github.com/sean-/go@v0.0.0-20151219100004-97f854cd7bb6/src/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server.  See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"bytes"
    12  	"crypto/tls"
    13  	"errors"
    14  	"fmt"
    15  	"io"
    16  	"io/ioutil"
    17  	"log"
    18  	"net"
    19  	"net/textproto"
    20  	"net/url"
    21  	"os"
    22  	"path"
    23  	"runtime"
    24  	"strconv"
    25  	"strings"
    26  	"sync"
    27  	"sync/atomic"
    28  	"time"
    29  )
    30  
    31  // Errors introduced by the HTTP server.
    32  var (
    33  	ErrWriteAfterFlush = errors.New("Conn.Write called after Flush")
    34  	ErrBodyNotAllowed  = errors.New("http: request method or response status code does not allow body")
    35  	ErrHijacked        = errors.New("Conn has been hijacked")
    36  	ErrContentLength   = errors.New("Conn.Write wrote more than the declared Content-Length")
    37  )
    38  
    39  // A Handler responds to an HTTP request.
    40  //
    41  // ServeHTTP should write reply headers and data to the ResponseWriter
    42  // and then return. Returning signals that the request is finished; it
    43  // is not valid to use the ResponseWriter or read from the
    44  // Request.Body after or concurrently with the completion of the
    45  // ServeHTTP call.
    46  //
    47  // Depending on the HTTP client software, HTTP protocol version, and
    48  // any intermediaries between the client and the Go server, it may not
    49  // be possible to read from the Request.Body after writing to the
    50  // ResponseWriter. Cautious handlers should read the Request.Body
    51  // first, and then reply.
    52  //
    53  // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    54  // that the effect of the panic was isolated to the active request.
    55  // It recovers the panic, logs a stack trace to the server error log,
    56  // and hangs up the connection.
    57  type Handler interface {
    58  	ServeHTTP(ResponseWriter, *Request)
    59  }
    60  
    61  // A ResponseWriter interface is used by an HTTP handler to
    62  // construct an HTTP response.
    63  //
    64  // A ResponseWriter may not be used after the Handler.ServeHTTP method
    65  // has returned.
    66  type ResponseWriter interface {
    67  	// Header returns the header map that will be sent by
    68  	// WriteHeader. Changing the header after a call to
    69  	// WriteHeader (or Write) has no effect unless the modified
    70  	// headers were declared as trailers by setting the
    71  	// "Trailer" header before the call to WriteHeader (see example).
    72  	// To suppress implicit response headers, set their value to nil.
    73  	Header() Header
    74  
    75  	// Write writes the data to the connection as part of an HTTP reply.
    76  	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
    77  	// before writing the data.  If the Header does not contain a
    78  	// Content-Type line, Write adds a Content-Type set to the result of passing
    79  	// the initial 512 bytes of written data to DetectContentType.
    80  	Write([]byte) (int, error)
    81  
    82  	// WriteHeader sends an HTTP response header with status code.
    83  	// If WriteHeader is not called explicitly, the first call to Write
    84  	// will trigger an implicit WriteHeader(http.StatusOK).
    85  	// Thus explicit calls to WriteHeader are mainly used to
    86  	// send error codes.
    87  	WriteHeader(int)
    88  }
    89  
    90  // The Flusher interface is implemented by ResponseWriters that allow
    91  // an HTTP handler to flush buffered data to the client.
    92  //
    93  // Note that even for ResponseWriters that support Flush,
    94  // if the client is connected through an HTTP proxy,
    95  // the buffered data may not reach the client until the response
    96  // completes.
    97  type Flusher interface {
    98  	// Flush sends any buffered data to the client.
    99  	Flush()
   100  }
   101  
   102  // The Hijacker interface is implemented by ResponseWriters that allow
   103  // an HTTP handler to take over the connection.
   104  type Hijacker interface {
   105  	// Hijack lets the caller take over the connection.
   106  	// After a call to Hijack(), the HTTP server library
   107  	// will not do anything else with the connection.
   108  	//
   109  	// It becomes the caller's responsibility to manage
   110  	// and close the connection.
   111  	//
   112  	// The returned net.Conn may have read or write deadlines
   113  	// already set, depending on the configuration of the
   114  	// Server. It is the caller's responsibility to set
   115  	// or clear those deadlines as needed.
   116  	Hijack() (net.Conn, *bufio.ReadWriter, error)
   117  }
   118  
   119  // The CloseNotifier interface is implemented by ResponseWriters which
   120  // allow detecting when the underlying connection has gone away.
   121  //
   122  // This mechanism can be used to cancel long operations on the server
   123  // if the client has disconnected before the response is ready.
   124  type CloseNotifier interface {
   125  	// CloseNotify returns a channel that receives at most a
   126  	// single value (true) when the client connection has gone
   127  	// away.
   128  	//
   129  	// CloseNotify is undefined before Request.Body has been
   130  	// fully read.
   131  	//
   132  	// After the Handler has returned, there is no guarantee
   133  	// that the channel receives a value.
   134  	//
   135  	// If the protocol is HTTP/1.1 and CloseNotify is called while
   136  	// processing an idempotent request (such a GET) while
   137  	// HTTP/1.1 pipelining is in use, the arrival of a subsequent
   138  	// pipelined request will cause a value to be sent on the
   139  	// returned channel. In practice HTTP/1.1 pipelining is not
   140  	// enabled in browsers and not seen often in the wild. If this
   141  	// is a problem, use HTTP/2 or only use CloseNotify on methods
   142  	// such as POST.
   143  	CloseNotify() <-chan bool
   144  }
   145  
   146  // A conn represents the server side of an HTTP connection.
   147  type conn struct {
   148  	// server is the server on which the connection arrived.
   149  	// Immutable; never nil.
   150  	server *Server
   151  
   152  	// rwc is the underlying network connection.
   153  	// This is never wrapped by other types and is the value given out
   154  	// to CloseNotifier callers. It is usually of type *net.TCPConn or
   155  	// *tls.Conn.
   156  	rwc net.Conn
   157  
   158  	// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
   159  	// inside the Listener's Accept goroutine, as some implementations block.
   160  	// It is populated immediately inside the (*conn).serve goroutine.
   161  	// This is the value of a Handler's (*Request).RemoteAddr.
   162  	remoteAddr string
   163  
   164  	// tlsState is the TLS connection state when using TLS.
   165  	// nil means not TLS.
   166  	tlsState *tls.ConnectionState
   167  
   168  	// werr is set to the first write error to rwc.
   169  	// It is set via checkConnErrorWriter{w}, where bufw writes.
   170  	werr error
   171  
   172  	// r is bufr's read source. It's a wrapper around rwc that provides
   173  	// io.LimitedReader-style limiting (while reading request headers)
   174  	// and functionality to support CloseNotifier. See *connReader docs.
   175  	r *connReader
   176  
   177  	// bufr reads from r.
   178  	// Users of bufr must hold mu.
   179  	bufr *bufio.Reader
   180  
   181  	// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
   182  	bufw *bufio.Writer
   183  
   184  	// lastMethod is the method of the most recent request
   185  	// on this connection, if any.
   186  	lastMethod string
   187  
   188  	// mu guards hijackedv, use of bufr, (*response).closeNotifyCh.
   189  	mu sync.Mutex
   190  
   191  	// hijackedv is whether this connection has been hijacked
   192  	// by a Handler with the Hijacker interface.
   193  	// It is guarded by mu.
   194  	hijackedv bool
   195  }
   196  
   197  func (c *conn) hijacked() bool {
   198  	c.mu.Lock()
   199  	defer c.mu.Unlock()
   200  	return c.hijackedv
   201  }
   202  
   203  // c.mu must be held.
   204  func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   205  	if c.hijackedv {
   206  		return nil, nil, ErrHijacked
   207  	}
   208  	c.hijackedv = true
   209  	rwc = c.rwc
   210  	buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
   211  	c.setState(rwc, StateHijacked)
   212  	return
   213  }
   214  
   215  // This should be >= 512 bytes for DetectContentType,
   216  // but otherwise it's somewhat arbitrary.
   217  const bufferBeforeChunkingSize = 2048
   218  
   219  // chunkWriter writes to a response's conn buffer, and is the writer
   220  // wrapped by the response.bufw buffered writer.
   221  //
   222  // chunkWriter also is responsible for finalizing the Header, including
   223  // conditionally setting the Content-Type and setting a Content-Length
   224  // in cases where the handler's final output is smaller than the buffer
   225  // size. It also conditionally adds chunk headers, when in chunking mode.
   226  //
   227  // See the comment above (*response).Write for the entire write flow.
   228  type chunkWriter struct {
   229  	res *response
   230  
   231  	// header is either nil or a deep clone of res.handlerHeader
   232  	// at the time of res.WriteHeader, if res.WriteHeader is
   233  	// called and extra buffering is being done to calculate
   234  	// Content-Type and/or Content-Length.
   235  	header Header
   236  
   237  	// wroteHeader tells whether the header's been written to "the
   238  	// wire" (or rather: w.conn.buf). this is unlike
   239  	// (*response).wroteHeader, which tells only whether it was
   240  	// logically written.
   241  	wroteHeader bool
   242  
   243  	// set by the writeHeader method:
   244  	chunking bool // using chunked transfer encoding for reply body
   245  }
   246  
   247  var (
   248  	crlf       = []byte("\r\n")
   249  	colonSpace = []byte(": ")
   250  )
   251  
   252  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   253  	if !cw.wroteHeader {
   254  		cw.writeHeader(p)
   255  	}
   256  	if cw.res.req.Method == "HEAD" {
   257  		// Eat writes.
   258  		return len(p), nil
   259  	}
   260  	if cw.chunking {
   261  		_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
   262  		if err != nil {
   263  			cw.res.conn.rwc.Close()
   264  			return
   265  		}
   266  	}
   267  	n, err = cw.res.conn.bufw.Write(p)
   268  	if cw.chunking && err == nil {
   269  		_, err = cw.res.conn.bufw.Write(crlf)
   270  	}
   271  	if err != nil {
   272  		cw.res.conn.rwc.Close()
   273  	}
   274  	return
   275  }
   276  
   277  func (cw *chunkWriter) flush() {
   278  	if !cw.wroteHeader {
   279  		cw.writeHeader(nil)
   280  	}
   281  	cw.res.conn.bufw.Flush()
   282  }
   283  
   284  func (cw *chunkWriter) close() {
   285  	if !cw.wroteHeader {
   286  		cw.writeHeader(nil)
   287  	}
   288  	if cw.chunking {
   289  		bw := cw.res.conn.bufw // conn's bufio writer
   290  		// zero chunk to mark EOF
   291  		bw.WriteString("0\r\n")
   292  		if len(cw.res.trailers) > 0 {
   293  			trailers := make(Header)
   294  			for _, h := range cw.res.trailers {
   295  				if vv := cw.res.handlerHeader[h]; len(vv) > 0 {
   296  					trailers[h] = vv
   297  				}
   298  			}
   299  			trailers.Write(bw) // the writer handles noting errors
   300  		}
   301  		// final blank line after the trailers (whether
   302  		// present or not)
   303  		bw.WriteString("\r\n")
   304  	}
   305  }
   306  
   307  // A response represents the server side of an HTTP response.
   308  type response struct {
   309  	conn          *conn
   310  	req           *Request // request for this response
   311  	reqBody       io.ReadCloser
   312  	wroteHeader   bool // reply header has been (logically) written
   313  	wroteContinue bool // 100 Continue response was written
   314  
   315  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   316  	cw chunkWriter
   317  
   318  	// handlerHeader is the Header that Handlers get access to,
   319  	// which may be retained and mutated even after WriteHeader.
   320  	// handlerHeader is copied into cw.header at WriteHeader
   321  	// time, and privately mutated thereafter.
   322  	handlerHeader Header
   323  	calledHeader  bool // handler accessed handlerHeader via Header
   324  
   325  	written       int64 // number of bytes written in body
   326  	contentLength int64 // explicitly-declared Content-Length; or -1
   327  	status        int   // status code passed to WriteHeader
   328  
   329  	// close connection after this reply.  set on request and
   330  	// updated after response from handler if there's a
   331  	// "Connection: keep-alive" response header and a
   332  	// Content-Length.
   333  	closeAfterReply bool
   334  
   335  	// requestBodyLimitHit is set by requestTooLarge when
   336  	// maxBytesReader hits its max size. It is checked in
   337  	// WriteHeader, to make sure we don't consume the
   338  	// remaining request body to try to advance to the next HTTP
   339  	// request. Instead, when this is set, we stop reading
   340  	// subsequent requests on this connection and stop reading
   341  	// input from it.
   342  	requestBodyLimitHit bool
   343  
   344  	// trailers are the headers to be sent after the handler
   345  	// finishes writing the body.  This field is initialized from
   346  	// the Trailer response header when the response header is
   347  	// written.
   348  	trailers []string
   349  
   350  	handlerDone bool // set true when the handler exits
   351  
   352  	// Buffers for Date and Content-Length
   353  	dateBuf [len(TimeFormat)]byte
   354  	clenBuf [10]byte
   355  
   356  	closeNotifyCh <-chan bool // guarded by conn.mu
   357  }
   358  
   359  // declareTrailer is called for each Trailer header when the
   360  // response header is written. It notes that a header will need to be
   361  // written in the trailers at the end of the response.
   362  func (w *response) declareTrailer(k string) {
   363  	k = CanonicalHeaderKey(k)
   364  	switch k {
   365  	case "Transfer-Encoding", "Content-Length", "Trailer":
   366  		// Forbidden by RFC 2616 14.40.
   367  		return
   368  	}
   369  	w.trailers = append(w.trailers, k)
   370  }
   371  
   372  // requestTooLarge is called by maxBytesReader when too much input has
   373  // been read from the client.
   374  func (w *response) requestTooLarge() {
   375  	w.closeAfterReply = true
   376  	w.requestBodyLimitHit = true
   377  	if !w.wroteHeader {
   378  		w.Header().Set("Connection", "close")
   379  	}
   380  }
   381  
   382  // needsSniff reports whether a Content-Type still needs to be sniffed.
   383  func (w *response) needsSniff() bool {
   384  	_, haveType := w.handlerHeader["Content-Type"]
   385  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   386  }
   387  
   388  // writerOnly hides an io.Writer value's optional ReadFrom method
   389  // from io.Copy.
   390  type writerOnly struct {
   391  	io.Writer
   392  }
   393  
   394  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   395  	switch v := src.(type) {
   396  	case *os.File:
   397  		fi, err := v.Stat()
   398  		if err != nil {
   399  			return false, err
   400  		}
   401  		return fi.Mode().IsRegular(), nil
   402  	case *io.LimitedReader:
   403  		return srcIsRegularFile(v.R)
   404  	default:
   405  		return
   406  	}
   407  }
   408  
   409  // ReadFrom is here to optimize copying from an *os.File regular file
   410  // to a *net.TCPConn with sendfile.
   411  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   412  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   413  	// own ReadFrom method). If not, or if our src isn't a regular
   414  	// file, just fall back to the normal copy method.
   415  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   416  	regFile, err := srcIsRegularFile(src)
   417  	if err != nil {
   418  		return 0, err
   419  	}
   420  	if !ok || !regFile {
   421  		bufp := copyBufPool.Get().(*[]byte)
   422  		defer copyBufPool.Put(bufp)
   423  		return io.CopyBuffer(writerOnly{w}, src, *bufp)
   424  	}
   425  
   426  	// sendfile path:
   427  
   428  	if !w.wroteHeader {
   429  		w.WriteHeader(StatusOK)
   430  	}
   431  
   432  	if w.needsSniff() {
   433  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   434  		n += n0
   435  		if err != nil {
   436  			return n, err
   437  		}
   438  	}
   439  
   440  	w.w.Flush()  // get rid of any previous writes
   441  	w.cw.flush() // make sure Header is written; flush data to rwc
   442  
   443  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   444  	if !w.cw.chunking && w.bodyAllowed() {
   445  		n0, err := rf.ReadFrom(src)
   446  		n += n0
   447  		w.written += n0
   448  		return n, err
   449  	}
   450  
   451  	n0, err := io.Copy(writerOnly{w}, src)
   452  	n += n0
   453  	return n, err
   454  }
   455  
   456  // debugServerConnections controls whether all server connections are wrapped
   457  // with a verbose logging wrapper.
   458  const debugServerConnections = false
   459  
   460  // Create new connection from rwc.
   461  func (srv *Server) newConn(rwc net.Conn) *conn {
   462  	c := &conn{
   463  		server: srv,
   464  		rwc:    rwc,
   465  	}
   466  	if debugServerConnections {
   467  		c.rwc = newLoggingConn("server", c.rwc)
   468  	}
   469  	return c
   470  }
   471  
   472  type readResult struct {
   473  	n   int
   474  	err error
   475  	b   byte // byte read, if n == 1
   476  }
   477  
   478  // connReader is the io.Reader wrapper used by *conn. It combines a
   479  // selectively-activated io.LimitedReader (to bound request header
   480  // read sizes) with support for selectively keeping an io.Reader.Read
   481  // call blocked in a background goroutine to wait for activitiy and
   482  // trigger a CloseNotifier channel.
   483  type connReader struct {
   484  	r      io.Reader
   485  	remain int64 // bytes remaining
   486  
   487  	// ch is non-nil if a background read is in progress.
   488  	// It is guarded by conn.mu.
   489  	ch chan readResult
   490  }
   491  
   492  func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
   493  func (cr *connReader) setInfiniteReadLimit()     { cr.remain = 1<<63 - 1 }
   494  func (cr *connReader) hitReadLimit() bool        { return cr.remain <= 0 }
   495  
   496  func (cr *connReader) Read(p []byte) (n int, err error) {
   497  	if cr.hitReadLimit() {
   498  		return 0, io.EOF
   499  	}
   500  	if len(p) == 0 {
   501  		return
   502  	}
   503  	if int64(len(p)) > cr.remain {
   504  		p = p[:cr.remain]
   505  	}
   506  
   507  	// Is a background read (started by CloseNotifier) already in
   508  	// flight? If so, wait for it and use its result.
   509  	ch := cr.ch
   510  	if ch != nil {
   511  		cr.ch = nil
   512  		res := <-ch
   513  		if res.n == 1 {
   514  			p[0] = res.b
   515  			cr.remain -= 1
   516  		}
   517  		return res.n, res.err
   518  	}
   519  	n, err = cr.r.Read(p)
   520  	cr.remain -= int64(n)
   521  	return
   522  }
   523  
   524  func (cr *connReader) startBackgroundRead(onReadComplete func()) {
   525  	if cr.ch != nil {
   526  		// Background read already started.
   527  		return
   528  	}
   529  	cr.ch = make(chan readResult, 1)
   530  	go cr.closeNotifyAwaitActivityRead(cr.ch, onReadComplete)
   531  }
   532  
   533  func (cr *connReader) closeNotifyAwaitActivityRead(ch chan<- readResult, onReadComplete func()) {
   534  	var buf [1]byte
   535  	n, err := cr.r.Read(buf[:1])
   536  	onReadComplete()
   537  	ch <- readResult{n, err, buf[0]}
   538  }
   539  
   540  var (
   541  	bufioReaderPool   sync.Pool
   542  	bufioWriter2kPool sync.Pool
   543  	bufioWriter4kPool sync.Pool
   544  )
   545  
   546  var copyBufPool = sync.Pool{
   547  	New: func() interface{} {
   548  		b := make([]byte, 32*1024)
   549  		return &b
   550  	},
   551  }
   552  
   553  func bufioWriterPool(size int) *sync.Pool {
   554  	switch size {
   555  	case 2 << 10:
   556  		return &bufioWriter2kPool
   557  	case 4 << 10:
   558  		return &bufioWriter4kPool
   559  	}
   560  	return nil
   561  }
   562  
   563  func newBufioReader(r io.Reader) *bufio.Reader {
   564  	if v := bufioReaderPool.Get(); v != nil {
   565  		br := v.(*bufio.Reader)
   566  		br.Reset(r)
   567  		return br
   568  	}
   569  	// Note: if this reader size is every changed, update
   570  	// TestHandlerBodyClose's assumptions.
   571  	return bufio.NewReader(r)
   572  }
   573  
   574  func putBufioReader(br *bufio.Reader) {
   575  	br.Reset(nil)
   576  	bufioReaderPool.Put(br)
   577  }
   578  
   579  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   580  	pool := bufioWriterPool(size)
   581  	if pool != nil {
   582  		if v := pool.Get(); v != nil {
   583  			bw := v.(*bufio.Writer)
   584  			bw.Reset(w)
   585  			return bw
   586  		}
   587  	}
   588  	return bufio.NewWriterSize(w, size)
   589  }
   590  
   591  func putBufioWriter(bw *bufio.Writer) {
   592  	bw.Reset(nil)
   593  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   594  		pool.Put(bw)
   595  	}
   596  }
   597  
   598  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   599  // in an HTTP request.
   600  // This can be overridden by setting Server.MaxHeaderBytes.
   601  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   602  
   603  func (srv *Server) maxHeaderBytes() int {
   604  	if srv.MaxHeaderBytes > 0 {
   605  		return srv.MaxHeaderBytes
   606  	}
   607  	return DefaultMaxHeaderBytes
   608  }
   609  
   610  func (srv *Server) initialReadLimitSize() int64 {
   611  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   612  }
   613  
   614  // wrapper around io.ReaderCloser which on first read, sends an
   615  // HTTP/1.1 100 Continue header
   616  type expectContinueReader struct {
   617  	resp       *response
   618  	readCloser io.ReadCloser
   619  	closed     bool
   620  	sawEOF     bool
   621  }
   622  
   623  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   624  	if ecr.closed {
   625  		return 0, ErrBodyReadAfterClose
   626  	}
   627  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   628  		ecr.resp.wroteContinue = true
   629  		ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   630  		ecr.resp.conn.bufw.Flush()
   631  	}
   632  	n, err = ecr.readCloser.Read(p)
   633  	if err == io.EOF {
   634  		ecr.sawEOF = true
   635  	}
   636  	return
   637  }
   638  
   639  func (ecr *expectContinueReader) Close() error {
   640  	ecr.closed = true
   641  	return ecr.readCloser.Close()
   642  }
   643  
   644  // TimeFormat is the time format to use with
   645  // time.Parse and time.Time.Format when parsing
   646  // or generating times in HTTP headers.
   647  // It is like time.RFC1123 but hard codes GMT as the time zone.
   648  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   649  
   650  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   651  func appendTime(b []byte, t time.Time) []byte {
   652  	const days = "SunMonTueWedThuFriSat"
   653  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   654  
   655  	t = t.UTC()
   656  	yy, mm, dd := t.Date()
   657  	hh, mn, ss := t.Clock()
   658  	day := days[3*t.Weekday():]
   659  	mon := months[3*(mm-1):]
   660  
   661  	return append(b,
   662  		day[0], day[1], day[2], ',', ' ',
   663  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   664  		mon[0], mon[1], mon[2], ' ',
   665  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   666  		byte('0'+hh/10), byte('0'+hh%10), ':',
   667  		byte('0'+mn/10), byte('0'+mn%10), ':',
   668  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   669  		'G', 'M', 'T')
   670  }
   671  
   672  var errTooLarge = errors.New("http: request too large")
   673  
   674  // Read next request from connection.
   675  func (c *conn) readRequest() (w *response, err error) {
   676  	if c.hijacked() {
   677  		return nil, ErrHijacked
   678  	}
   679  
   680  	if d := c.server.ReadTimeout; d != 0 {
   681  		c.rwc.SetReadDeadline(time.Now().Add(d))
   682  	}
   683  	if d := c.server.WriteTimeout; d != 0 {
   684  		defer func() {
   685  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   686  		}()
   687  	}
   688  
   689  	c.r.setReadLimit(c.server.initialReadLimitSize())
   690  	c.mu.Lock() // while using bufr
   691  	if c.lastMethod == "POST" {
   692  		// RFC 2616 section 4.1 tolerance for old buggy clients.
   693  		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
   694  		c.bufr.Discard(numLeadingCRorLF(peek))
   695  	}
   696  	req, err := readRequest(c.bufr, false)
   697  	c.mu.Unlock()
   698  	if err != nil {
   699  		if c.r.hitReadLimit() {
   700  			return nil, errTooLarge
   701  		}
   702  		return nil, err
   703  	}
   704  	c.lastMethod = req.Method
   705  	c.r.setInfiniteReadLimit()
   706  
   707  	hosts, haveHost := req.Header["Host"]
   708  	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) {
   709  		return nil, badRequestError("missing required Host header")
   710  	}
   711  	if len(hosts) > 1 {
   712  		return nil, badRequestError("too many Host headers")
   713  	}
   714  	if len(hosts) == 1 && !validHostHeader(hosts[0]) {
   715  		return nil, badRequestError("malformed Host header")
   716  	}
   717  	for k, vv := range req.Header {
   718  		if !validHeaderName(k) {
   719  			return nil, badRequestError("invalid header name")
   720  		}
   721  		for _, v := range vv {
   722  			if !validHeaderValue(v) {
   723  				return nil, badRequestError("invalid header value")
   724  			}
   725  		}
   726  	}
   727  	delete(req.Header, "Host")
   728  
   729  	req.RemoteAddr = c.remoteAddr
   730  	req.TLS = c.tlsState
   731  	if body, ok := req.Body.(*body); ok {
   732  		body.doEarlyClose = true
   733  	}
   734  
   735  	w = &response{
   736  		conn:          c,
   737  		req:           req,
   738  		reqBody:       req.Body,
   739  		handlerHeader: make(Header),
   740  		contentLength: -1,
   741  	}
   742  	w.cw.res = w
   743  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   744  	return w, nil
   745  }
   746  
   747  func (w *response) Header() Header {
   748  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   749  		// Accessing the header between logically writing it
   750  		// and physically writing it means we need to allocate
   751  		// a clone to snapshot the logically written state.
   752  		w.cw.header = w.handlerHeader.clone()
   753  	}
   754  	w.calledHeader = true
   755  	return w.handlerHeader
   756  }
   757  
   758  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   759  // consumed by a handler that the server will read from the client
   760  // in order to keep a connection alive.  If there are more bytes than
   761  // this then the server to be paranoid instead sends a "Connection:
   762  // close" response.
   763  //
   764  // This number is approximately what a typical machine's TCP buffer
   765  // size is anyway.  (if we have the bytes on the machine, we might as
   766  // well read them)
   767  const maxPostHandlerReadBytes = 256 << 10
   768  
   769  func (w *response) WriteHeader(code int) {
   770  	if w.conn.hijacked() {
   771  		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   772  		return
   773  	}
   774  	if w.wroteHeader {
   775  		w.conn.server.logf("http: multiple response.WriteHeader calls")
   776  		return
   777  	}
   778  	w.wroteHeader = true
   779  	w.status = code
   780  
   781  	if w.calledHeader && w.cw.header == nil {
   782  		w.cw.header = w.handlerHeader.clone()
   783  	}
   784  
   785  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   786  		v, err := strconv.ParseInt(cl, 10, 64)
   787  		if err == nil && v >= 0 {
   788  			w.contentLength = v
   789  		} else {
   790  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
   791  			w.handlerHeader.Del("Content-Length")
   792  		}
   793  	}
   794  }
   795  
   796  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   797  // This type is used to avoid extra allocations from cloning and/or populating
   798  // the response Header map and all its 1-element slices.
   799  type extraHeader struct {
   800  	contentType      string
   801  	connection       string
   802  	transferEncoding string
   803  	date             []byte // written if not nil
   804  	contentLength    []byte // written if not nil
   805  }
   806  
   807  // Sorted the same as extraHeader.Write's loop.
   808  var extraHeaderKeys = [][]byte{
   809  	[]byte("Content-Type"),
   810  	[]byte("Connection"),
   811  	[]byte("Transfer-Encoding"),
   812  }
   813  
   814  var (
   815  	headerContentLength = []byte("Content-Length: ")
   816  	headerDate          = []byte("Date: ")
   817  )
   818  
   819  // Write writes the headers described in h to w.
   820  //
   821  // This method has a value receiver, despite the somewhat large size
   822  // of h, because it prevents an allocation. The escape analysis isn't
   823  // smart enough to realize this function doesn't mutate h.
   824  func (h extraHeader) Write(w *bufio.Writer) {
   825  	if h.date != nil {
   826  		w.Write(headerDate)
   827  		w.Write(h.date)
   828  		w.Write(crlf)
   829  	}
   830  	if h.contentLength != nil {
   831  		w.Write(headerContentLength)
   832  		w.Write(h.contentLength)
   833  		w.Write(crlf)
   834  	}
   835  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   836  		if v != "" {
   837  			w.Write(extraHeaderKeys[i])
   838  			w.Write(colonSpace)
   839  			w.WriteString(v)
   840  			w.Write(crlf)
   841  		}
   842  	}
   843  }
   844  
   845  // writeHeader finalizes the header sent to the client and writes it
   846  // to cw.res.conn.bufw.
   847  //
   848  // p is not written by writeHeader, but is the first chunk of the body
   849  // that will be written.  It is sniffed for a Content-Type if none is
   850  // set explicitly.  It's also used to set the Content-Length, if the
   851  // total body size was small and the handler has already finished
   852  // running.
   853  func (cw *chunkWriter) writeHeader(p []byte) {
   854  	if cw.wroteHeader {
   855  		return
   856  	}
   857  	cw.wroteHeader = true
   858  
   859  	w := cw.res
   860  	keepAlivesEnabled := w.conn.server.doKeepAlives()
   861  	isHEAD := w.req.Method == "HEAD"
   862  
   863  	// header is written out to w.conn.buf below. Depending on the
   864  	// state of the handler, we either own the map or not. If we
   865  	// don't own it, the exclude map is created lazily for
   866  	// WriteSubset to remove headers. The setHeader struct holds
   867  	// headers we need to add.
   868  	header := cw.header
   869  	owned := header != nil
   870  	if !owned {
   871  		header = w.handlerHeader
   872  	}
   873  	var excludeHeader map[string]bool
   874  	delHeader := func(key string) {
   875  		if owned {
   876  			header.Del(key)
   877  			return
   878  		}
   879  		if _, ok := header[key]; !ok {
   880  			return
   881  		}
   882  		if excludeHeader == nil {
   883  			excludeHeader = make(map[string]bool)
   884  		}
   885  		excludeHeader[key] = true
   886  	}
   887  	var setHeader extraHeader
   888  
   889  	trailers := false
   890  	for _, v := range cw.header["Trailer"] {
   891  		trailers = true
   892  		foreachHeaderElement(v, cw.res.declareTrailer)
   893  	}
   894  
   895  	te := header.get("Transfer-Encoding")
   896  	hasTE := te != ""
   897  
   898  	// If the handler is done but never sent a Content-Length
   899  	// response header and this is our first (and last) write, set
   900  	// it, even to zero. This helps HTTP/1.0 clients keep their
   901  	// "keep-alive" connections alive.
   902  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
   903  	// it was a HEAD request, we don't know the difference between
   904  	// 0 actual bytes and 0 bytes because the handler noticed it
   905  	// was a HEAD request and chose not to write anything.  So for
   906  	// HEAD, the handler should either write the Content-Length or
   907  	// write non-zero bytes.  If it's actually 0 bytes and the
   908  	// handler never looked at the Request.Method, we just don't
   909  	// send a Content-Length header.
   910  	// Further, we don't send an automatic Content-Length if they
   911  	// set a Transfer-Encoding, because they're generally incompatible.
   912  	if w.handlerDone && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   913  		w.contentLength = int64(len(p))
   914  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   915  	}
   916  
   917  	// If this was an HTTP/1.0 request with keep-alive and we sent a
   918  	// Content-Length back, we can make this a keep-alive response ...
   919  	if w.req.wantsHttp10KeepAlive() && keepAlivesEnabled {
   920  		sentLength := header.get("Content-Length") != ""
   921  		if sentLength && header.get("Connection") == "keep-alive" {
   922  			w.closeAfterReply = false
   923  		}
   924  	}
   925  
   926  	// Check for a explicit (and valid) Content-Length header.
   927  	hasCL := w.contentLength != -1
   928  
   929  	if w.req.wantsHttp10KeepAlive() && (isHEAD || hasCL) {
   930  		_, connectionHeaderSet := header["Connection"]
   931  		if !connectionHeaderSet {
   932  			setHeader.connection = "keep-alive"
   933  		}
   934  	} else if !w.req.ProtoAtLeast(1, 1) || w.req.wantsClose() {
   935  		w.closeAfterReply = true
   936  	}
   937  
   938  	if header.get("Connection") == "close" || !keepAlivesEnabled {
   939  		w.closeAfterReply = true
   940  	}
   941  
   942  	// If the client wanted a 100-continue but we never sent it to
   943  	// them (or, more strictly: we never finished reading their
   944  	// request body), don't reuse this connection because it's now
   945  	// in an unknown state: we might be sending this response at
   946  	// the same time the client is now sending its request body
   947  	// after a timeout.  (Some HTTP clients send Expect:
   948  	// 100-continue but knowing that some servers don't support
   949  	// it, the clients set a timer and send the body later anyway)
   950  	// If we haven't seen EOF, we can't skip over the unread body
   951  	// because we don't know if the next bytes on the wire will be
   952  	// the body-following-the-timer or the subsequent request.
   953  	// See Issue 11549.
   954  	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
   955  		w.closeAfterReply = true
   956  	}
   957  
   958  	// Per RFC 2616, we should consume the request body before
   959  	// replying, if the handler hasn't already done so.  But we
   960  	// don't want to do an unbounded amount of reading here for
   961  	// DoS reasons, so we only try up to a threshold.
   962  	if w.req.ContentLength != 0 && !w.closeAfterReply {
   963  		var discard, tooBig bool
   964  
   965  		switch bdy := w.req.Body.(type) {
   966  		case *expectContinueReader:
   967  			if bdy.resp.wroteContinue {
   968  				discard = true
   969  			}
   970  		case *body:
   971  			bdy.mu.Lock()
   972  			switch {
   973  			case bdy.closed:
   974  				if !bdy.sawEOF {
   975  					// Body was closed in handler with non-EOF error.
   976  					w.closeAfterReply = true
   977  				}
   978  			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
   979  				tooBig = true
   980  			default:
   981  				discard = true
   982  			}
   983  			bdy.mu.Unlock()
   984  		default:
   985  			discard = true
   986  		}
   987  
   988  		if discard {
   989  			_, err := io.CopyN(ioutil.Discard, w.req.Body, maxPostHandlerReadBytes+1)
   990  			switch err {
   991  			case nil:
   992  				// There must be even more data left over.
   993  				tooBig = true
   994  			case ErrBodyReadAfterClose:
   995  				// Body was already consumed and closed.
   996  			case io.EOF:
   997  				// The remaining body was just consumed, close it.
   998  				err = w.req.Body.Close()
   999  				if err != nil {
  1000  					w.closeAfterReply = true
  1001  				}
  1002  			default:
  1003  				// Some other kind of error occured, like a read timeout, or
  1004  				// corrupt chunked encoding. In any case, whatever remains
  1005  				// on the wire must not be parsed as another HTTP request.
  1006  				w.closeAfterReply = true
  1007  			}
  1008  		}
  1009  
  1010  		if tooBig {
  1011  			w.requestTooLarge()
  1012  			delHeader("Connection")
  1013  			setHeader.connection = "close"
  1014  		}
  1015  	}
  1016  
  1017  	code := w.status
  1018  	if bodyAllowedForStatus(code) {
  1019  		// If no content type, apply sniffing algorithm to body.
  1020  		_, haveType := header["Content-Type"]
  1021  		if !haveType && !hasTE {
  1022  			setHeader.contentType = DetectContentType(p)
  1023  		}
  1024  	} else {
  1025  		for _, k := range suppressedHeaders(code) {
  1026  			delHeader(k)
  1027  		}
  1028  	}
  1029  
  1030  	if _, ok := header["Date"]; !ok {
  1031  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
  1032  	}
  1033  
  1034  	if hasCL && hasTE && te != "identity" {
  1035  		// TODO: return an error if WriteHeader gets a return parameter
  1036  		// For now just ignore the Content-Length.
  1037  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
  1038  			te, w.contentLength)
  1039  		delHeader("Content-Length")
  1040  		hasCL = false
  1041  	}
  1042  
  1043  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
  1044  		// do nothing
  1045  	} else if code == StatusNoContent {
  1046  		delHeader("Transfer-Encoding")
  1047  	} else if hasCL {
  1048  		delHeader("Transfer-Encoding")
  1049  	} else if w.req.ProtoAtLeast(1, 1) {
  1050  		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity,  and no
  1051  		// content-length has been provided. The connection must be closed after the
  1052  		// reply is written, and no chunking is to be done. This is the setup
  1053  		// recommended in the Server-Sent Events candidate recommendation 11,
  1054  		// section 8.
  1055  		if hasTE && te == "identity" {
  1056  			cw.chunking = false
  1057  			w.closeAfterReply = true
  1058  		} else {
  1059  			// HTTP/1.1 or greater: use chunked transfer encoding
  1060  			// to avoid closing the connection at EOF.
  1061  			cw.chunking = true
  1062  			setHeader.transferEncoding = "chunked"
  1063  		}
  1064  	} else {
  1065  		// HTTP version < 1.1: cannot do chunked transfer
  1066  		// encoding and we don't know the Content-Length so
  1067  		// signal EOF by closing connection.
  1068  		w.closeAfterReply = true
  1069  		delHeader("Transfer-Encoding") // in case already set
  1070  	}
  1071  
  1072  	// Cannot use Content-Length with non-identity Transfer-Encoding.
  1073  	if cw.chunking {
  1074  		delHeader("Content-Length")
  1075  	}
  1076  	if !w.req.ProtoAtLeast(1, 0) {
  1077  		return
  1078  	}
  1079  
  1080  	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
  1081  		delHeader("Connection")
  1082  		if w.req.ProtoAtLeast(1, 1) {
  1083  			setHeader.connection = "close"
  1084  		}
  1085  	}
  1086  
  1087  	w.conn.bufw.WriteString(statusLine(w.req, code))
  1088  	cw.header.WriteSubset(w.conn.bufw, excludeHeader)
  1089  	setHeader.Write(w.conn.bufw)
  1090  	w.conn.bufw.Write(crlf)
  1091  }
  1092  
  1093  // foreachHeaderElement splits v according to the "#rule" construction
  1094  // in RFC 2616 section 2.1 and calls fn for each non-empty element.
  1095  func foreachHeaderElement(v string, fn func(string)) {
  1096  	v = textproto.TrimString(v)
  1097  	if v == "" {
  1098  		return
  1099  	}
  1100  	if !strings.Contains(v, ",") {
  1101  		fn(v)
  1102  		return
  1103  	}
  1104  	for _, f := range strings.Split(v, ",") {
  1105  		if f = textproto.TrimString(f); f != "" {
  1106  			fn(f)
  1107  		}
  1108  	}
  1109  }
  1110  
  1111  // statusLines is a cache of Status-Line strings, keyed by code (for
  1112  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
  1113  // map keyed by struct of two fields. This map's max size is bounded
  1114  // by 2*len(statusText), two protocol types for each known official
  1115  // status code in the statusText map.
  1116  var (
  1117  	statusMu    sync.RWMutex
  1118  	statusLines = make(map[int]string)
  1119  )
  1120  
  1121  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
  1122  // for the given request and response status code.
  1123  func statusLine(req *Request, code int) string {
  1124  	// Fast path:
  1125  	key := code
  1126  	proto11 := req.ProtoAtLeast(1, 1)
  1127  	if !proto11 {
  1128  		key = -key
  1129  	}
  1130  	statusMu.RLock()
  1131  	line, ok := statusLines[key]
  1132  	statusMu.RUnlock()
  1133  	if ok {
  1134  		return line
  1135  	}
  1136  
  1137  	// Slow path:
  1138  	proto := "HTTP/1.0"
  1139  	if proto11 {
  1140  		proto = "HTTP/1.1"
  1141  	}
  1142  	codestring := strconv.Itoa(code)
  1143  	text, ok := statusText[code]
  1144  	if !ok {
  1145  		text = "status code " + codestring
  1146  	}
  1147  	line = proto + " " + codestring + " " + text + "\r\n"
  1148  	if ok {
  1149  		statusMu.Lock()
  1150  		defer statusMu.Unlock()
  1151  		statusLines[key] = line
  1152  	}
  1153  	return line
  1154  }
  1155  
  1156  // bodyAllowed reports whether a Write is allowed for this response type.
  1157  // It's illegal to call this before the header has been flushed.
  1158  func (w *response) bodyAllowed() bool {
  1159  	if !w.wroteHeader {
  1160  		panic("")
  1161  	}
  1162  	return bodyAllowedForStatus(w.status)
  1163  }
  1164  
  1165  // The Life Of A Write is like this:
  1166  //
  1167  // Handler starts. No header has been sent. The handler can either
  1168  // write a header, or just start writing.  Writing before sending a header
  1169  // sends an implicitly empty 200 OK header.
  1170  //
  1171  // If the handler didn't declare a Content-Length up front, we either
  1172  // go into chunking mode or, if the handler finishes running before
  1173  // the chunking buffer size, we compute a Content-Length and send that
  1174  // in the header instead.
  1175  //
  1176  // Likewise, if the handler didn't set a Content-Type, we sniff that
  1177  // from the initial chunk of output.
  1178  //
  1179  // The Writers are wired together like:
  1180  //
  1181  // 1. *response (the ResponseWriter) ->
  1182  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
  1183  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
  1184  //    and which writes the chunk headers, if needed.
  1185  // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
  1186  // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
  1187  //    and populates c.werr with it if so. but otherwise writes to:
  1188  // 6. the rwc, the net.Conn.
  1189  //
  1190  // TODO(bradfitz): short-circuit some of the buffering when the
  1191  // initial header contains both a Content-Type and Content-Length.
  1192  // Also short-circuit in (1) when the header's been sent and not in
  1193  // chunking mode, writing directly to (4) instead, if (2) has no
  1194  // buffered data.  More generally, we could short-circuit from (1) to
  1195  // (3) even in chunking mode if the write size from (1) is over some
  1196  // threshold and nothing is in (2).  The answer might be mostly making
  1197  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
  1198  // with this instead.
  1199  func (w *response) Write(data []byte) (n int, err error) {
  1200  	return w.write(len(data), data, "")
  1201  }
  1202  
  1203  func (w *response) WriteString(data string) (n int, err error) {
  1204  	return w.write(len(data), nil, data)
  1205  }
  1206  
  1207  // either dataB or dataS is non-zero.
  1208  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
  1209  	if w.conn.hijacked() {
  1210  		w.conn.server.logf("http: response.Write on hijacked connection")
  1211  		return 0, ErrHijacked
  1212  	}
  1213  	if !w.wroteHeader {
  1214  		w.WriteHeader(StatusOK)
  1215  	}
  1216  	if lenData == 0 {
  1217  		return 0, nil
  1218  	}
  1219  	if !w.bodyAllowed() {
  1220  		return 0, ErrBodyNotAllowed
  1221  	}
  1222  
  1223  	w.written += int64(lenData) // ignoring errors, for errorKludge
  1224  	if w.contentLength != -1 && w.written > w.contentLength {
  1225  		return 0, ErrContentLength
  1226  	}
  1227  	if dataB != nil {
  1228  		return w.w.Write(dataB)
  1229  	} else {
  1230  		return w.w.WriteString(dataS)
  1231  	}
  1232  }
  1233  
  1234  func (w *response) finishRequest() {
  1235  	w.handlerDone = true
  1236  
  1237  	if !w.wroteHeader {
  1238  		w.WriteHeader(StatusOK)
  1239  	}
  1240  
  1241  	w.w.Flush()
  1242  	putBufioWriter(w.w)
  1243  	w.cw.close()
  1244  	w.conn.bufw.Flush()
  1245  
  1246  	// Close the body (regardless of w.closeAfterReply) so we can
  1247  	// re-use its bufio.Reader later safely.
  1248  	w.reqBody.Close()
  1249  
  1250  	if w.req.MultipartForm != nil {
  1251  		w.req.MultipartForm.RemoveAll()
  1252  	}
  1253  }
  1254  
  1255  // shouldReuseConnection reports whether the underlying TCP connection can be reused.
  1256  // It must only be called after the handler is done executing.
  1257  func (w *response) shouldReuseConnection() bool {
  1258  	if w.closeAfterReply {
  1259  		// The request or something set while executing the
  1260  		// handler indicated we shouldn't reuse this
  1261  		// connection.
  1262  		return false
  1263  	}
  1264  
  1265  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1266  		// Did not write enough. Avoid getting out of sync.
  1267  		return false
  1268  	}
  1269  
  1270  	// There was some error writing to the underlying connection
  1271  	// during the request, so don't re-use this conn.
  1272  	if w.conn.werr != nil {
  1273  		return false
  1274  	}
  1275  
  1276  	if w.closedRequestBodyEarly() {
  1277  		return false
  1278  	}
  1279  
  1280  	return true
  1281  }
  1282  
  1283  func (w *response) closedRequestBodyEarly() bool {
  1284  	body, ok := w.req.Body.(*body)
  1285  	return ok && body.didEarlyClose()
  1286  }
  1287  
  1288  func (w *response) Flush() {
  1289  	if !w.wroteHeader {
  1290  		w.WriteHeader(StatusOK)
  1291  	}
  1292  	w.w.Flush()
  1293  	w.cw.flush()
  1294  }
  1295  
  1296  func (c *conn) finalFlush() {
  1297  	if c.bufr != nil {
  1298  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1299  		// reader for a future connection.
  1300  		putBufioReader(c.bufr)
  1301  		c.bufr = nil
  1302  	}
  1303  
  1304  	if c.bufw != nil {
  1305  		c.bufw.Flush()
  1306  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1307  		// writer for a future connection.
  1308  		putBufioWriter(c.bufw)
  1309  		c.bufw = nil
  1310  	}
  1311  }
  1312  
  1313  // Close the connection.
  1314  func (c *conn) close() {
  1315  	c.finalFlush()
  1316  	c.rwc.Close()
  1317  }
  1318  
  1319  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1320  // write side of a TCP connection before closing the entire socket.
  1321  // By sleeping, we increase the chances that the client sees our FIN
  1322  // and processes its final data before they process the subsequent RST
  1323  // from closing a connection with known unread data.
  1324  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1325  // This timeout is somewhat arbitrary (~latency around the planet).
  1326  const rstAvoidanceDelay = 500 * time.Millisecond
  1327  
  1328  type closeWriter interface {
  1329  	CloseWrite() error
  1330  }
  1331  
  1332  var _ closeWriter = (*net.TCPConn)(nil)
  1333  
  1334  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1335  // client is connected via TCP), signalling that we're done.  We then
  1336  // pause for a bit, hoping the client processes it before any
  1337  // subsequent RST.
  1338  //
  1339  // See https://golang.org/issue/3595
  1340  func (c *conn) closeWriteAndWait() {
  1341  	c.finalFlush()
  1342  	if tcp, ok := c.rwc.(closeWriter); ok {
  1343  		tcp.CloseWrite()
  1344  	}
  1345  	time.Sleep(rstAvoidanceDelay)
  1346  }
  1347  
  1348  // validNPN reports whether the proto is not a blacklisted Next
  1349  // Protocol Negotiation protocol.  Empty and built-in protocol types
  1350  // are blacklisted and can't be overridden with alternate
  1351  // implementations.
  1352  func validNPN(proto string) bool {
  1353  	switch proto {
  1354  	case "", "http/1.1", "http/1.0":
  1355  		return false
  1356  	}
  1357  	return true
  1358  }
  1359  
  1360  func (c *conn) setState(nc net.Conn, state ConnState) {
  1361  	if hook := c.server.ConnState; hook != nil {
  1362  		hook(nc, state)
  1363  	}
  1364  }
  1365  
  1366  // badRequestError is a literal string (used by in the server in HTML,
  1367  // unescaped) to tell the user why their request was bad. It should
  1368  // be plain text without user info or other embeddded errors.
  1369  type badRequestError string
  1370  
  1371  func (e badRequestError) Error() string { return "Bad Request: " + string(e) }
  1372  
  1373  // Serve a new connection.
  1374  func (c *conn) serve() {
  1375  	c.remoteAddr = c.rwc.RemoteAddr().String()
  1376  	defer func() {
  1377  		if err := recover(); err != nil {
  1378  			const size = 64 << 10
  1379  			buf := make([]byte, size)
  1380  			buf = buf[:runtime.Stack(buf, false)]
  1381  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1382  		}
  1383  		if !c.hijacked() {
  1384  			c.close()
  1385  			c.setState(c.rwc, StateClosed)
  1386  		}
  1387  	}()
  1388  
  1389  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1390  		if d := c.server.ReadTimeout; d != 0 {
  1391  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1392  		}
  1393  		if d := c.server.WriteTimeout; d != 0 {
  1394  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1395  		}
  1396  		if err := tlsConn.Handshake(); err != nil {
  1397  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1398  			return
  1399  		}
  1400  		c.tlsState = new(tls.ConnectionState)
  1401  		*c.tlsState = tlsConn.ConnectionState()
  1402  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1403  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1404  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1405  				fn(c.server, tlsConn, h)
  1406  			}
  1407  			return
  1408  		}
  1409  	}
  1410  
  1411  	c.r = &connReader{r: c.rwc}
  1412  	c.bufr = newBufioReader(c.r)
  1413  	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
  1414  
  1415  	for {
  1416  		w, err := c.readRequest()
  1417  		if c.r.remain != c.server.initialReadLimitSize() {
  1418  			// If we read any bytes off the wire, we're active.
  1419  			c.setState(c.rwc, StateActive)
  1420  		}
  1421  		if err != nil {
  1422  			if err == errTooLarge {
  1423  				// Their HTTP client may or may not be
  1424  				// able to read this if we're
  1425  				// responding to them and hanging up
  1426  				// while they're still writing their
  1427  				// request.  Undefined behavior.
  1428  				io.WriteString(c.rwc, "HTTP/1.1 431 Request Header Fields Too Large\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n431 Request Header Fields Too Large")
  1429  				c.closeWriteAndWait()
  1430  				return
  1431  			}
  1432  			if err == io.EOF {
  1433  				return // don't reply
  1434  			}
  1435  			if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1436  				return // don't reply
  1437  			}
  1438  			var publicErr string
  1439  			if v, ok := err.(badRequestError); ok {
  1440  				publicErr = ": " + string(v)
  1441  			}
  1442  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n400 Bad Request"+publicErr)
  1443  			return
  1444  		}
  1445  
  1446  		// Expect 100 Continue support
  1447  		req := w.req
  1448  		if req.expectsContinue() {
  1449  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1450  				// Wrap the Body reader with one that replies on the connection
  1451  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1452  			}
  1453  			req.Header.Del("Expect")
  1454  		} else if req.Header.get("Expect") != "" {
  1455  			w.sendExpectationFailed()
  1456  			return
  1457  		}
  1458  
  1459  		// HTTP cannot have multiple simultaneous active requests.[*]
  1460  		// Until the server replies to this request, it can't read another,
  1461  		// so we might as well run the handler in this goroutine.
  1462  		// [*] Not strictly true: HTTP pipelining.  We could let them all process
  1463  		// in parallel even if their responses need to be serialized.
  1464  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1465  		if c.hijacked() {
  1466  			return
  1467  		}
  1468  		w.finishRequest()
  1469  		if !w.shouldReuseConnection() {
  1470  			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
  1471  				c.closeWriteAndWait()
  1472  			}
  1473  			return
  1474  		}
  1475  		c.setState(c.rwc, StateIdle)
  1476  	}
  1477  }
  1478  
  1479  func (w *response) sendExpectationFailed() {
  1480  	// TODO(bradfitz): let ServeHTTP handlers handle
  1481  	// requests with non-standard expectation[s]? Seems
  1482  	// theoretical at best, and doesn't fit into the
  1483  	// current ServeHTTP model anyway.  We'd need to
  1484  	// make the ResponseWriter an optional
  1485  	// "ExpectReplier" interface or something.
  1486  	//
  1487  	// For now we'll just obey RFC 2616 14.20 which says
  1488  	// "If a server receives a request containing an
  1489  	// Expect field that includes an expectation-
  1490  	// extension that it does not support, it MUST
  1491  	// respond with a 417 (Expectation Failed) status."
  1492  	w.Header().Set("Connection", "close")
  1493  	w.WriteHeader(StatusExpectationFailed)
  1494  	w.finishRequest()
  1495  }
  1496  
  1497  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1498  // and a Hijacker.
  1499  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1500  	if w.wroteHeader {
  1501  		w.cw.flush()
  1502  	}
  1503  
  1504  	c := w.conn
  1505  	c.mu.Lock()
  1506  	defer c.mu.Unlock()
  1507  
  1508  	if w.closeNotifyCh != nil {
  1509  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier in same ServeHTTP call")
  1510  	}
  1511  
  1512  	// Release the bufioWriter that writes to the chunk writer, it is not
  1513  	// used after a connection has been hijacked.
  1514  	rwc, buf, err = c.hijackLocked()
  1515  	if err == nil {
  1516  		putBufioWriter(w.w)
  1517  		w.w = nil
  1518  	}
  1519  	return rwc, buf, err
  1520  }
  1521  
  1522  func (w *response) CloseNotify() <-chan bool {
  1523  	c := w.conn
  1524  	c.mu.Lock()
  1525  	defer c.mu.Unlock()
  1526  
  1527  	if w.closeNotifyCh != nil {
  1528  		return w.closeNotifyCh
  1529  	}
  1530  	ch := make(chan bool, 1)
  1531  	w.closeNotifyCh = ch
  1532  
  1533  	if w.conn.hijackedv {
  1534  		// CloseNotify is undefined after a hijack, but we have
  1535  		// no place to return an error, so just return a channel,
  1536  		// even though it'll never receive a value.
  1537  		return ch
  1538  	}
  1539  
  1540  	var once sync.Once
  1541  	notify := func() { once.Do(func() { ch <- true }) }
  1542  
  1543  	if c.bufr.Buffered() > 0 {
  1544  		// A pipelined request or unread request body data is available
  1545  		// unread. Per the CloseNotifier docs, fire immediately.
  1546  		notify()
  1547  	} else {
  1548  		c.r.startBackgroundRead(notify)
  1549  	}
  1550  	return ch
  1551  }
  1552  
  1553  // The HandlerFunc type is an adapter to allow the use of
  1554  // ordinary functions as HTTP handlers.  If f is a function
  1555  // with the appropriate signature, HandlerFunc(f) is a
  1556  // Handler that calls f.
  1557  type HandlerFunc func(ResponseWriter, *Request)
  1558  
  1559  // ServeHTTP calls f(w, r).
  1560  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1561  	f(w, r)
  1562  }
  1563  
  1564  // Helper handlers
  1565  
  1566  // Error replies to the request with the specified error message and HTTP code.
  1567  // The error message should be plain text.
  1568  func Error(w ResponseWriter, error string, code int) {
  1569  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1570  	w.Header().Set("X-Content-Type-Options", "nosniff")
  1571  	w.WriteHeader(code)
  1572  	fmt.Fprintln(w, error)
  1573  }
  1574  
  1575  // NotFound replies to the request with an HTTP 404 not found error.
  1576  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1577  
  1578  // NotFoundHandler returns a simple request handler
  1579  // that replies to each request with a ``404 page not found'' reply.
  1580  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1581  
  1582  // StripPrefix returns a handler that serves HTTP requests
  1583  // by removing the given prefix from the request URL's Path
  1584  // and invoking the handler h. StripPrefix handles a
  1585  // request for a path that doesn't begin with prefix by
  1586  // replying with an HTTP 404 not found error.
  1587  func StripPrefix(prefix string, h Handler) Handler {
  1588  	if prefix == "" {
  1589  		return h
  1590  	}
  1591  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1592  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1593  			r.URL.Path = p
  1594  			h.ServeHTTP(w, r)
  1595  		} else {
  1596  			NotFound(w, r)
  1597  		}
  1598  	})
  1599  }
  1600  
  1601  // Redirect replies to the request with a redirect to url,
  1602  // which may be a path relative to the request path.
  1603  //
  1604  // The provided code should be in the 3xx range and is usually
  1605  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  1606  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1607  	if u, err := url.Parse(urlStr); err == nil {
  1608  		// If url was relative, make absolute by
  1609  		// combining with request path.
  1610  		// The browser would probably do this for us,
  1611  		// but doing it ourselves is more reliable.
  1612  
  1613  		// NOTE(rsc): RFC 2616 says that the Location
  1614  		// line must be an absolute URI, like
  1615  		// "http://www.google.com/redirect/",
  1616  		// not a path like "/redirect/".
  1617  		// Unfortunately, we don't know what to
  1618  		// put in the host name section to get the
  1619  		// client to connect to us again, so we can't
  1620  		// know the right absolute URI to send back.
  1621  		// Because of this problem, no one pays attention
  1622  		// to the RFC; they all send back just a new path.
  1623  		// So do we.
  1624  		oldpath := r.URL.Path
  1625  		if oldpath == "" { // should not happen, but avoid a crash if it does
  1626  			oldpath = "/"
  1627  		}
  1628  		if u.Scheme == "" {
  1629  			// no leading http://server
  1630  			if urlStr == "" || urlStr[0] != '/' {
  1631  				// make relative path absolute
  1632  				olddir, _ := path.Split(oldpath)
  1633  				urlStr = olddir + urlStr
  1634  			}
  1635  
  1636  			var query string
  1637  			if i := strings.Index(urlStr, "?"); i != -1 {
  1638  				urlStr, query = urlStr[:i], urlStr[i:]
  1639  			}
  1640  
  1641  			// clean up but preserve trailing slash
  1642  			trailing := strings.HasSuffix(urlStr, "/")
  1643  			urlStr = path.Clean(urlStr)
  1644  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1645  				urlStr += "/"
  1646  			}
  1647  			urlStr += query
  1648  		}
  1649  	}
  1650  
  1651  	w.Header().Set("Location", urlStr)
  1652  	w.WriteHeader(code)
  1653  
  1654  	// RFC2616 recommends that a short note "SHOULD" be included in the
  1655  	// response because older user agents may not understand 301/307.
  1656  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1657  	if r.Method == "GET" {
  1658  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1659  		fmt.Fprintln(w, note)
  1660  	}
  1661  }
  1662  
  1663  var htmlReplacer = strings.NewReplacer(
  1664  	"&", "&amp;",
  1665  	"<", "&lt;",
  1666  	">", "&gt;",
  1667  	// "&#34;" is shorter than "&quot;".
  1668  	`"`, "&#34;",
  1669  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1670  	"'", "&#39;",
  1671  )
  1672  
  1673  func htmlEscape(s string) string {
  1674  	return htmlReplacer.Replace(s)
  1675  }
  1676  
  1677  // Redirect to a fixed URL
  1678  type redirectHandler struct {
  1679  	url  string
  1680  	code int
  1681  }
  1682  
  1683  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1684  	Redirect(w, r, rh.url, rh.code)
  1685  }
  1686  
  1687  // RedirectHandler returns a request handler that redirects
  1688  // each request it receives to the given url using the given
  1689  // status code.
  1690  //
  1691  // The provided code should be in the 3xx range and is usually
  1692  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  1693  func RedirectHandler(url string, code int) Handler {
  1694  	return &redirectHandler{url, code}
  1695  }
  1696  
  1697  // ServeMux is an HTTP request multiplexer.
  1698  // It matches the URL of each incoming request against a list of registered
  1699  // patterns and calls the handler for the pattern that
  1700  // most closely matches the URL.
  1701  //
  1702  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1703  // or rooted subtrees, like "/images/" (note the trailing slash).
  1704  // Longer patterns take precedence over shorter ones, so that
  1705  // if there are handlers registered for both "/images/"
  1706  // and "/images/thumbnails/", the latter handler will be
  1707  // called for paths beginning "/images/thumbnails/" and the
  1708  // former will receive requests for any other paths in the
  1709  // "/images/" subtree.
  1710  //
  1711  // Note that since a pattern ending in a slash names a rooted subtree,
  1712  // the pattern "/" matches all paths not matched by other registered
  1713  // patterns, not just the URL with Path == "/".
  1714  //
  1715  // If a subtree has been registered and a request is received naming the
  1716  // subtree root without its trailing slash, ServeMux redirects that
  1717  // request to the subtree root (adding the trailing slash). This behavior can
  1718  // be overridden with a separate registration for the path without
  1719  // the trailing slash. For example, registering "/images/" causes ServeMux
  1720  // to redirect a request for "/images" to "/images/", unless "/images" has
  1721  // been registered separately.
  1722  //
  1723  // Patterns may optionally begin with a host name, restricting matches to
  1724  // URLs on that host only.  Host-specific patterns take precedence over
  1725  // general patterns, so that a handler might register for the two patterns
  1726  // "/codesearch" and "codesearch.google.com/" without also taking over
  1727  // requests for "http://www.google.com/".
  1728  //
  1729  // ServeMux also takes care of sanitizing the URL request path,
  1730  // redirecting any request containing . or .. elements or repeated slashes
  1731  // to an equivalent, cleaner URL.
  1732  type ServeMux struct {
  1733  	mu    sync.RWMutex
  1734  	m     map[string]muxEntry
  1735  	hosts bool // whether any patterns contain hostnames
  1736  }
  1737  
  1738  type muxEntry struct {
  1739  	explicit bool
  1740  	h        Handler
  1741  	pattern  string
  1742  }
  1743  
  1744  // NewServeMux allocates and returns a new ServeMux.
  1745  func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
  1746  
  1747  // DefaultServeMux is the default ServeMux used by Serve.
  1748  var DefaultServeMux = NewServeMux()
  1749  
  1750  // Does path match pattern?
  1751  func pathMatch(pattern, path string) bool {
  1752  	if len(pattern) == 0 {
  1753  		// should not happen
  1754  		return false
  1755  	}
  1756  	n := len(pattern)
  1757  	if pattern[n-1] != '/' {
  1758  		return pattern == path
  1759  	}
  1760  	return len(path) >= n && path[0:n] == pattern
  1761  }
  1762  
  1763  // Return the canonical path for p, eliminating . and .. elements.
  1764  func cleanPath(p string) string {
  1765  	if p == "" {
  1766  		return "/"
  1767  	}
  1768  	if p[0] != '/' {
  1769  		p = "/" + p
  1770  	}
  1771  	np := path.Clean(p)
  1772  	// path.Clean removes trailing slash except for root;
  1773  	// put the trailing slash back if necessary.
  1774  	if p[len(p)-1] == '/' && np != "/" {
  1775  		np += "/"
  1776  	}
  1777  	return np
  1778  }
  1779  
  1780  // Find a handler on a handler map given a path string
  1781  // Most-specific (longest) pattern wins
  1782  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1783  	var n = 0
  1784  	for k, v := range mux.m {
  1785  		if !pathMatch(k, path) {
  1786  			continue
  1787  		}
  1788  		if h == nil || len(k) > n {
  1789  			n = len(k)
  1790  			h = v.h
  1791  			pattern = v.pattern
  1792  		}
  1793  	}
  1794  	return
  1795  }
  1796  
  1797  // Handler returns the handler to use for the given request,
  1798  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1799  // a non-nil handler. If the path is not in its canonical form, the
  1800  // handler will be an internally-generated handler that redirects
  1801  // to the canonical path.
  1802  //
  1803  // Handler also returns the registered pattern that matches the
  1804  // request or, in the case of internally-generated redirects,
  1805  // the pattern that will match after following the redirect.
  1806  //
  1807  // If there is no registered handler that applies to the request,
  1808  // Handler returns a ``page not found'' handler and an empty pattern.
  1809  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1810  	if r.Method != "CONNECT" {
  1811  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1812  			_, pattern = mux.handler(r.Host, p)
  1813  			url := *r.URL
  1814  			url.Path = p
  1815  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1816  		}
  1817  	}
  1818  
  1819  	return mux.handler(r.Host, r.URL.Path)
  1820  }
  1821  
  1822  // handler is the main implementation of Handler.
  1823  // The path is known to be in canonical form, except for CONNECT methods.
  1824  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1825  	mux.mu.RLock()
  1826  	defer mux.mu.RUnlock()
  1827  
  1828  	// Host-specific pattern takes precedence over generic ones
  1829  	if mux.hosts {
  1830  		h, pattern = mux.match(host + path)
  1831  	}
  1832  	if h == nil {
  1833  		h, pattern = mux.match(path)
  1834  	}
  1835  	if h == nil {
  1836  		h, pattern = NotFoundHandler(), ""
  1837  	}
  1838  	return
  1839  }
  1840  
  1841  // ServeHTTP dispatches the request to the handler whose
  1842  // pattern most closely matches the request URL.
  1843  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1844  	if r.RequestURI == "*" {
  1845  		if r.ProtoAtLeast(1, 1) {
  1846  			w.Header().Set("Connection", "close")
  1847  		}
  1848  		w.WriteHeader(StatusBadRequest)
  1849  		return
  1850  	}
  1851  	h, _ := mux.Handler(r)
  1852  	h.ServeHTTP(w, r)
  1853  }
  1854  
  1855  // Handle registers the handler for the given pattern.
  1856  // If a handler already exists for pattern, Handle panics.
  1857  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  1858  	mux.mu.Lock()
  1859  	defer mux.mu.Unlock()
  1860  
  1861  	if pattern == "" {
  1862  		panic("http: invalid pattern " + pattern)
  1863  	}
  1864  	if handler == nil {
  1865  		panic("http: nil handler")
  1866  	}
  1867  	if mux.m[pattern].explicit {
  1868  		panic("http: multiple registrations for " + pattern)
  1869  	}
  1870  
  1871  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  1872  
  1873  	if pattern[0] != '/' {
  1874  		mux.hosts = true
  1875  	}
  1876  
  1877  	// Helpful behavior:
  1878  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  1879  	// It can be overridden by an explicit registration.
  1880  	n := len(pattern)
  1881  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  1882  		// If pattern contains a host name, strip it and use remaining
  1883  		// path for redirect.
  1884  		path := pattern
  1885  		if pattern[0] != '/' {
  1886  			// In pattern, at least the last character is a '/', so
  1887  			// strings.Index can't be -1.
  1888  			path = pattern[strings.Index(pattern, "/"):]
  1889  		}
  1890  		url := &url.URL{Path: path}
  1891  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
  1892  	}
  1893  }
  1894  
  1895  // HandleFunc registers the handler function for the given pattern.
  1896  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1897  	mux.Handle(pattern, HandlerFunc(handler))
  1898  }
  1899  
  1900  // Handle registers the handler for the given pattern
  1901  // in the DefaultServeMux.
  1902  // The documentation for ServeMux explains how patterns are matched.
  1903  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  1904  
  1905  // HandleFunc registers the handler function for the given pattern
  1906  // in the DefaultServeMux.
  1907  // The documentation for ServeMux explains how patterns are matched.
  1908  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1909  	DefaultServeMux.HandleFunc(pattern, handler)
  1910  }
  1911  
  1912  // Serve accepts incoming HTTP connections on the listener l,
  1913  // creating a new service goroutine for each.  The service goroutines
  1914  // read requests and then call handler to reply to them.
  1915  // Handler is typically nil, in which case the DefaultServeMux is used.
  1916  func Serve(l net.Listener, handler Handler) error {
  1917  	srv := &Server{Handler: handler}
  1918  	return srv.Serve(l)
  1919  }
  1920  
  1921  // A Server defines parameters for running an HTTP server.
  1922  // The zero value for Server is a valid configuration.
  1923  type Server struct {
  1924  	Addr           string        // TCP address to listen on, ":http" if empty
  1925  	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
  1926  	ReadTimeout    time.Duration // maximum duration before timing out read of the request
  1927  	WriteTimeout   time.Duration // maximum duration before timing out write of the response
  1928  	MaxHeaderBytes int           // maximum size of request headers, DefaultMaxHeaderBytes if 0
  1929  	TLSConfig      *tls.Config   // optional TLS config, used by ListenAndServeTLS
  1930  
  1931  	// TLSNextProto optionally specifies a function to take over
  1932  	// ownership of the provided TLS connection when an NPN
  1933  	// protocol upgrade has occurred.  The map key is the protocol
  1934  	// name negotiated. The Handler argument should be used to
  1935  	// handle HTTP requests and will initialize the Request's TLS
  1936  	// and RemoteAddr if not already set.  The connection is
  1937  	// automatically closed when the function returns.
  1938  	// If TLSNextProto is nil, HTTP/2 support is enabled automatically.
  1939  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  1940  
  1941  	// ConnState specifies an optional callback function that is
  1942  	// called when a client connection changes state. See the
  1943  	// ConnState type and associated constants for details.
  1944  	ConnState func(net.Conn, ConnState)
  1945  
  1946  	// ErrorLog specifies an optional logger for errors accepting
  1947  	// connections and unexpected behavior from handlers.
  1948  	// If nil, logging goes to os.Stderr via the log package's
  1949  	// standard logger.
  1950  	ErrorLog *log.Logger
  1951  
  1952  	disableKeepAlives int32     // accessed atomically.
  1953  	nextProtoOnce     sync.Once // guards initialization of TLSNextProto in Serve
  1954  	nextProtoErr      error
  1955  }
  1956  
  1957  // A ConnState represents the state of a client connection to a server.
  1958  // It's used by the optional Server.ConnState hook.
  1959  type ConnState int
  1960  
  1961  const (
  1962  	// StateNew represents a new connection that is expected to
  1963  	// send a request immediately. Connections begin at this
  1964  	// state and then transition to either StateActive or
  1965  	// StateClosed.
  1966  	StateNew ConnState = iota
  1967  
  1968  	// StateActive represents a connection that has read 1 or more
  1969  	// bytes of a request. The Server.ConnState hook for
  1970  	// StateActive fires before the request has entered a handler
  1971  	// and doesn't fire again until the request has been
  1972  	// handled. After the request is handled, the state
  1973  	// transitions to StateClosed, StateHijacked, or StateIdle.
  1974  	StateActive
  1975  
  1976  	// StateIdle represents a connection that has finished
  1977  	// handling a request and is in the keep-alive state, waiting
  1978  	// for a new request. Connections transition from StateIdle
  1979  	// to either StateActive or StateClosed.
  1980  	StateIdle
  1981  
  1982  	// StateHijacked represents a hijacked connection.
  1983  	// This is a terminal state. It does not transition to StateClosed.
  1984  	StateHijacked
  1985  
  1986  	// StateClosed represents a closed connection.
  1987  	// This is a terminal state. Hijacked connections do not
  1988  	// transition to StateClosed.
  1989  	StateClosed
  1990  )
  1991  
  1992  var stateName = map[ConnState]string{
  1993  	StateNew:      "new",
  1994  	StateActive:   "active",
  1995  	StateIdle:     "idle",
  1996  	StateHijacked: "hijacked",
  1997  	StateClosed:   "closed",
  1998  }
  1999  
  2000  func (c ConnState) String() string {
  2001  	return stateName[c]
  2002  }
  2003  
  2004  // serverHandler delegates to either the server's Handler or
  2005  // DefaultServeMux and also handles "OPTIONS *" requests.
  2006  type serverHandler struct {
  2007  	srv *Server
  2008  }
  2009  
  2010  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  2011  	handler := sh.srv.Handler
  2012  	if handler == nil {
  2013  		handler = DefaultServeMux
  2014  	}
  2015  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  2016  		handler = globalOptionsHandler{}
  2017  	}
  2018  	handler.ServeHTTP(rw, req)
  2019  }
  2020  
  2021  // ListenAndServe listens on the TCP network address srv.Addr and then
  2022  // calls Serve to handle requests on incoming connections.
  2023  // Accepted connections are configured to enable TCP keep-alives.
  2024  // If srv.Addr is blank, ":http" is used.
  2025  // ListenAndServe always returns a non-nil error.
  2026  func (srv *Server) ListenAndServe() error {
  2027  	addr := srv.Addr
  2028  	if addr == "" {
  2029  		addr = ":http"
  2030  	}
  2031  	ln, err := net.Listen("tcp", addr)
  2032  	if err != nil {
  2033  		return err
  2034  	}
  2035  	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
  2036  }
  2037  
  2038  var testHookServerServe func(*Server, net.Listener) // used if non-nil
  2039  
  2040  // Serve accepts incoming connections on the Listener l, creating a
  2041  // new service goroutine for each. The service goroutines read requests and
  2042  // then call srv.Handler to reply to them.
  2043  // Serve always returns a non-nil error.
  2044  func (srv *Server) Serve(l net.Listener) error {
  2045  	defer l.Close()
  2046  	if fn := testHookServerServe; fn != nil {
  2047  		fn(srv, l)
  2048  	}
  2049  	var tempDelay time.Duration // how long to sleep on accept failure
  2050  	if err := srv.setupHTTP2(); err != nil {
  2051  		return err
  2052  	}
  2053  	for {
  2054  		rw, e := l.Accept()
  2055  		if e != nil {
  2056  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  2057  				if tempDelay == 0 {
  2058  					tempDelay = 5 * time.Millisecond
  2059  				} else {
  2060  					tempDelay *= 2
  2061  				}
  2062  				if max := 1 * time.Second; tempDelay > max {
  2063  					tempDelay = max
  2064  				}
  2065  				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
  2066  				time.Sleep(tempDelay)
  2067  				continue
  2068  			}
  2069  			return e
  2070  		}
  2071  		tempDelay = 0
  2072  		c := srv.newConn(rw)
  2073  		c.setState(c.rwc, StateNew) // before Serve can return
  2074  		go c.serve()
  2075  	}
  2076  }
  2077  
  2078  func (s *Server) doKeepAlives() bool {
  2079  	return atomic.LoadInt32(&s.disableKeepAlives) == 0
  2080  }
  2081  
  2082  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  2083  // By default, keep-alives are always enabled. Only very
  2084  // resource-constrained environments or servers in the process of
  2085  // shutting down should disable them.
  2086  func (srv *Server) SetKeepAlivesEnabled(v bool) {
  2087  	if v {
  2088  		atomic.StoreInt32(&srv.disableKeepAlives, 0)
  2089  	} else {
  2090  		atomic.StoreInt32(&srv.disableKeepAlives, 1)
  2091  	}
  2092  }
  2093  
  2094  func (s *Server) logf(format string, args ...interface{}) {
  2095  	if s.ErrorLog != nil {
  2096  		s.ErrorLog.Printf(format, args...)
  2097  	} else {
  2098  		log.Printf(format, args...)
  2099  	}
  2100  }
  2101  
  2102  // ListenAndServe listens on the TCP network address addr
  2103  // and then calls Serve with handler to handle requests
  2104  // on incoming connections.
  2105  // Accepted connections are configured to enable TCP keep-alives.
  2106  // Handler is typically nil, in which case the DefaultServeMux is
  2107  // used.
  2108  //
  2109  // A trivial example server is:
  2110  //
  2111  //	package main
  2112  //
  2113  //	import (
  2114  //		"io"
  2115  //		"net/http"
  2116  //		"log"
  2117  //	)
  2118  //
  2119  //	// hello world, the web server
  2120  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  2121  //		io.WriteString(w, "hello, world!\n")
  2122  //	}
  2123  //
  2124  //	func main() {
  2125  //		http.HandleFunc("/hello", HelloServer)
  2126  //		log.Fatal(http.ListenAndServe(":12345", nil))
  2127  //	}
  2128  //
  2129  // ListenAndServe always returns a non-nil error.
  2130  func ListenAndServe(addr string, handler Handler) error {
  2131  	server := &Server{Addr: addr, Handler: handler}
  2132  	return server.ListenAndServe()
  2133  }
  2134  
  2135  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  2136  // expects HTTPS connections. Additionally, files containing a certificate and
  2137  // matching private key for the server must be provided. If the certificate
  2138  // is signed by a certificate authority, the certFile should be the concatenation
  2139  // of the server's certificate, any intermediates, and the CA's certificate.
  2140  //
  2141  // A trivial example server is:
  2142  //
  2143  //	import (
  2144  //		"log"
  2145  //		"net/http"
  2146  //	)
  2147  //
  2148  //	func handler(w http.ResponseWriter, req *http.Request) {
  2149  //		w.Header().Set("Content-Type", "text/plain")
  2150  //		w.Write([]byte("This is an example server.\n"))
  2151  //	}
  2152  //
  2153  //	func main() {
  2154  //		http.HandleFunc("/", handler)
  2155  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  2156  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  2157  //		log.Fatal(err)
  2158  //	}
  2159  //
  2160  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  2161  //
  2162  // ListenAndServeTLS always returns a non-nil error.
  2163  func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
  2164  	server := &Server{Addr: addr, Handler: handler}
  2165  	return server.ListenAndServeTLS(certFile, keyFile)
  2166  }
  2167  
  2168  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  2169  // then calls Serve to handle requests on incoming TLS connections.
  2170  // Accepted connections are configured to enable TCP keep-alives.
  2171  //
  2172  // Filenames containing a certificate and matching private key for the
  2173  // server must be provided if the Server's TLSConfig.Certificates is
  2174  // not populated. If the certificate is signed by a certificate
  2175  // authority, the certFile should be the concatenation of the server's
  2176  // certificate, any intermediates, and the CA's certificate.
  2177  //
  2178  // If srv.Addr is blank, ":https" is used.
  2179  //
  2180  // ListenAndServeTLS always returns a non-nil error.
  2181  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  2182  	addr := srv.Addr
  2183  	if addr == "" {
  2184  		addr = ":https"
  2185  	}
  2186  
  2187  	// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
  2188  	// before we clone it and create the TLS Listener.
  2189  	if err := srv.setupHTTP2(); err != nil {
  2190  		return err
  2191  	}
  2192  
  2193  	config := cloneTLSConfig(srv.TLSConfig)
  2194  	if !strSliceContains(config.NextProtos, "http/1.1") {
  2195  		config.NextProtos = append(config.NextProtos, "http/1.1")
  2196  	}
  2197  
  2198  	if len(config.Certificates) == 0 || certFile != "" || keyFile != "" {
  2199  		var err error
  2200  		config.Certificates = make([]tls.Certificate, 1)
  2201  		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  2202  		if err != nil {
  2203  			return err
  2204  		}
  2205  	}
  2206  
  2207  	ln, err := net.Listen("tcp", addr)
  2208  	if err != nil {
  2209  		return err
  2210  	}
  2211  
  2212  	tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
  2213  	return srv.Serve(tlsListener)
  2214  }
  2215  
  2216  func (srv *Server) setupHTTP2() error {
  2217  	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
  2218  	return srv.nextProtoErr
  2219  }
  2220  
  2221  // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
  2222  // configured otherwise. (by setting srv.TLSNextProto non-nil)
  2223  // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2).
  2224  func (srv *Server) onceSetNextProtoDefaults() {
  2225  	// Enable HTTP/2 by default if the user hasn't otherwise
  2226  	// configured their TLSNextProto map.
  2227  	if srv.TLSNextProto == nil {
  2228  		srv.nextProtoErr = http2ConfigureServer(srv, nil)
  2229  	}
  2230  }
  2231  
  2232  // TimeoutHandler returns a Handler that runs h with the given time limit.
  2233  //
  2234  // The new Handler calls h.ServeHTTP to handle each request, but if a
  2235  // call runs for longer than its time limit, the handler responds with
  2236  // a 503 Service Unavailable error and the given message in its body.
  2237  // (If msg is empty, a suitable default message will be sent.)
  2238  // After such a timeout, writes by h to its ResponseWriter will return
  2239  // ErrHandlerTimeout.
  2240  //
  2241  // TimeoutHandler buffers all Handler writes to memory and does not
  2242  // support the Hijacker or Flusher interfaces.
  2243  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  2244  	t := time.NewTimer(dt)
  2245  	return &timeoutHandler{
  2246  		handler: h,
  2247  		body:    msg,
  2248  
  2249  		// Effectively storing a *time.Timer, but decomposed
  2250  		// for testing:
  2251  		timeout:     func() <-chan time.Time { return t.C },
  2252  		cancelTimer: t.Stop,
  2253  	}
  2254  }
  2255  
  2256  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  2257  // in handlers which have timed out.
  2258  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  2259  
  2260  type timeoutHandler struct {
  2261  	handler Handler
  2262  	body    string
  2263  
  2264  	// timeout returns the channel of a *time.Timer and
  2265  	// cancelTimer cancels it.  They're stored separately for
  2266  	// testing purposes.
  2267  	timeout     func() <-chan time.Time // returns channel producing a timeout
  2268  	cancelTimer func() bool             // optional
  2269  }
  2270  
  2271  func (h *timeoutHandler) errorBody() string {
  2272  	if h.body != "" {
  2273  		return h.body
  2274  	}
  2275  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  2276  }
  2277  
  2278  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2279  	done := make(chan struct{})
  2280  	tw := &timeoutWriter{
  2281  		w: w,
  2282  		h: make(Header),
  2283  	}
  2284  	go func() {
  2285  		h.handler.ServeHTTP(tw, r)
  2286  		close(done)
  2287  	}()
  2288  	select {
  2289  	case <-done:
  2290  		tw.mu.Lock()
  2291  		defer tw.mu.Unlock()
  2292  		dst := w.Header()
  2293  		for k, vv := range tw.h {
  2294  			dst[k] = vv
  2295  		}
  2296  		w.WriteHeader(tw.code)
  2297  		w.Write(tw.wbuf.Bytes())
  2298  		if h.cancelTimer != nil {
  2299  			h.cancelTimer()
  2300  		}
  2301  	case <-h.timeout():
  2302  		tw.mu.Lock()
  2303  		defer tw.mu.Unlock()
  2304  		w.WriteHeader(StatusServiceUnavailable)
  2305  		io.WriteString(w, h.errorBody())
  2306  		tw.timedOut = true
  2307  		return
  2308  	}
  2309  }
  2310  
  2311  type timeoutWriter struct {
  2312  	w    ResponseWriter
  2313  	h    Header
  2314  	wbuf bytes.Buffer
  2315  
  2316  	mu          sync.Mutex
  2317  	timedOut    bool
  2318  	wroteHeader bool
  2319  	code        int
  2320  }
  2321  
  2322  func (tw *timeoutWriter) Header() Header { return tw.h }
  2323  
  2324  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  2325  	tw.mu.Lock()
  2326  	defer tw.mu.Unlock()
  2327  	if tw.timedOut {
  2328  		return 0, ErrHandlerTimeout
  2329  	}
  2330  	if !tw.wroteHeader {
  2331  		tw.writeHeader(StatusOK)
  2332  	}
  2333  	return tw.wbuf.Write(p)
  2334  }
  2335  
  2336  func (tw *timeoutWriter) WriteHeader(code int) {
  2337  	tw.mu.Lock()
  2338  	defer tw.mu.Unlock()
  2339  	if tw.timedOut || tw.wroteHeader {
  2340  		return
  2341  	}
  2342  	tw.writeHeader(code)
  2343  }
  2344  
  2345  func (tw *timeoutWriter) writeHeader(code int) {
  2346  	tw.wroteHeader = true
  2347  	tw.code = code
  2348  }
  2349  
  2350  // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
  2351  // connections. It's used by ListenAndServe and ListenAndServeTLS so
  2352  // dead TCP connections (e.g. closing laptop mid-download) eventually
  2353  // go away.
  2354  type tcpKeepAliveListener struct {
  2355  	*net.TCPListener
  2356  }
  2357  
  2358  func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
  2359  	tc, err := ln.AcceptTCP()
  2360  	if err != nil {
  2361  		return
  2362  	}
  2363  	tc.SetKeepAlive(true)
  2364  	tc.SetKeepAlivePeriod(3 * time.Minute)
  2365  	return tc, nil
  2366  }
  2367  
  2368  // globalOptionsHandler responds to "OPTIONS *" requests.
  2369  type globalOptionsHandler struct{}
  2370  
  2371  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2372  	w.Header().Set("Content-Length", "0")
  2373  	if r.ContentLength != 0 {
  2374  		// Read up to 4KB of OPTIONS body (as mentioned in the
  2375  		// spec as being reserved for future use), but anything
  2376  		// over that is considered a waste of server resources
  2377  		// (or an attack) and we abort and close the connection,
  2378  		// courtesy of MaxBytesReader's EOF behavior.
  2379  		mb := MaxBytesReader(w, r.Body, 4<<10)
  2380  		io.Copy(ioutil.Discard, mb)
  2381  	}
  2382  }
  2383  
  2384  type eofReaderWithWriteTo struct{}
  2385  
  2386  func (eofReaderWithWriteTo) WriteTo(io.Writer) (int64, error) { return 0, nil }
  2387  func (eofReaderWithWriteTo) Read([]byte) (int, error)         { return 0, io.EOF }
  2388  
  2389  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  2390  // It has a WriteTo method so io.Copy won't need a buffer.
  2391  var eofReader = &struct {
  2392  	eofReaderWithWriteTo
  2393  	io.Closer
  2394  }{
  2395  	eofReaderWithWriteTo{},
  2396  	ioutil.NopCloser(nil),
  2397  }
  2398  
  2399  // Verify that an io.Copy from an eofReader won't require a buffer.
  2400  var _ io.WriterTo = eofReader
  2401  
  2402  // initNPNRequest is an HTTP handler that initializes certain
  2403  // uninitialized fields in its *Request. Such partially-initialized
  2404  // Requests come from NPN protocol handlers.
  2405  type initNPNRequest struct {
  2406  	c *tls.Conn
  2407  	h serverHandler
  2408  }
  2409  
  2410  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  2411  	if req.TLS == nil {
  2412  		req.TLS = &tls.ConnectionState{}
  2413  		*req.TLS = h.c.ConnectionState()
  2414  	}
  2415  	if req.Body == nil {
  2416  		req.Body = eofReader
  2417  	}
  2418  	if req.RemoteAddr == "" {
  2419  		req.RemoteAddr = h.c.RemoteAddr().String()
  2420  	}
  2421  	h.h.ServeHTTP(rw, req)
  2422  }
  2423  
  2424  // loggingConn is used for debugging.
  2425  type loggingConn struct {
  2426  	name string
  2427  	net.Conn
  2428  }
  2429  
  2430  var (
  2431  	uniqNameMu   sync.Mutex
  2432  	uniqNameNext = make(map[string]int)
  2433  )
  2434  
  2435  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  2436  	uniqNameMu.Lock()
  2437  	defer uniqNameMu.Unlock()
  2438  	uniqNameNext[baseName]++
  2439  	return &loggingConn{
  2440  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  2441  		Conn: c,
  2442  	}
  2443  }
  2444  
  2445  func (c *loggingConn) Write(p []byte) (n int, err error) {
  2446  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  2447  	n, err = c.Conn.Write(p)
  2448  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  2449  	return
  2450  }
  2451  
  2452  func (c *loggingConn) Read(p []byte) (n int, err error) {
  2453  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  2454  	n, err = c.Conn.Read(p)
  2455  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  2456  	return
  2457  }
  2458  
  2459  func (c *loggingConn) Close() (err error) {
  2460  	log.Printf("%s.Close() = ...", c.name)
  2461  	err = c.Conn.Close()
  2462  	log.Printf("%s.Close() = %v", c.name, err)
  2463  	return
  2464  }
  2465  
  2466  // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
  2467  // It only contains one field (and a pointer field at that), so it
  2468  // fits in an interface value without an extra allocation.
  2469  type checkConnErrorWriter struct {
  2470  	c *conn
  2471  }
  2472  
  2473  func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
  2474  	n, err = w.c.rwc.Write(p)
  2475  	if err != nil && w.c.werr == nil {
  2476  		w.c.werr = err
  2477  	}
  2478  	return
  2479  }
  2480  
  2481  func numLeadingCRorLF(v []byte) (n int) {
  2482  	for _, b := range v {
  2483  		if b == '\r' || b == '\n' {
  2484  			n++
  2485  			continue
  2486  		}
  2487  		break
  2488  	}
  2489  	return
  2490  
  2491  }
  2492  
  2493  func strSliceContains(ss []string, s string) bool {
  2494  	for _, v := range ss {
  2495  		if v == s {
  2496  			return true
  2497  		}
  2498  	}
  2499  	return false
  2500  }