github.com/sean-/go@v0.0.0-20151219100004-97f854cd7bb6/src/encoding/json/encode.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package json implements encoding and decoding of JSON objects as defined in 6 // RFC 4627. The mapping between JSON objects and Go values is described 7 // in the documentation for the Marshal and Unmarshal functions. 8 // 9 // See "JSON and Go" for an introduction to this package: 10 // https://golang.org/doc/articles/json_and_go.html 11 package json 12 13 import ( 14 "bytes" 15 "encoding" 16 "encoding/base64" 17 "fmt" 18 "math" 19 "reflect" 20 "runtime" 21 "sort" 22 "strconv" 23 "strings" 24 "sync" 25 "unicode" 26 "unicode/utf8" 27 ) 28 29 // Marshal returns the JSON encoding of v. 30 // 31 // Marshal traverses the value v recursively. 32 // If an encountered value implements the Marshaler interface 33 // and is not a nil pointer, Marshal calls its MarshalJSON method 34 // to produce JSON. If no MarshalJSON method is present but the 35 // value implements encoding.TextMarshaler instead, Marshal calls 36 // its MarshalText method. 37 // The nil pointer exception is not strictly necessary 38 // but mimics a similar, necessary exception in the behavior of 39 // UnmarshalJSON. 40 // 41 // Otherwise, Marshal uses the following type-dependent default encodings: 42 // 43 // Boolean values encode as JSON booleans. 44 // 45 // Floating point, integer, and Number values encode as JSON numbers. 46 // 47 // String values encode as JSON strings coerced to valid UTF-8, 48 // replacing invalid bytes with the Unicode replacement rune. 49 // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e" 50 // to keep some browsers from misinterpreting JSON output as HTML. 51 // Ampersand "&" is also escaped to "\u0026" for the same reason. 52 // 53 // Array and slice values encode as JSON arrays, except that 54 // []byte encodes as a base64-encoded string, and a nil slice 55 // encodes as the null JSON object. 56 // 57 // Struct values encode as JSON objects. Each exported struct field 58 // becomes a member of the object unless 59 // - the field's tag is "-", or 60 // - the field is empty and its tag specifies the "omitempty" option. 61 // The empty values are false, 0, any 62 // nil pointer or interface value, and any array, slice, map, or string of 63 // length zero. The object's default key string is the struct field name 64 // but can be specified in the struct field's tag value. The "json" key in 65 // the struct field's tag value is the key name, followed by an optional comma 66 // and options. Examples: 67 // 68 // // Field is ignored by this package. 69 // Field int `json:"-"` 70 // 71 // // Field appears in JSON as key "myName". 72 // Field int `json:"myName"` 73 // 74 // // Field appears in JSON as key "myName" and 75 // // the field is omitted from the object if its value is empty, 76 // // as defined above. 77 // Field int `json:"myName,omitempty"` 78 // 79 // // Field appears in JSON as key "Field" (the default), but 80 // // the field is skipped if empty. 81 // // Note the leading comma. 82 // Field int `json:",omitempty"` 83 // 84 // The "string" option signals that a field is stored as JSON inside a 85 // JSON-encoded string. It applies only to fields of string, floating point, 86 // integer, or boolean types. This extra level of encoding is sometimes used 87 // when communicating with JavaScript programs: 88 // 89 // Int64String int64 `json:",string"` 90 // 91 // The key name will be used if it's a non-empty string consisting of 92 // only Unicode letters, digits, dollar signs, percent signs, hyphens, 93 // underscores and slashes. 94 // 95 // Anonymous struct fields are usually marshaled as if their inner exported fields 96 // were fields in the outer struct, subject to the usual Go visibility rules amended 97 // as described in the next paragraph. 98 // An anonymous struct field with a name given in its JSON tag is treated as 99 // having that name, rather than being anonymous. 100 // An anonymous struct field of interface type is treated the same as having 101 // that type as its name, rather than being anonymous. 102 // 103 // The Go visibility rules for struct fields are amended for JSON when 104 // deciding which field to marshal or unmarshal. If there are 105 // multiple fields at the same level, and that level is the least 106 // nested (and would therefore be the nesting level selected by the 107 // usual Go rules), the following extra rules apply: 108 // 109 // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered, 110 // even if there are multiple untagged fields that would otherwise conflict. 111 // 2) If there is exactly one field (tagged or not according to the first rule), that is selected. 112 // 3) Otherwise there are multiple fields, and all are ignored; no error occurs. 113 // 114 // Handling of anonymous struct fields is new in Go 1.1. 115 // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of 116 // an anonymous struct field in both current and earlier versions, give the field 117 // a JSON tag of "-". 118 // 119 // Map values encode as JSON objects. 120 // The map's key type must be string; the map keys are used as JSON object 121 // keys, subject to the UTF-8 coercion described for string values above. 122 // 123 // Pointer values encode as the value pointed to. 124 // A nil pointer encodes as the null JSON object. 125 // 126 // Interface values encode as the value contained in the interface. 127 // A nil interface value encodes as the null JSON object. 128 // 129 // Channel, complex, and function values cannot be encoded in JSON. 130 // Attempting to encode such a value causes Marshal to return 131 // an UnsupportedTypeError. 132 // 133 // JSON cannot represent cyclic data structures and Marshal does not 134 // handle them. Passing cyclic structures to Marshal will result in 135 // an infinite recursion. 136 // 137 func Marshal(v interface{}) ([]byte, error) { 138 e := &encodeState{} 139 err := e.marshal(v) 140 if err != nil { 141 return nil, err 142 } 143 return e.Bytes(), nil 144 } 145 146 // MarshalIndent is like Marshal but applies Indent to format the output. 147 func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) { 148 b, err := Marshal(v) 149 if err != nil { 150 return nil, err 151 } 152 var buf bytes.Buffer 153 err = Indent(&buf, b, prefix, indent) 154 if err != nil { 155 return nil, err 156 } 157 return buf.Bytes(), nil 158 } 159 160 // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029 161 // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029 162 // so that the JSON will be safe to embed inside HTML <script> tags. 163 // For historical reasons, web browsers don't honor standard HTML 164 // escaping within <script> tags, so an alternative JSON encoding must 165 // be used. 166 func HTMLEscape(dst *bytes.Buffer, src []byte) { 167 // The characters can only appear in string literals, 168 // so just scan the string one byte at a time. 169 start := 0 170 for i, c := range src { 171 if c == '<' || c == '>' || c == '&' { 172 if start < i { 173 dst.Write(src[start:i]) 174 } 175 dst.WriteString(`\u00`) 176 dst.WriteByte(hex[c>>4]) 177 dst.WriteByte(hex[c&0xF]) 178 start = i + 1 179 } 180 // Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9). 181 if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 { 182 if start < i { 183 dst.Write(src[start:i]) 184 } 185 dst.WriteString(`\u202`) 186 dst.WriteByte(hex[src[i+2]&0xF]) 187 start = i + 3 188 } 189 } 190 if start < len(src) { 191 dst.Write(src[start:]) 192 } 193 } 194 195 // Marshaler is the interface implemented by objects that 196 // can marshal themselves into valid JSON. 197 type Marshaler interface { 198 MarshalJSON() ([]byte, error) 199 } 200 201 // An UnsupportedTypeError is returned by Marshal when attempting 202 // to encode an unsupported value type. 203 type UnsupportedTypeError struct { 204 Type reflect.Type 205 } 206 207 func (e *UnsupportedTypeError) Error() string { 208 return "json: unsupported type: " + e.Type.String() 209 } 210 211 type UnsupportedValueError struct { 212 Value reflect.Value 213 Str string 214 } 215 216 func (e *UnsupportedValueError) Error() string { 217 return "json: unsupported value: " + e.Str 218 } 219 220 // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when 221 // attempting to encode a string value with invalid UTF-8 sequences. 222 // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by 223 // replacing invalid bytes with the Unicode replacement rune U+FFFD. 224 // This error is no longer generated but is kept for backwards compatibility 225 // with programs that might mention it. 226 type InvalidUTF8Error struct { 227 S string // the whole string value that caused the error 228 } 229 230 func (e *InvalidUTF8Error) Error() string { 231 return "json: invalid UTF-8 in string: " + strconv.Quote(e.S) 232 } 233 234 type MarshalerError struct { 235 Type reflect.Type 236 Err error 237 } 238 239 func (e *MarshalerError) Error() string { 240 return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error() 241 } 242 243 var hex = "0123456789abcdef" 244 245 // An encodeState encodes JSON into a bytes.Buffer. 246 type encodeState struct { 247 bytes.Buffer // accumulated output 248 scratch [64]byte 249 } 250 251 var encodeStatePool sync.Pool 252 253 func newEncodeState() *encodeState { 254 if v := encodeStatePool.Get(); v != nil { 255 e := v.(*encodeState) 256 e.Reset() 257 return e 258 } 259 return new(encodeState) 260 } 261 262 func (e *encodeState) marshal(v interface{}) (err error) { 263 defer func() { 264 if r := recover(); r != nil { 265 if _, ok := r.(runtime.Error); ok { 266 panic(r) 267 } 268 if s, ok := r.(string); ok { 269 panic(s) 270 } 271 err = r.(error) 272 } 273 }() 274 e.reflectValue(reflect.ValueOf(v)) 275 return nil 276 } 277 278 func (e *encodeState) error(err error) { 279 panic(err) 280 } 281 282 func isEmptyValue(v reflect.Value) bool { 283 switch v.Kind() { 284 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 285 return v.Len() == 0 286 case reflect.Bool: 287 return !v.Bool() 288 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 289 return v.Int() == 0 290 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 291 return v.Uint() == 0 292 case reflect.Float32, reflect.Float64: 293 return v.Float() == 0 294 case reflect.Interface, reflect.Ptr: 295 return v.IsNil() 296 } 297 return false 298 } 299 300 func (e *encodeState) reflectValue(v reflect.Value) { 301 valueEncoder(v)(e, v, false) 302 } 303 304 type encoderFunc func(e *encodeState, v reflect.Value, quoted bool) 305 306 var encoderCache struct { 307 sync.RWMutex 308 m map[reflect.Type]encoderFunc 309 } 310 311 func valueEncoder(v reflect.Value) encoderFunc { 312 if !v.IsValid() { 313 return invalidValueEncoder 314 } 315 return typeEncoder(v.Type()) 316 } 317 318 func typeEncoder(t reflect.Type) encoderFunc { 319 encoderCache.RLock() 320 f := encoderCache.m[t] 321 encoderCache.RUnlock() 322 if f != nil { 323 return f 324 } 325 326 // To deal with recursive types, populate the map with an 327 // indirect func before we build it. This type waits on the 328 // real func (f) to be ready and then calls it. This indirect 329 // func is only used for recursive types. 330 encoderCache.Lock() 331 if encoderCache.m == nil { 332 encoderCache.m = make(map[reflect.Type]encoderFunc) 333 } 334 var wg sync.WaitGroup 335 wg.Add(1) 336 encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) { 337 wg.Wait() 338 f(e, v, quoted) 339 } 340 encoderCache.Unlock() 341 342 // Compute fields without lock. 343 // Might duplicate effort but won't hold other computations back. 344 f = newTypeEncoder(t, true) 345 wg.Done() 346 encoderCache.Lock() 347 encoderCache.m[t] = f 348 encoderCache.Unlock() 349 return f 350 } 351 352 var ( 353 marshalerType = reflect.TypeOf(new(Marshaler)).Elem() 354 textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem() 355 ) 356 357 // newTypeEncoder constructs an encoderFunc for a type. 358 // The returned encoder only checks CanAddr when allowAddr is true. 359 func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc { 360 if t.Implements(marshalerType) { 361 return marshalerEncoder 362 } 363 if t.Kind() != reflect.Ptr && allowAddr { 364 if reflect.PtrTo(t).Implements(marshalerType) { 365 return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false)) 366 } 367 } 368 369 if t.Implements(textMarshalerType) { 370 return textMarshalerEncoder 371 } 372 if t.Kind() != reflect.Ptr && allowAddr { 373 if reflect.PtrTo(t).Implements(textMarshalerType) { 374 return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false)) 375 } 376 } 377 378 switch t.Kind() { 379 case reflect.Bool: 380 return boolEncoder 381 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 382 return intEncoder 383 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 384 return uintEncoder 385 case reflect.Float32: 386 return float32Encoder 387 case reflect.Float64: 388 return float64Encoder 389 case reflect.String: 390 return stringEncoder 391 case reflect.Interface: 392 return interfaceEncoder 393 case reflect.Struct: 394 return newStructEncoder(t) 395 case reflect.Map: 396 return newMapEncoder(t) 397 case reflect.Slice: 398 return newSliceEncoder(t) 399 case reflect.Array: 400 return newArrayEncoder(t) 401 case reflect.Ptr: 402 return newPtrEncoder(t) 403 default: 404 return unsupportedTypeEncoder 405 } 406 } 407 408 func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) { 409 e.WriteString("null") 410 } 411 412 func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 413 if v.Kind() == reflect.Ptr && v.IsNil() { 414 e.WriteString("null") 415 return 416 } 417 m := v.Interface().(Marshaler) 418 b, err := m.MarshalJSON() 419 if err == nil { 420 // copy JSON into buffer, checking validity. 421 err = compact(&e.Buffer, b, true) 422 } 423 if err != nil { 424 e.error(&MarshalerError{v.Type(), err}) 425 } 426 } 427 428 func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 429 va := v.Addr() 430 if va.IsNil() { 431 e.WriteString("null") 432 return 433 } 434 m := va.Interface().(Marshaler) 435 b, err := m.MarshalJSON() 436 if err == nil { 437 // copy JSON into buffer, checking validity. 438 err = compact(&e.Buffer, b, true) 439 } 440 if err != nil { 441 e.error(&MarshalerError{v.Type(), err}) 442 } 443 } 444 445 func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 446 if v.Kind() == reflect.Ptr && v.IsNil() { 447 e.WriteString("null") 448 return 449 } 450 m := v.Interface().(encoding.TextMarshaler) 451 b, err := m.MarshalText() 452 if err != nil { 453 e.error(&MarshalerError{v.Type(), err}) 454 } 455 e.stringBytes(b) 456 } 457 458 func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 459 va := v.Addr() 460 if va.IsNil() { 461 e.WriteString("null") 462 return 463 } 464 m := va.Interface().(encoding.TextMarshaler) 465 b, err := m.MarshalText() 466 if err != nil { 467 e.error(&MarshalerError{v.Type(), err}) 468 } 469 e.stringBytes(b) 470 } 471 472 func boolEncoder(e *encodeState, v reflect.Value, quoted bool) { 473 if quoted { 474 e.WriteByte('"') 475 } 476 if v.Bool() { 477 e.WriteString("true") 478 } else { 479 e.WriteString("false") 480 } 481 if quoted { 482 e.WriteByte('"') 483 } 484 } 485 486 func intEncoder(e *encodeState, v reflect.Value, quoted bool) { 487 b := strconv.AppendInt(e.scratch[:0], v.Int(), 10) 488 if quoted { 489 e.WriteByte('"') 490 } 491 e.Write(b) 492 if quoted { 493 e.WriteByte('"') 494 } 495 } 496 497 func uintEncoder(e *encodeState, v reflect.Value, quoted bool) { 498 b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10) 499 if quoted { 500 e.WriteByte('"') 501 } 502 e.Write(b) 503 if quoted { 504 e.WriteByte('"') 505 } 506 } 507 508 type floatEncoder int // number of bits 509 510 func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 511 f := v.Float() 512 if math.IsInf(f, 0) || math.IsNaN(f) { 513 e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))}) 514 } 515 b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits)) 516 if quoted { 517 e.WriteByte('"') 518 } 519 e.Write(b) 520 if quoted { 521 e.WriteByte('"') 522 } 523 } 524 525 var ( 526 float32Encoder = (floatEncoder(32)).encode 527 float64Encoder = (floatEncoder(64)).encode 528 ) 529 530 func stringEncoder(e *encodeState, v reflect.Value, quoted bool) { 531 if v.Type() == numberType { 532 numStr := v.String() 533 // In Go1.5 the empty string encodes to "0", while this is not a valid number literal 534 // we keep compatibility so check validity after this. 535 if numStr == "" { 536 numStr = "0" // Number's zero-val 537 } 538 if !isValidNumber(numStr) { 539 e.error(fmt.Errorf("json: invalid number literal %q", numStr)) 540 } 541 e.WriteString(numStr) 542 return 543 } 544 if quoted { 545 sb, err := Marshal(v.String()) 546 if err != nil { 547 e.error(err) 548 } 549 e.string(string(sb)) 550 } else { 551 e.string(v.String()) 552 } 553 } 554 555 func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) { 556 if v.IsNil() { 557 e.WriteString("null") 558 return 559 } 560 e.reflectValue(v.Elem()) 561 } 562 563 func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) { 564 e.error(&UnsupportedTypeError{v.Type()}) 565 } 566 567 type structEncoder struct { 568 fields []field 569 fieldEncs []encoderFunc 570 } 571 572 func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 573 e.WriteByte('{') 574 first := true 575 for i, f := range se.fields { 576 fv := fieldByIndex(v, f.index) 577 if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) { 578 continue 579 } 580 if first { 581 first = false 582 } else { 583 e.WriteByte(',') 584 } 585 e.string(f.name) 586 e.WriteByte(':') 587 se.fieldEncs[i](e, fv, f.quoted) 588 } 589 e.WriteByte('}') 590 } 591 592 func newStructEncoder(t reflect.Type) encoderFunc { 593 fields := cachedTypeFields(t) 594 se := &structEncoder{ 595 fields: fields, 596 fieldEncs: make([]encoderFunc, len(fields)), 597 } 598 for i, f := range fields { 599 se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index)) 600 } 601 return se.encode 602 } 603 604 type mapEncoder struct { 605 elemEnc encoderFunc 606 } 607 608 func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) { 609 if v.IsNil() { 610 e.WriteString("null") 611 return 612 } 613 e.WriteByte('{') 614 var sv stringValues = v.MapKeys() 615 sort.Sort(sv) 616 for i, k := range sv { 617 if i > 0 { 618 e.WriteByte(',') 619 } 620 e.string(k.String()) 621 e.WriteByte(':') 622 me.elemEnc(e, v.MapIndex(k), false) 623 } 624 e.WriteByte('}') 625 } 626 627 func newMapEncoder(t reflect.Type) encoderFunc { 628 if t.Key().Kind() != reflect.String { 629 return unsupportedTypeEncoder 630 } 631 me := &mapEncoder{typeEncoder(t.Elem())} 632 return me.encode 633 } 634 635 func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) { 636 if v.IsNil() { 637 e.WriteString("null") 638 return 639 } 640 s := v.Bytes() 641 e.WriteByte('"') 642 if len(s) < 1024 { 643 // for small buffers, using Encode directly is much faster. 644 dst := make([]byte, base64.StdEncoding.EncodedLen(len(s))) 645 base64.StdEncoding.Encode(dst, s) 646 e.Write(dst) 647 } else { 648 // for large buffers, avoid unnecessary extra temporary 649 // buffer space. 650 enc := base64.NewEncoder(base64.StdEncoding, e) 651 enc.Write(s) 652 enc.Close() 653 } 654 e.WriteByte('"') 655 } 656 657 // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil. 658 type sliceEncoder struct { 659 arrayEnc encoderFunc 660 } 661 662 func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) { 663 if v.IsNil() { 664 e.WriteString("null") 665 return 666 } 667 se.arrayEnc(e, v, false) 668 } 669 670 func newSliceEncoder(t reflect.Type) encoderFunc { 671 // Byte slices get special treatment; arrays don't. 672 if t.Elem().Kind() == reflect.Uint8 { 673 return encodeByteSlice 674 } 675 enc := &sliceEncoder{newArrayEncoder(t)} 676 return enc.encode 677 } 678 679 type arrayEncoder struct { 680 elemEnc encoderFunc 681 } 682 683 func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) { 684 e.WriteByte('[') 685 n := v.Len() 686 for i := 0; i < n; i++ { 687 if i > 0 { 688 e.WriteByte(',') 689 } 690 ae.elemEnc(e, v.Index(i), false) 691 } 692 e.WriteByte(']') 693 } 694 695 func newArrayEncoder(t reflect.Type) encoderFunc { 696 enc := &arrayEncoder{typeEncoder(t.Elem())} 697 return enc.encode 698 } 699 700 type ptrEncoder struct { 701 elemEnc encoderFunc 702 } 703 704 func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 705 if v.IsNil() { 706 e.WriteString("null") 707 return 708 } 709 pe.elemEnc(e, v.Elem(), quoted) 710 } 711 712 func newPtrEncoder(t reflect.Type) encoderFunc { 713 enc := &ptrEncoder{typeEncoder(t.Elem())} 714 return enc.encode 715 } 716 717 type condAddrEncoder struct { 718 canAddrEnc, elseEnc encoderFunc 719 } 720 721 func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 722 if v.CanAddr() { 723 ce.canAddrEnc(e, v, quoted) 724 } else { 725 ce.elseEnc(e, v, quoted) 726 } 727 } 728 729 // newCondAddrEncoder returns an encoder that checks whether its value 730 // CanAddr and delegates to canAddrEnc if so, else to elseEnc. 731 func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc { 732 enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc} 733 return enc.encode 734 } 735 736 func isValidTag(s string) bool { 737 if s == "" { 738 return false 739 } 740 for _, c := range s { 741 switch { 742 case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c): 743 // Backslash and quote chars are reserved, but 744 // otherwise any punctuation chars are allowed 745 // in a tag name. 746 default: 747 if !unicode.IsLetter(c) && !unicode.IsDigit(c) { 748 return false 749 } 750 } 751 } 752 return true 753 } 754 755 func fieldByIndex(v reflect.Value, index []int) reflect.Value { 756 for _, i := range index { 757 if v.Kind() == reflect.Ptr { 758 if v.IsNil() { 759 return reflect.Value{} 760 } 761 v = v.Elem() 762 } 763 v = v.Field(i) 764 } 765 return v 766 } 767 768 func typeByIndex(t reflect.Type, index []int) reflect.Type { 769 for _, i := range index { 770 if t.Kind() == reflect.Ptr { 771 t = t.Elem() 772 } 773 t = t.Field(i).Type 774 } 775 return t 776 } 777 778 // stringValues is a slice of reflect.Value holding *reflect.StringValue. 779 // It implements the methods to sort by string. 780 type stringValues []reflect.Value 781 782 func (sv stringValues) Len() int { return len(sv) } 783 func (sv stringValues) Swap(i, j int) { sv[i], sv[j] = sv[j], sv[i] } 784 func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) } 785 func (sv stringValues) get(i int) string { return sv[i].String() } 786 787 // NOTE: keep in sync with stringBytes below. 788 func (e *encodeState) string(s string) int { 789 len0 := e.Len() 790 e.WriteByte('"') 791 start := 0 792 for i := 0; i < len(s); { 793 if b := s[i]; b < utf8.RuneSelf { 794 if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' { 795 i++ 796 continue 797 } 798 if start < i { 799 e.WriteString(s[start:i]) 800 } 801 switch b { 802 case '\\', '"': 803 e.WriteByte('\\') 804 e.WriteByte(b) 805 case '\n': 806 e.WriteByte('\\') 807 e.WriteByte('n') 808 case '\r': 809 e.WriteByte('\\') 810 e.WriteByte('r') 811 case '\t': 812 e.WriteByte('\\') 813 e.WriteByte('t') 814 default: 815 // This encodes bytes < 0x20 except for \n and \r, 816 // as well as <, > and &. The latter are escaped because they 817 // can lead to security holes when user-controlled strings 818 // are rendered into JSON and served to some browsers. 819 e.WriteString(`\u00`) 820 e.WriteByte(hex[b>>4]) 821 e.WriteByte(hex[b&0xF]) 822 } 823 i++ 824 start = i 825 continue 826 } 827 c, size := utf8.DecodeRuneInString(s[i:]) 828 if c == utf8.RuneError && size == 1 { 829 if start < i { 830 e.WriteString(s[start:i]) 831 } 832 e.WriteString(`\ufffd`) 833 i += size 834 start = i 835 continue 836 } 837 // U+2028 is LINE SEPARATOR. 838 // U+2029 is PARAGRAPH SEPARATOR. 839 // They are both technically valid characters in JSON strings, 840 // but don't work in JSONP, which has to be evaluated as JavaScript, 841 // and can lead to security holes there. It is valid JSON to 842 // escape them, so we do so unconditionally. 843 // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. 844 if c == '\u2028' || c == '\u2029' { 845 if start < i { 846 e.WriteString(s[start:i]) 847 } 848 e.WriteString(`\u202`) 849 e.WriteByte(hex[c&0xF]) 850 i += size 851 start = i 852 continue 853 } 854 i += size 855 } 856 if start < len(s) { 857 e.WriteString(s[start:]) 858 } 859 e.WriteByte('"') 860 return e.Len() - len0 861 } 862 863 // NOTE: keep in sync with string above. 864 func (e *encodeState) stringBytes(s []byte) int { 865 len0 := e.Len() 866 e.WriteByte('"') 867 start := 0 868 for i := 0; i < len(s); { 869 if b := s[i]; b < utf8.RuneSelf { 870 if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' { 871 i++ 872 continue 873 } 874 if start < i { 875 e.Write(s[start:i]) 876 } 877 switch b { 878 case '\\', '"': 879 e.WriteByte('\\') 880 e.WriteByte(b) 881 case '\n': 882 e.WriteByte('\\') 883 e.WriteByte('n') 884 case '\r': 885 e.WriteByte('\\') 886 e.WriteByte('r') 887 case '\t': 888 e.WriteByte('\\') 889 e.WriteByte('t') 890 default: 891 // This encodes bytes < 0x20 except for \n and \r, 892 // as well as <, >, and &. The latter are escaped because they 893 // can lead to security holes when user-controlled strings 894 // are rendered into JSON and served to some browsers. 895 e.WriteString(`\u00`) 896 e.WriteByte(hex[b>>4]) 897 e.WriteByte(hex[b&0xF]) 898 } 899 i++ 900 start = i 901 continue 902 } 903 c, size := utf8.DecodeRune(s[i:]) 904 if c == utf8.RuneError && size == 1 { 905 if start < i { 906 e.Write(s[start:i]) 907 } 908 e.WriteString(`\ufffd`) 909 i += size 910 start = i 911 continue 912 } 913 // U+2028 is LINE SEPARATOR. 914 // U+2029 is PARAGRAPH SEPARATOR. 915 // They are both technically valid characters in JSON strings, 916 // but don't work in JSONP, which has to be evaluated as JavaScript, 917 // and can lead to security holes there. It is valid JSON to 918 // escape them, so we do so unconditionally. 919 // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. 920 if c == '\u2028' || c == '\u2029' { 921 if start < i { 922 e.Write(s[start:i]) 923 } 924 e.WriteString(`\u202`) 925 e.WriteByte(hex[c&0xF]) 926 i += size 927 start = i 928 continue 929 } 930 i += size 931 } 932 if start < len(s) { 933 e.Write(s[start:]) 934 } 935 e.WriteByte('"') 936 return e.Len() - len0 937 } 938 939 // A field represents a single field found in a struct. 940 type field struct { 941 name string 942 nameBytes []byte // []byte(name) 943 equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent 944 945 tag bool 946 index []int 947 typ reflect.Type 948 omitEmpty bool 949 quoted bool 950 } 951 952 func fillField(f field) field { 953 f.nameBytes = []byte(f.name) 954 f.equalFold = foldFunc(f.nameBytes) 955 return f 956 } 957 958 // byName sorts field by name, breaking ties with depth, 959 // then breaking ties with "name came from json tag", then 960 // breaking ties with index sequence. 961 type byName []field 962 963 func (x byName) Len() int { return len(x) } 964 965 func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 966 967 func (x byName) Less(i, j int) bool { 968 if x[i].name != x[j].name { 969 return x[i].name < x[j].name 970 } 971 if len(x[i].index) != len(x[j].index) { 972 return len(x[i].index) < len(x[j].index) 973 } 974 if x[i].tag != x[j].tag { 975 return x[i].tag 976 } 977 return byIndex(x).Less(i, j) 978 } 979 980 // byIndex sorts field by index sequence. 981 type byIndex []field 982 983 func (x byIndex) Len() int { return len(x) } 984 985 func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 986 987 func (x byIndex) Less(i, j int) bool { 988 for k, xik := range x[i].index { 989 if k >= len(x[j].index) { 990 return false 991 } 992 if xik != x[j].index[k] { 993 return xik < x[j].index[k] 994 } 995 } 996 return len(x[i].index) < len(x[j].index) 997 } 998 999 // typeFields returns a list of fields that JSON should recognize for the given type. 1000 // The algorithm is breadth-first search over the set of structs to include - the top struct 1001 // and then any reachable anonymous structs. 1002 func typeFields(t reflect.Type) []field { 1003 // Anonymous fields to explore at the current level and the next. 1004 current := []field{} 1005 next := []field{{typ: t}} 1006 1007 // Count of queued names for current level and the next. 1008 count := map[reflect.Type]int{} 1009 nextCount := map[reflect.Type]int{} 1010 1011 // Types already visited at an earlier level. 1012 visited := map[reflect.Type]bool{} 1013 1014 // Fields found. 1015 var fields []field 1016 1017 for len(next) > 0 { 1018 current, next = next, current[:0] 1019 count, nextCount = nextCount, map[reflect.Type]int{} 1020 1021 for _, f := range current { 1022 if visited[f.typ] { 1023 continue 1024 } 1025 visited[f.typ] = true 1026 1027 // Scan f.typ for fields to include. 1028 for i := 0; i < f.typ.NumField(); i++ { 1029 sf := f.typ.Field(i) 1030 if sf.PkgPath != "" && !sf.Anonymous { // unexported 1031 continue 1032 } 1033 tag := sf.Tag.Get("json") 1034 if tag == "-" { 1035 continue 1036 } 1037 name, opts := parseTag(tag) 1038 if !isValidTag(name) { 1039 name = "" 1040 } 1041 index := make([]int, len(f.index)+1) 1042 copy(index, f.index) 1043 index[len(f.index)] = i 1044 1045 ft := sf.Type 1046 if ft.Name() == "" && ft.Kind() == reflect.Ptr { 1047 // Follow pointer. 1048 ft = ft.Elem() 1049 } 1050 1051 // Only strings, floats, integers, and booleans can be quoted. 1052 quoted := false 1053 if opts.Contains("string") { 1054 switch ft.Kind() { 1055 case reflect.Bool, 1056 reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, 1057 reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, 1058 reflect.Float32, reflect.Float64, 1059 reflect.String: 1060 quoted = true 1061 } 1062 } 1063 1064 // Record found field and index sequence. 1065 if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { 1066 tagged := name != "" 1067 if name == "" { 1068 name = sf.Name 1069 } 1070 fields = append(fields, fillField(field{ 1071 name: name, 1072 tag: tagged, 1073 index: index, 1074 typ: ft, 1075 omitEmpty: opts.Contains("omitempty"), 1076 quoted: quoted, 1077 })) 1078 if count[f.typ] > 1 { 1079 // If there were multiple instances, add a second, 1080 // so that the annihilation code will see a duplicate. 1081 // It only cares about the distinction between 1 or 2, 1082 // so don't bother generating any more copies. 1083 fields = append(fields, fields[len(fields)-1]) 1084 } 1085 continue 1086 } 1087 1088 // Record new anonymous struct to explore in next round. 1089 nextCount[ft]++ 1090 if nextCount[ft] == 1 { 1091 next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft})) 1092 } 1093 } 1094 } 1095 } 1096 1097 sort.Sort(byName(fields)) 1098 1099 // Delete all fields that are hidden by the Go rules for embedded fields, 1100 // except that fields with JSON tags are promoted. 1101 1102 // The fields are sorted in primary order of name, secondary order 1103 // of field index length. Loop over names; for each name, delete 1104 // hidden fields by choosing the one dominant field that survives. 1105 out := fields[:0] 1106 for advance, i := 0, 0; i < len(fields); i += advance { 1107 // One iteration per name. 1108 // Find the sequence of fields with the name of this first field. 1109 fi := fields[i] 1110 name := fi.name 1111 for advance = 1; i+advance < len(fields); advance++ { 1112 fj := fields[i+advance] 1113 if fj.name != name { 1114 break 1115 } 1116 } 1117 if advance == 1 { // Only one field with this name 1118 out = append(out, fi) 1119 continue 1120 } 1121 dominant, ok := dominantField(fields[i : i+advance]) 1122 if ok { 1123 out = append(out, dominant) 1124 } 1125 } 1126 1127 fields = out 1128 sort.Sort(byIndex(fields)) 1129 1130 return fields 1131 } 1132 1133 // dominantField looks through the fields, all of which are known to 1134 // have the same name, to find the single field that dominates the 1135 // others using Go's embedding rules, modified by the presence of 1136 // JSON tags. If there are multiple top-level fields, the boolean 1137 // will be false: This condition is an error in Go and we skip all 1138 // the fields. 1139 func dominantField(fields []field) (field, bool) { 1140 // The fields are sorted in increasing index-length order. The winner 1141 // must therefore be one with the shortest index length. Drop all 1142 // longer entries, which is easy: just truncate the slice. 1143 length := len(fields[0].index) 1144 tagged := -1 // Index of first tagged field. 1145 for i, f := range fields { 1146 if len(f.index) > length { 1147 fields = fields[:i] 1148 break 1149 } 1150 if f.tag { 1151 if tagged >= 0 { 1152 // Multiple tagged fields at the same level: conflict. 1153 // Return no field. 1154 return field{}, false 1155 } 1156 tagged = i 1157 } 1158 } 1159 if tagged >= 0 { 1160 return fields[tagged], true 1161 } 1162 // All remaining fields have the same length. If there's more than one, 1163 // we have a conflict (two fields named "X" at the same level) and we 1164 // return no field. 1165 if len(fields) > 1 { 1166 return field{}, false 1167 } 1168 return fields[0], true 1169 } 1170 1171 var fieldCache struct { 1172 sync.RWMutex 1173 m map[reflect.Type][]field 1174 } 1175 1176 // cachedTypeFields is like typeFields but uses a cache to avoid repeated work. 1177 func cachedTypeFields(t reflect.Type) []field { 1178 fieldCache.RLock() 1179 f := fieldCache.m[t] 1180 fieldCache.RUnlock() 1181 if f != nil { 1182 return f 1183 } 1184 1185 // Compute fields without lock. 1186 // Might duplicate effort but won't hold other computations back. 1187 f = typeFields(t) 1188 if f == nil { 1189 f = []field{} 1190 } 1191 1192 fieldCache.Lock() 1193 if fieldCache.m == nil { 1194 fieldCache.m = map[reflect.Type][]field{} 1195 } 1196 fieldCache.m[t] = f 1197 fieldCache.Unlock() 1198 return f 1199 }