github.com/sean-/go@v0.0.0-20151219100004-97f854cd7bb6/src/encoding/asn1/asn1.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package asn1 implements parsing of DER-encoded ASN.1 data structures, 6 // as defined in ITU-T Rec X.690. 7 // 8 // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,'' 9 // http://luca.ntop.org/Teaching/Appunti/asn1.html. 10 package asn1 11 12 // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc 13 // are different encoding formats for those objects. Here, we'll be dealing 14 // with DER, the Distinguished Encoding Rules. DER is used in X.509 because 15 // it's fast to parse and, unlike BER, has a unique encoding for every object. 16 // When calculating hashes over objects, it's important that the resulting 17 // bytes be the same at both ends and DER removes this margin of error. 18 // 19 // ASN.1 is very complex and this package doesn't attempt to implement 20 // everything by any means. 21 22 import ( 23 "errors" 24 "fmt" 25 "math/big" 26 "reflect" 27 "strconv" 28 "time" 29 "unicode/utf8" 30 ) 31 32 // A StructuralError suggests that the ASN.1 data is valid, but the Go type 33 // which is receiving it doesn't match. 34 type StructuralError struct { 35 Msg string 36 } 37 38 func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg } 39 40 // A SyntaxError suggests that the ASN.1 data is invalid. 41 type SyntaxError struct { 42 Msg string 43 } 44 45 func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg } 46 47 // We start by dealing with each of the primitive types in turn. 48 49 // BOOLEAN 50 51 func parseBool(bytes []byte) (ret bool, err error) { 52 if len(bytes) != 1 { 53 err = SyntaxError{"invalid boolean"} 54 return 55 } 56 57 // DER demands that "If the encoding represents the boolean value TRUE, 58 // its single contents octet shall have all eight bits set to one." 59 // Thus only 0 and 255 are valid encoded values. 60 switch bytes[0] { 61 case 0: 62 ret = false 63 case 0xff: 64 ret = true 65 default: 66 err = SyntaxError{"invalid boolean"} 67 } 68 69 return 70 } 71 72 // INTEGER 73 74 // checkInteger returns nil if the given bytes are a valid DER-encoded 75 // INTEGER and an error otherwise. 76 func checkInteger(bytes []byte) error { 77 if len(bytes) == 0 { 78 return StructuralError{"empty integer"} 79 } 80 if len(bytes) == 1 { 81 return nil 82 } 83 if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) { 84 return StructuralError{"integer not minimally-encoded"} 85 } 86 return nil 87 } 88 89 // parseInt64 treats the given bytes as a big-endian, signed integer and 90 // returns the result. 91 func parseInt64(bytes []byte) (ret int64, err error) { 92 err = checkInteger(bytes) 93 if err != nil { 94 return 95 } 96 if len(bytes) > 8 { 97 // We'll overflow an int64 in this case. 98 err = StructuralError{"integer too large"} 99 return 100 } 101 for bytesRead := 0; bytesRead < len(bytes); bytesRead++ { 102 ret <<= 8 103 ret |= int64(bytes[bytesRead]) 104 } 105 106 // Shift up and down in order to sign extend the result. 107 ret <<= 64 - uint8(len(bytes))*8 108 ret >>= 64 - uint8(len(bytes))*8 109 return 110 } 111 112 // parseInt treats the given bytes as a big-endian, signed integer and returns 113 // the result. 114 func parseInt32(bytes []byte) (int32, error) { 115 if err := checkInteger(bytes); err != nil { 116 return 0, err 117 } 118 ret64, err := parseInt64(bytes) 119 if err != nil { 120 return 0, err 121 } 122 if ret64 != int64(int32(ret64)) { 123 return 0, StructuralError{"integer too large"} 124 } 125 return int32(ret64), nil 126 } 127 128 var bigOne = big.NewInt(1) 129 130 // parseBigInt treats the given bytes as a big-endian, signed integer and returns 131 // the result. 132 func parseBigInt(bytes []byte) (*big.Int, error) { 133 if err := checkInteger(bytes); err != nil { 134 return nil, err 135 } 136 ret := new(big.Int) 137 if len(bytes) > 0 && bytes[0]&0x80 == 0x80 { 138 // This is a negative number. 139 notBytes := make([]byte, len(bytes)) 140 for i := range notBytes { 141 notBytes[i] = ^bytes[i] 142 } 143 ret.SetBytes(notBytes) 144 ret.Add(ret, bigOne) 145 ret.Neg(ret) 146 return ret, nil 147 } 148 ret.SetBytes(bytes) 149 return ret, nil 150 } 151 152 // BIT STRING 153 154 // BitString is the structure to use when you want an ASN.1 BIT STRING type. A 155 // bit string is padded up to the nearest byte in memory and the number of 156 // valid bits is recorded. Padding bits will be zero. 157 type BitString struct { 158 Bytes []byte // bits packed into bytes. 159 BitLength int // length in bits. 160 } 161 162 // At returns the bit at the given index. If the index is out of range it 163 // returns false. 164 func (b BitString) At(i int) int { 165 if i < 0 || i >= b.BitLength { 166 return 0 167 } 168 x := i / 8 169 y := 7 - uint(i%8) 170 return int(b.Bytes[x]>>y) & 1 171 } 172 173 // RightAlign returns a slice where the padding bits are at the beginning. The 174 // slice may share memory with the BitString. 175 func (b BitString) RightAlign() []byte { 176 shift := uint(8 - (b.BitLength % 8)) 177 if shift == 8 || len(b.Bytes) == 0 { 178 return b.Bytes 179 } 180 181 a := make([]byte, len(b.Bytes)) 182 a[0] = b.Bytes[0] >> shift 183 for i := 1; i < len(b.Bytes); i++ { 184 a[i] = b.Bytes[i-1] << (8 - shift) 185 a[i] |= b.Bytes[i] >> shift 186 } 187 188 return a 189 } 190 191 // parseBitString parses an ASN.1 bit string from the given byte slice and returns it. 192 func parseBitString(bytes []byte) (ret BitString, err error) { 193 if len(bytes) == 0 { 194 err = SyntaxError{"zero length BIT STRING"} 195 return 196 } 197 paddingBits := int(bytes[0]) 198 if paddingBits > 7 || 199 len(bytes) == 1 && paddingBits > 0 || 200 bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 { 201 err = SyntaxError{"invalid padding bits in BIT STRING"} 202 return 203 } 204 ret.BitLength = (len(bytes)-1)*8 - paddingBits 205 ret.Bytes = bytes[1:] 206 return 207 } 208 209 // OBJECT IDENTIFIER 210 211 // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER. 212 type ObjectIdentifier []int 213 214 // Equal reports whether oi and other represent the same identifier. 215 func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool { 216 if len(oi) != len(other) { 217 return false 218 } 219 for i := 0; i < len(oi); i++ { 220 if oi[i] != other[i] { 221 return false 222 } 223 } 224 225 return true 226 } 227 228 func (oi ObjectIdentifier) String() string { 229 var s string 230 231 for i, v := range oi { 232 if i > 0 { 233 s += "." 234 } 235 s += strconv.Itoa(v) 236 } 237 238 return s 239 } 240 241 // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and 242 // returns it. An object identifier is a sequence of variable length integers 243 // that are assigned in a hierarchy. 244 func parseObjectIdentifier(bytes []byte) (s []int, err error) { 245 if len(bytes) == 0 { 246 err = SyntaxError{"zero length OBJECT IDENTIFIER"} 247 return 248 } 249 250 // In the worst case, we get two elements from the first byte (which is 251 // encoded differently) and then every varint is a single byte long. 252 s = make([]int, len(bytes)+1) 253 254 // The first varint is 40*value1 + value2: 255 // According to this packing, value1 can take the values 0, 1 and 2 only. 256 // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2, 257 // then there are no restrictions on value2. 258 v, offset, err := parseBase128Int(bytes, 0) 259 if err != nil { 260 return 261 } 262 if v < 80 { 263 s[0] = v / 40 264 s[1] = v % 40 265 } else { 266 s[0] = 2 267 s[1] = v - 80 268 } 269 270 i := 2 271 for ; offset < len(bytes); i++ { 272 v, offset, err = parseBase128Int(bytes, offset) 273 if err != nil { 274 return 275 } 276 s[i] = v 277 } 278 s = s[0:i] 279 return 280 } 281 282 // ENUMERATED 283 284 // An Enumerated is represented as a plain int. 285 type Enumerated int 286 287 // FLAG 288 289 // A Flag accepts any data and is set to true if present. 290 type Flag bool 291 292 // parseBase128Int parses a base-128 encoded int from the given offset in the 293 // given byte slice. It returns the value and the new offset. 294 func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) { 295 offset = initOffset 296 for shifted := 0; offset < len(bytes); shifted++ { 297 if shifted > 4 { 298 err = StructuralError{"base 128 integer too large"} 299 return 300 } 301 ret <<= 7 302 b := bytes[offset] 303 ret |= int(b & 0x7f) 304 offset++ 305 if b&0x80 == 0 { 306 return 307 } 308 } 309 err = SyntaxError{"truncated base 128 integer"} 310 return 311 } 312 313 // UTCTime 314 315 func parseUTCTime(bytes []byte) (ret time.Time, err error) { 316 s := string(bytes) 317 318 formatStr := "0601021504Z0700" 319 ret, err = time.Parse(formatStr, s) 320 if err != nil { 321 formatStr = "060102150405Z0700" 322 ret, err = time.Parse(formatStr, s) 323 } 324 if err != nil { 325 return 326 } 327 328 if serialized := ret.Format(formatStr); serialized != s { 329 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized) 330 return 331 } 332 333 if ret.Year() >= 2050 { 334 // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1 335 ret = ret.AddDate(-100, 0, 0) 336 } 337 338 return 339 } 340 341 // parseGeneralizedTime parses the GeneralizedTime from the given byte slice 342 // and returns the resulting time. 343 func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) { 344 const formatStr = "20060102150405Z0700" 345 s := string(bytes) 346 347 if ret, err = time.Parse(formatStr, s); err != nil { 348 return 349 } 350 351 if serialized := ret.Format(formatStr); serialized != s { 352 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized) 353 } 354 355 return 356 } 357 358 // PrintableString 359 360 // parsePrintableString parses a ASN.1 PrintableString from the given byte 361 // array and returns it. 362 func parsePrintableString(bytes []byte) (ret string, err error) { 363 for _, b := range bytes { 364 if !isPrintable(b) { 365 err = SyntaxError{"PrintableString contains invalid character"} 366 return 367 } 368 } 369 ret = string(bytes) 370 return 371 } 372 373 // isPrintable reports whether the given b is in the ASN.1 PrintableString set. 374 func isPrintable(b byte) bool { 375 return 'a' <= b && b <= 'z' || 376 'A' <= b && b <= 'Z' || 377 '0' <= b && b <= '9' || 378 '\'' <= b && b <= ')' || 379 '+' <= b && b <= '/' || 380 b == ' ' || 381 b == ':' || 382 b == '=' || 383 b == '?' || 384 // This is technically not allowed in a PrintableString. 385 // However, x509 certificates with wildcard strings don't 386 // always use the correct string type so we permit it. 387 b == '*' 388 } 389 390 // IA5String 391 392 // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given 393 // byte slice and returns it. 394 func parseIA5String(bytes []byte) (ret string, err error) { 395 for _, b := range bytes { 396 if b >= 0x80 { 397 err = SyntaxError{"IA5String contains invalid character"} 398 return 399 } 400 } 401 ret = string(bytes) 402 return 403 } 404 405 // T61String 406 407 // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given 408 // byte slice and returns it. 409 func parseT61String(bytes []byte) (ret string, err error) { 410 return string(bytes), nil 411 } 412 413 // UTF8String 414 415 // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte 416 // array and returns it. 417 func parseUTF8String(bytes []byte) (ret string, err error) { 418 if !utf8.Valid(bytes) { 419 return "", errors.New("asn1: invalid UTF-8 string") 420 } 421 return string(bytes), nil 422 } 423 424 // A RawValue represents an undecoded ASN.1 object. 425 type RawValue struct { 426 Class, Tag int 427 IsCompound bool 428 Bytes []byte 429 FullBytes []byte // includes the tag and length 430 } 431 432 // RawContent is used to signal that the undecoded, DER data needs to be 433 // preserved for a struct. To use it, the first field of the struct must have 434 // this type. It's an error for any of the other fields to have this type. 435 type RawContent []byte 436 437 // Tagging 438 439 // parseTagAndLength parses an ASN.1 tag and length pair from the given offset 440 // into a byte slice. It returns the parsed data and the new offset. SET and 441 // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we 442 // don't distinguish between ordered and unordered objects in this code. 443 func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) { 444 offset = initOffset 445 // parseTagAndLength should not be called without at least a single 446 // byte to read. Thus this check is for robustness: 447 if offset >= len(bytes) { 448 err = errors.New("asn1: internal error in parseTagAndLength") 449 return 450 } 451 b := bytes[offset] 452 offset++ 453 ret.class = int(b >> 6) 454 ret.isCompound = b&0x20 == 0x20 455 ret.tag = int(b & 0x1f) 456 457 // If the bottom five bits are set, then the tag number is actually base 128 458 // encoded afterwards 459 if ret.tag == 0x1f { 460 ret.tag, offset, err = parseBase128Int(bytes, offset) 461 if err != nil { 462 return 463 } 464 } 465 if offset >= len(bytes) { 466 err = SyntaxError{"truncated tag or length"} 467 return 468 } 469 b = bytes[offset] 470 offset++ 471 if b&0x80 == 0 { 472 // The length is encoded in the bottom 7 bits. 473 ret.length = int(b & 0x7f) 474 } else { 475 // Bottom 7 bits give the number of length bytes to follow. 476 numBytes := int(b & 0x7f) 477 if numBytes == 0 { 478 err = SyntaxError{"indefinite length found (not DER)"} 479 return 480 } 481 ret.length = 0 482 for i := 0; i < numBytes; i++ { 483 if offset >= len(bytes) { 484 err = SyntaxError{"truncated tag or length"} 485 return 486 } 487 b = bytes[offset] 488 offset++ 489 if ret.length >= 1<<23 { 490 // We can't shift ret.length up without 491 // overflowing. 492 err = StructuralError{"length too large"} 493 return 494 } 495 ret.length <<= 8 496 ret.length |= int(b) 497 if ret.length == 0 { 498 // DER requires that lengths be minimal. 499 err = StructuralError{"superfluous leading zeros in length"} 500 return 501 } 502 } 503 // Short lengths must be encoded in short form. 504 if ret.length < 0x80 { 505 err = StructuralError{"non-minimal length"} 506 return 507 } 508 } 509 510 return 511 } 512 513 // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse 514 // a number of ASN.1 values from the given byte slice and returns them as a 515 // slice of Go values of the given type. 516 func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) { 517 expectedTag, compoundType, ok := getUniversalType(elemType) 518 if !ok { 519 err = StructuralError{"unknown Go type for slice"} 520 return 521 } 522 523 // First we iterate over the input and count the number of elements, 524 // checking that the types are correct in each case. 525 numElements := 0 526 for offset := 0; offset < len(bytes); { 527 var t tagAndLength 528 t, offset, err = parseTagAndLength(bytes, offset) 529 if err != nil { 530 return 531 } 532 switch t.tag { 533 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String: 534 // We pretend that various other string types are 535 // PRINTABLE STRINGs so that a sequence of them can be 536 // parsed into a []string. 537 t.tag = TagPrintableString 538 case TagGeneralizedTime, TagUTCTime: 539 // Likewise, both time types are treated the same. 540 t.tag = TagUTCTime 541 } 542 543 if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag { 544 err = StructuralError{"sequence tag mismatch"} 545 return 546 } 547 if invalidLength(offset, t.length, len(bytes)) { 548 err = SyntaxError{"truncated sequence"} 549 return 550 } 551 offset += t.length 552 numElements++ 553 } 554 ret = reflect.MakeSlice(sliceType, numElements, numElements) 555 params := fieldParameters{} 556 offset := 0 557 for i := 0; i < numElements; i++ { 558 offset, err = parseField(ret.Index(i), bytes, offset, params) 559 if err != nil { 560 return 561 } 562 } 563 return 564 } 565 566 var ( 567 bitStringType = reflect.TypeOf(BitString{}) 568 objectIdentifierType = reflect.TypeOf(ObjectIdentifier{}) 569 enumeratedType = reflect.TypeOf(Enumerated(0)) 570 flagType = reflect.TypeOf(Flag(false)) 571 timeType = reflect.TypeOf(time.Time{}) 572 rawValueType = reflect.TypeOf(RawValue{}) 573 rawContentsType = reflect.TypeOf(RawContent(nil)) 574 bigIntType = reflect.TypeOf(new(big.Int)) 575 ) 576 577 // invalidLength returns true iff offset + length > sliceLength, or if the 578 // addition would overflow. 579 func invalidLength(offset, length, sliceLength int) bool { 580 return offset+length < offset || offset+length > sliceLength 581 } 582 583 // parseField is the main parsing function. Given a byte slice and an offset 584 // into the array, it will try to parse a suitable ASN.1 value out and store it 585 // in the given Value. 586 func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) { 587 offset = initOffset 588 fieldType := v.Type() 589 590 // If we have run out of data, it may be that there are optional elements at the end. 591 if offset == len(bytes) { 592 if !setDefaultValue(v, params) { 593 err = SyntaxError{"sequence truncated"} 594 } 595 return 596 } 597 598 // Deal with raw values. 599 if fieldType == rawValueType { 600 var t tagAndLength 601 t, offset, err = parseTagAndLength(bytes, offset) 602 if err != nil { 603 return 604 } 605 if invalidLength(offset, t.length, len(bytes)) { 606 err = SyntaxError{"data truncated"} 607 return 608 } 609 result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]} 610 offset += t.length 611 v.Set(reflect.ValueOf(result)) 612 return 613 } 614 615 // Deal with the ANY type. 616 if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 { 617 var t tagAndLength 618 t, offset, err = parseTagAndLength(bytes, offset) 619 if err != nil { 620 return 621 } 622 if invalidLength(offset, t.length, len(bytes)) { 623 err = SyntaxError{"data truncated"} 624 return 625 } 626 var result interface{} 627 if !t.isCompound && t.class == ClassUniversal { 628 innerBytes := bytes[offset : offset+t.length] 629 switch t.tag { 630 case TagPrintableString: 631 result, err = parsePrintableString(innerBytes) 632 case TagIA5String: 633 result, err = parseIA5String(innerBytes) 634 case TagT61String: 635 result, err = parseT61String(innerBytes) 636 case TagUTF8String: 637 result, err = parseUTF8String(innerBytes) 638 case TagInteger: 639 result, err = parseInt64(innerBytes) 640 case TagBitString: 641 result, err = parseBitString(innerBytes) 642 case TagOID: 643 result, err = parseObjectIdentifier(innerBytes) 644 case TagUTCTime: 645 result, err = parseUTCTime(innerBytes) 646 case TagGeneralizedTime: 647 result, err = parseGeneralizedTime(innerBytes) 648 case TagOctetString: 649 result = innerBytes 650 default: 651 // If we don't know how to handle the type, we just leave Value as nil. 652 } 653 } 654 offset += t.length 655 if err != nil { 656 return 657 } 658 if result != nil { 659 v.Set(reflect.ValueOf(result)) 660 } 661 return 662 } 663 universalTag, compoundType, ok1 := getUniversalType(fieldType) 664 if !ok1 { 665 err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)} 666 return 667 } 668 669 t, offset, err := parseTagAndLength(bytes, offset) 670 if err != nil { 671 return 672 } 673 if params.explicit { 674 expectedClass := ClassContextSpecific 675 if params.application { 676 expectedClass = ClassApplication 677 } 678 if offset == len(bytes) { 679 err = StructuralError{"explicit tag has no child"} 680 return 681 } 682 if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) { 683 if t.length > 0 { 684 t, offset, err = parseTagAndLength(bytes, offset) 685 if err != nil { 686 return 687 } 688 } else { 689 if fieldType != flagType { 690 err = StructuralError{"zero length explicit tag was not an asn1.Flag"} 691 return 692 } 693 v.SetBool(true) 694 return 695 } 696 } else { 697 // The tags didn't match, it might be an optional element. 698 ok := setDefaultValue(v, params) 699 if ok { 700 offset = initOffset 701 } else { 702 err = StructuralError{"explicitly tagged member didn't match"} 703 } 704 return 705 } 706 } 707 708 // Special case for strings: all the ASN.1 string types map to the Go 709 // type string. getUniversalType returns the tag for PrintableString 710 // when it sees a string, so if we see a different string type on the 711 // wire, we change the universal type to match. 712 if universalTag == TagPrintableString { 713 if t.class == ClassUniversal { 714 switch t.tag { 715 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String: 716 universalTag = t.tag 717 } 718 } else if params.stringType != 0 { 719 universalTag = params.stringType 720 } 721 } 722 723 // Special case for time: UTCTime and GeneralizedTime both map to the 724 // Go type time.Time. 725 if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal { 726 universalTag = TagGeneralizedTime 727 } 728 729 if params.set { 730 universalTag = TagSet 731 } 732 733 expectedClass := ClassUniversal 734 expectedTag := universalTag 735 736 if !params.explicit && params.tag != nil { 737 expectedClass = ClassContextSpecific 738 expectedTag = *params.tag 739 } 740 741 if !params.explicit && params.application && params.tag != nil { 742 expectedClass = ClassApplication 743 expectedTag = *params.tag 744 } 745 746 // We have unwrapped any explicit tagging at this point. 747 if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType { 748 // Tags don't match. Again, it could be an optional element. 749 ok := setDefaultValue(v, params) 750 if ok { 751 offset = initOffset 752 } else { 753 err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)} 754 } 755 return 756 } 757 if invalidLength(offset, t.length, len(bytes)) { 758 err = SyntaxError{"data truncated"} 759 return 760 } 761 innerBytes := bytes[offset : offset+t.length] 762 offset += t.length 763 764 // We deal with the structures defined in this package first. 765 switch fieldType { 766 case objectIdentifierType: 767 newSlice, err1 := parseObjectIdentifier(innerBytes) 768 v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice))) 769 if err1 == nil { 770 reflect.Copy(v, reflect.ValueOf(newSlice)) 771 } 772 err = err1 773 return 774 case bitStringType: 775 bs, err1 := parseBitString(innerBytes) 776 if err1 == nil { 777 v.Set(reflect.ValueOf(bs)) 778 } 779 err = err1 780 return 781 case timeType: 782 var time time.Time 783 var err1 error 784 if universalTag == TagUTCTime { 785 time, err1 = parseUTCTime(innerBytes) 786 } else { 787 time, err1 = parseGeneralizedTime(innerBytes) 788 } 789 if err1 == nil { 790 v.Set(reflect.ValueOf(time)) 791 } 792 err = err1 793 return 794 case enumeratedType: 795 parsedInt, err1 := parseInt32(innerBytes) 796 if err1 == nil { 797 v.SetInt(int64(parsedInt)) 798 } 799 err = err1 800 return 801 case flagType: 802 v.SetBool(true) 803 return 804 case bigIntType: 805 parsedInt, err1 := parseBigInt(innerBytes) 806 if err1 == nil { 807 v.Set(reflect.ValueOf(parsedInt)) 808 } 809 err = err1 810 return 811 } 812 switch val := v; val.Kind() { 813 case reflect.Bool: 814 parsedBool, err1 := parseBool(innerBytes) 815 if err1 == nil { 816 val.SetBool(parsedBool) 817 } 818 err = err1 819 return 820 case reflect.Int, reflect.Int32, reflect.Int64: 821 if val.Type().Size() == 4 { 822 parsedInt, err1 := parseInt32(innerBytes) 823 if err1 == nil { 824 val.SetInt(int64(parsedInt)) 825 } 826 err = err1 827 } else { 828 parsedInt, err1 := parseInt64(innerBytes) 829 if err1 == nil { 830 val.SetInt(parsedInt) 831 } 832 err = err1 833 } 834 return 835 // TODO(dfc) Add support for the remaining integer types 836 case reflect.Struct: 837 structType := fieldType 838 839 if structType.NumField() > 0 && 840 structType.Field(0).Type == rawContentsType { 841 bytes := bytes[initOffset:offset] 842 val.Field(0).Set(reflect.ValueOf(RawContent(bytes))) 843 } 844 845 innerOffset := 0 846 for i := 0; i < structType.NumField(); i++ { 847 field := structType.Field(i) 848 if i == 0 && field.Type == rawContentsType { 849 continue 850 } 851 innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1"))) 852 if err != nil { 853 return 854 } 855 } 856 // We allow extra bytes at the end of the SEQUENCE because 857 // adding elements to the end has been used in X.509 as the 858 // version numbers have increased. 859 return 860 case reflect.Slice: 861 sliceType := fieldType 862 if sliceType.Elem().Kind() == reflect.Uint8 { 863 val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes))) 864 reflect.Copy(val, reflect.ValueOf(innerBytes)) 865 return 866 } 867 newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem()) 868 if err1 == nil { 869 val.Set(newSlice) 870 } 871 err = err1 872 return 873 case reflect.String: 874 var v string 875 switch universalTag { 876 case TagPrintableString: 877 v, err = parsePrintableString(innerBytes) 878 case TagIA5String: 879 v, err = parseIA5String(innerBytes) 880 case TagT61String: 881 v, err = parseT61String(innerBytes) 882 case TagUTF8String: 883 v, err = parseUTF8String(innerBytes) 884 case TagGeneralString: 885 // GeneralString is specified in ISO-2022/ECMA-35, 886 // A brief review suggests that it includes structures 887 // that allow the encoding to change midstring and 888 // such. We give up and pass it as an 8-bit string. 889 v, err = parseT61String(innerBytes) 890 default: 891 err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)} 892 } 893 if err == nil { 894 val.SetString(v) 895 } 896 return 897 } 898 err = StructuralError{"unsupported: " + v.Type().String()} 899 return 900 } 901 902 // canHaveDefaultValue reports whether k is a Kind that we will set a default 903 // value for. (A signed integer, essentially.) 904 func canHaveDefaultValue(k reflect.Kind) bool { 905 switch k { 906 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 907 return true 908 } 909 910 return false 911 } 912 913 // setDefaultValue is used to install a default value, from a tag string, into 914 // a Value. It is successful if the field was optional, even if a default value 915 // wasn't provided or it failed to install it into the Value. 916 func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) { 917 if !params.optional { 918 return 919 } 920 ok = true 921 if params.defaultValue == nil { 922 return 923 } 924 if canHaveDefaultValue(v.Kind()) { 925 v.SetInt(*params.defaultValue) 926 } 927 return 928 } 929 930 // Unmarshal parses the DER-encoded ASN.1 data structure b 931 // and uses the reflect package to fill in an arbitrary value pointed at by val. 932 // Because Unmarshal uses the reflect package, the structs 933 // being written to must use upper case field names. 934 // 935 // An ASN.1 INTEGER can be written to an int, int32, int64, 936 // or *big.Int (from the math/big package). 937 // If the encoded value does not fit in the Go type, 938 // Unmarshal returns a parse error. 939 // 940 // An ASN.1 BIT STRING can be written to a BitString. 941 // 942 // An ASN.1 OCTET STRING can be written to a []byte. 943 // 944 // An ASN.1 OBJECT IDENTIFIER can be written to an 945 // ObjectIdentifier. 946 // 947 // An ASN.1 ENUMERATED can be written to an Enumerated. 948 // 949 // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time. 950 // 951 // An ASN.1 PrintableString or IA5String can be written to a string. 952 // 953 // Any of the above ASN.1 values can be written to an interface{}. 954 // The value stored in the interface has the corresponding Go type. 955 // For integers, that type is int64. 956 // 957 // An ASN.1 SEQUENCE OF x or SET OF x can be written 958 // to a slice if an x can be written to the slice's element type. 959 // 960 // An ASN.1 SEQUENCE or SET can be written to a struct 961 // if each of the elements in the sequence can be 962 // written to the corresponding element in the struct. 963 // 964 // The following tags on struct fields have special meaning to Unmarshal: 965 // 966 // application specifies that a APPLICATION tag is used 967 // default:x sets the default value for optional integer fields 968 // explicit specifies that an additional, explicit tag wraps the implicit one 969 // optional marks the field as ASN.1 OPTIONAL 970 // set causes a SET, rather than a SEQUENCE type to be expected 971 // tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC 972 // 973 // If the type of the first field of a structure is RawContent then the raw 974 // ASN1 contents of the struct will be stored in it. 975 // 976 // If the type name of a slice element ends with "SET" then it's treated as if 977 // the "set" tag was set on it. This can be used with nested slices where a 978 // struct tag cannot be given. 979 // 980 // Other ASN.1 types are not supported; if it encounters them, 981 // Unmarshal returns a parse error. 982 func Unmarshal(b []byte, val interface{}) (rest []byte, err error) { 983 return UnmarshalWithParams(b, val, "") 984 } 985 986 // UnmarshalWithParams allows field parameters to be specified for the 987 // top-level element. The form of the params is the same as the field tags. 988 func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) { 989 v := reflect.ValueOf(val).Elem() 990 offset, err := parseField(v, b, 0, parseFieldParameters(params)) 991 if err != nil { 992 return nil, err 993 } 994 return b[offset:], nil 995 }