   208  		// Thus each prime has the form
   209  		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
   210  		// And the product is:
   211  		//   P = 2^todo × α
   212  		// where α is the product of nprimes numbers of the form 0.11...
   213  		//
   214  		// If α < 1/2 (which can happen for nprimes > 2), we need to
   215  		// shift todo to compensate for lost bits: the mean value of 0.11...
   216  		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
   217  		// will give good results.
   218  		if nprimes >= 7 {
   219  			todo += (nprimes - 2) / 5
   220  		}
   221  		for i := 0; i < nprimes; i++ {
   222  			primes[i], err = rand.Prime(random, todo/(nprimes-i))
   223  			if err != nil {
   224  				return nil, err
   225  			}
   226  			todo -= primes[i].BitLen()
   227  		}
   228  
   229  		// Make sure that primes is pairwise unequal.
   230  		for i, prime := range primes {
   231  			for j := 0; j < i; j++ {
   232  				if prime.Cmp(primes[j]) == 0 {
   233  					continue NextSetOfPrimes
   234  				}
   235  			}
   236  		}
   237  
   238  		n := new(big.Int).Set(bigOne)
   239  		totient := new(big.Int).Set(bigOne)
   240  		pminus1 := new(big.Int)
   241  		for _, prime := range primes {
   242  			n.Mul(n, prime)
   243  			pminus1.Sub(prime, bigOne)
   244  			totient.Mul(totient, pminus1)
   245  		}
   246  		if n.BitLen() != bits {
   247  			// This should never happen for nprimes == 2 because
   248  			// crypto/rand should set the top two bits in each prime.
   249  			// For nprimes > 2 we hope it does not happen often.
   250  			continue NextSetOfPrimes
   251  		}
   252  
   253  		g := new(big.Int)
   254  		priv.D = new(big.Int)
   255  		y := new(big.Int)
   256  		e := big.NewInt(int64(priv.E))
   257  		g.GCD(priv.D, y, e, totient)
   258  
   259  		if g.Cmp(bigOne) == 0 {
   260  			if priv.D.Sign() < 0 {
   261  				priv.D.Add(priv.D, totient)
   262  			}
   263  			priv.Primes = primes
   264  			priv.N = n
   265  
   266  			break
   267  		}
   268  	}
   269  
   270  	priv.Precompute()
   271  	return
   272  }
   273  
   274  // incCounter increments a four byte, big-endian counter.
   275  func incCounter(c *[4]byte) {
   276  	if c[3]++; c[3] != 0 {
   277  		return
   278  	}
   279  	if c[2]++; c[2] != 0 {
   280  		return
   281  	}
   282  	if c[1]++; c[1] != 0 {
   283  		return
   284  	}
   285  	c[0]++
   286  }
   287  
   288  // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
   289  // specified in PKCS#1 v2.1.
   290  func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
   291  	var counter [4]byte
   292  	var digest []byte
   293  
   294  	done := 0
   295  	for done < len(out) {
   296  		hash.Write(seed)
   297  		hash.Write(counter[0:4])
   298  		digest = hash.Sum(digest[:0])
   299  		hash.Reset()
   300  
   301  		for i := 0; i < len(digest) && done < len(out); i++ {
   302  			out[done] ^= digest[i]
   303  			done++
   304  		}
   305  		incCounter(&counter)
   306  	}
   307  }
   308  
   309  // ErrMessageTooLong is returned when attempting to encrypt a message which is
   310  // too large for the size of the public key.
   311  var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
   312  
   313  func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
   314  	e := big.NewInt(int64(pub.E))
   315  	c.Exp(m, e, pub.N)
   316  	return c
   317  }
   318  
   319  // EncryptOAEP encrypts the given message with RSA-OAEP.
   320  // The message must be no longer than the length of the public modulus less
   321  // twice the hash length plus 2.
   322  func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
   323  	if err := checkPub(pub); err != nil {
   324  		return nil, err
   325  	}
   326  	hash.Reset()
   327  	k := (pub.N.BitLen() + 7) / 8
   328  	if len(msg) > k-2*hash.Size()-2 {
   329  		err = ErrMessageTooLong
   330  		return
   331  	}
   332  
   333  	hash.Write(label)
   334  	lHash := hash.Sum(nil)
   335  	hash.Reset()
   336  
   337  	em := make([]byte, k)
   338  	seed := em[1 : 1+hash.Size()]
   339  	db := em[1+hash.Size():]
   340  
   341  	copy(db[0:hash.Size()], lHash)
   342  	db[len(db)-len(msg)-1] = 1
   343  	copy(db[len(db)-len(msg):], msg)
   344  
   345  	_, err = io.ReadFull(random, seed)
   346  	if err != nil {
   347  		return
   348  	}
   349  
   350  	mgf1XOR(db, hash, seed)
   351  	mgf1XOR(seed, hash, db)
   352  
   353  	m := new(big.Int)
   354  	m.SetBytes(em)
   355  	c := encrypt(new(big.Int), pub, m)
   356  	out = c.Bytes()
   357  
   358  	if len(out) < k {
   359  		// If the output is too small, we need to left-pad with zeros.
   360  		t := make([]byte, k)
   361  		copy(t[k-len(out):], out)
   362  		out = t
   363  	}
   364  
   365  	return
   366  }
   367  
   368  // ErrDecryption represents a failure to decrypt a message.
   369  // It is deliberately vague to avoid adaptive attacks.
   370  var ErrDecryption = errors.New("crypto/rsa: decryption error")
   371  
   372  // ErrVerification represents a failure to verify a signature.
   373  // It is deliberately vague to avoid adaptive attacks.
   374  var ErrVerification = errors.New("crypto/rsa: verification error")
   375  
   376  // modInverse returns ia, the inverse of a in the multiplicative group of prime
   377  // order n. It requires that a be a member of the group (i.e. less than n).
   378  func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
   379  	g := new(big.Int)
   380  	x := new(big.Int)
   381  	y := new(big.Int)
   382  	g.GCD(x, y, a, n)
   383  	if g.Cmp(bigOne) != 0 {
   384  		// In this case, a and n aren't coprime and we cannot calculate
   385  		// the inverse. This happens because the values of n are nearly
   386  		// prime (being the product of two primes) rather than truly
   387  		// prime.
   388  		return
   389  	}
   390  
   391  	if x.Cmp(bigOne) < 0 {
   392  		// 0 is not the multiplicative inverse of any element so, if x
   393  		// < 1, then x is negative.
   394  		x.Add(x, n)
   395  	}
   396  
   397  	return x, true
   398  }
   399  
   400  // Precompute performs some calculations that speed up private key operations
   401  // in the future.
   402  func (priv *PrivateKey) Precompute() {
   403  	if priv.Precomputed.Dp != nil {
   404  		return
   405  	}
   406  
   407  	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
   408  	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
   409  
   410  	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
   411  	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
   412  
   413  	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
   414  
   415  	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
   416  	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
   417  	for i := 2; i < len(priv.Primes); i++ {
   418  		prime := priv.Primes[i]
   419  		values := &priv.Precomputed.CRTValues[i-2]
   420  
   421  		values.Exp = new(big.Int).Sub(prime, bigOne)
   422  		values.Exp.Mod(priv.D, values.Exp)
   423  
   424  		values.R = new(big.Int).Set(r)
   425  		values.Coeff = new(big.Int).ModInverse(r, prime)
   426  
   427  		r.Mul(r, prime)
   428  	}
   429  }
   430  
   431  // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
   432  // random source is given, RSA blinding is used.
   433  func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   434  	// TODO(agl): can we get away with reusing blinds?
   435  	if c.Cmp(priv.N) > 0 {
   436  		err = ErrDecryption
   437  		return
   438  	}
   439  
   440  	var ir *big.Int
   441  	if random != nil {
   442  		// Blinding enabled. Blinding involves multiplying c by r^e.
   443  		// Then the decryption operation performs (m^e * r^e)^d mod n
   444  		// which equals mr mod n. The factor of r can then be removed
   445  		// by multiplying by the multiplicative inverse of r.
   446  
   447  		var r *big.Int
   448  
   449  		for {
   450  			r, err = rand.Int(random, priv.N)
   451  			if err != nil {
   452  				return
   453  			}
   454  			if r.Cmp(bigZero) == 0 {
   455  				r = bigOne
   456  			}
   457  			var ok bool
   458  			ir, ok = modInverse(r, priv.N)
   459  			if ok {
   460  				break
   461  			}
   462  		}
   463  		bigE := big.NewInt(int64(priv.E))
   464  		rpowe := new(big.Int).Exp(r, bigE, priv.N)
   465  		cCopy := new(big.Int).Set(c)
   466  		cCopy.Mul(cCopy, rpowe)
   467  		cCopy.Mod(cCopy, priv.N)
   468  		c = cCopy
   469  	}
   470  
   471  	if priv.Precomputed.Dp == nil {
   472  		m = new(big.Int).Exp(c, priv.D, priv.N)
   473  	} else {
   474  		// We have the precalculated values needed for the CRT.
   475  		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
   476  		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
   477  		m.Sub(m, m2)
   478  		if m.Sign() < 0 {
   479  			m.Add(m, priv.Primes[0])
   480  		}
   481  		m.Mul(m, priv.Precomputed.Qinv)
   482  		m.Mod(m, priv.Primes[0])
   483  		m.Mul(m, priv.Primes[1])
   484  		m.Add(m, m2)
   485  
   486  		for i, values := range priv.Precomputed.CRTValues {
   487  			prime := priv.Primes[2+i]
   488  			m2.Exp(c, values.Exp, prime)
   489  			m2.Sub(m2, m)
   490  			m2.Mul(m2, values.Coeff)
   491  			m2.Mod(m2, prime)
   492  			if m2.Sign() < 0 {
   493  				m2.Add(m2, prime)
   494  			}
   495  			m2.Mul(m2, values.R)
   496  			m.Add(m, m2)
   497  		}
   498  	}
   499  
   500  	if ir != nil {
   501  		// Unblind.
   502  		m.Mul(m, ir)
   503  		m.Mod(m, priv.N)
   504  	}
   505  
   506  	return
   507  }
   508  
   509  func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   510  	m, err = decrypt(random, priv, c)
   511  	if err != nil {
   512  		return nil, err
   513  	}
   514  
   515  	// In order to defend against errors in the CRT computation, m^e is
   516  	// calculated, which should match the original ciphertext.
   517  	check := encrypt(new(big.Int), &priv.PublicKey, m)
   518  	if c.Cmp(check) != 0 {
   519  		return nil, errors.New("rsa: internal error")
   520  	}
   521  	return m, nil
   522  }
   523  
   524  // DecryptOAEP decrypts ciphertext using RSA-OAEP.
   525  // If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
   526  func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
   527  	if err := checkPub(&priv.PublicKey); err != nil {
   528  		return nil, err
   529  	}
   530  	k := (priv.N.BitLen() + 7) / 8
   531  	if len(ciphertext) > k ||
   532  		k < hash.Size()*2+2 {
   533  		err = ErrDecryption
   534  		return
   535  	}
   536  
   537  	c := new(big.Int).SetBytes(ciphertext)
   538  
   539  	m, err := decrypt(random, priv, c)
   540  	if err != nil {
   541  		return
   542  	}
   543  
   544  	hash.Write(label)
   545  	lHash := hash.Sum(nil)
   546  	hash.Reset()
   547  
   548  	// Converting the plaintext number to bytes will strip any
   549  	// leading zeros so we may have to left pad. We do this unconditionally
   550  	// to avoid leaking timing information. (Although we still probably
   551  	// leak the number of leading zeros. It's not clear that we can do
   552  	// anything about this.)
   553  	em := leftPad(m.Bytes(), k)
   554  
   555  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   556  
   557  	seed := em[1 : hash.Size()+1]
   558  	db := em[hash.Size()+1:]
   559  
   560  	mgf1XOR(seed, hash, db)
   561  	mgf1XOR(db, hash, seed)
   562  
   563  	lHash2 := db[0:hash.Size()]
   564  
   565  	// We have to validate the plaintext in constant time in order to avoid
   566  	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
   567  	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
   568  	// v2.0. In J. Kilian, editor, Advances in Cryptology.
   569  	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
   570  
   571  	// The remainder of the plaintext must be zero or more 0x00, followed
   572  	// by 0x01, followed by the message.
   573  	//   lookingForIndex: 1 iff we are still looking for the 0x01
   574  	//   index: the offset of the first 0x01 byte
   575  	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
   576  	var lookingForIndex, index, invalid int
   577  	lookingForIndex = 1
   578  	rest := db[hash.Size():]
   579  
   580  	for i := 0; i < len(rest); i++ {
   581  		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
   582  		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
   583  		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
   584  		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
   585  		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
   586  	}
   587  
   588  	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
   589  		err = ErrDecryption
   590  		return
   591  	}
   592  
   593  	msg = rest[index+1:]
   594  	return
   595  }
   596  
   597  // leftPad returns a new slice of length size. The contents of input are right
   598  // aligned in the new slice.
   599  func leftPad(input []byte, size int) (out []byte) {
   600  	n := len(input)
   601  	if n > size {
   602  		n = size
   603  	}
   604  	out = make([]byte, size)
   605  	copy(out[len(out)-n:], input)
   606  	return
   607  }