github.com/searKing/golang/go@v1.2.74/encoding/prettyjson/encode.go (about)

     1  // Copyright 2023 The searKing Author. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package prettyjson
     6  
     7  import (
     8  	"bytes"
     9  	"encoding"
    10  	"encoding/base64"
    11  	"encoding/json"
    12  	"fmt"
    13  	"math"
    14  	"reflect"
    15  	"sort"
    16  	"strconv"
    17  	"sync"
    18  	"unicode/utf8"
    19  
    20  	bytes_ "github.com/searKing/golang/go/bytes"
    21  	reflect_ "github.com/searKing/golang/go/reflect"
    22  	strings_ "github.com/searKing/golang/go/strings"
    23  )
    24  
    25  // Marshal returns the JSON encoding of v, and support truncate.
    26  func Marshal(v any, opts ...EncOptsOption) ([]byte, error) {
    27  	e := newEncodeState()
    28  	defer encodeStatePool.Put(e)
    29  
    30  	var opt encOpts
    31  	opt.escapeHTML = true
    32  	opt.ApplyOptions(opts...)
    33  	err := e.marshal(v, opt)
    34  	if err != nil {
    35  		return nil, err
    36  	}
    37  	buf := append([]byte(nil), e.Bytes()...)
    38  
    39  	return buf, nil
    40  }
    41  
    42  // MarshalIndent is like Marshal but applies Indent to format the output.
    43  // Each JSON element in the output will begin on a new line beginning with prefix
    44  // followed by one or more copies of indent according to the indentation nesting.
    45  func MarshalIndent(v any, prefix, indent string, opts ...EncOptsOption) ([]byte, error) {
    46  	b, err := Marshal(v, opts...)
    47  	if err != nil {
    48  		return nil, err
    49  	}
    50  	var buf bytes.Buffer
    51  	err = Indent(&buf, b, prefix, indent)
    52  	if err != nil {
    53  		return nil, err
    54  	}
    55  	return buf.Bytes(), nil
    56  }
    57  
    58  // An UnsupportedTypeError is returned by Marshal when attempting
    59  // to encode an unsupported value type.
    60  type UnsupportedTypeError struct {
    61  	Type reflect.Type
    62  }
    63  
    64  func (e *UnsupportedTypeError) Error() string {
    65  	return "json: unsupported type: " + e.Type.String()
    66  }
    67  
    68  // An UnsupportedValueError is returned by Marshal when attempting
    69  // to encode an unsupported value.
    70  type UnsupportedValueError struct {
    71  	Value reflect.Value
    72  	Str   string
    73  }
    74  
    75  func (e *UnsupportedValueError) Error() string {
    76  	return "json: unsupported value: " + e.Str
    77  }
    78  
    79  // A MarshalerError represents an error from calling a MarshalJSON or MarshalText method.
    80  type MarshalerError struct {
    81  	Type       reflect.Type
    82  	Err        error
    83  	sourceFunc string
    84  }
    85  
    86  func (e *MarshalerError) Error() string {
    87  	srcFunc := e.sourceFunc
    88  	if srcFunc == "" {
    89  		srcFunc = "MarshalJSON"
    90  	}
    91  	return "json: error calling " + srcFunc +
    92  		" for type " + e.Type.String() +
    93  		": " + e.Err.Error()
    94  }
    95  
    96  // Unwrap returns the underlying error.
    97  func (e *MarshalerError) Unwrap() error { return e.Err }
    98  
    99  var hex = "0123456789abcdef"
   100  
   101  // An encodeState encodes JSON into a bytes.Buffer.
   102  type encodeState struct {
   103  	bytes.Buffer // accumulated output
   104  	scratch      [64]byte
   105  
   106  	// Keep track of what pointers we've seen in the current recursive call
   107  	// path, to avoid cycles that could lead to a stack overflow. Only do
   108  	// the relatively expensive map operations if ptrLevel is larger than
   109  	// startDetectingCyclesAfter, so that we skip the work if we're within a
   110  	// reasonable amount of nested pointers deep.
   111  	ptrLevel uint
   112  	ptrSeen  map[any]struct{}
   113  }
   114  
   115  const startDetectingCyclesAfter = 1000
   116  
   117  var encodeStatePool sync.Pool
   118  
   119  func newEncodeState() *encodeState {
   120  	if v := encodeStatePool.Get(); v != nil {
   121  		e := v.(*encodeState)
   122  		e.Reset()
   123  		if len(e.ptrSeen) > 0 {
   124  			panic("ptrEncoder.encode should have emptied ptrSeen via defers")
   125  		}
   126  		e.ptrLevel = 0
   127  		return e
   128  	}
   129  	return &encodeState{ptrSeen: make(map[any]struct{})}
   130  }
   131  
   132  // jsonError is an error wrapper type for internal use only.
   133  // Panics with errors are wrapped in jsonError so that the top-level recover
   134  // can distinguish intentional panics from this package.
   135  type jsonError struct{ error }
   136  
   137  func (e *encodeState) marshal(v any, opts encOpts) (err error) {
   138  	defer func() {
   139  		if r := recover(); r != nil {
   140  			if je, ok := r.(jsonError); ok {
   141  				err = je.error
   142  			} else {
   143  				panic(r)
   144  			}
   145  		}
   146  	}()
   147  	e.reflectValue(reflect.ValueOf(v), opts)
   148  	return nil
   149  }
   150  
   151  // error aborts the encoding by panicking with err wrapped in jsonError.
   152  func (e *encodeState) error(err error) {
   153  	panic(jsonError{err})
   154  }
   155  
   156  func isEmptyValue(v reflect.Value) bool {
   157  	switch v.Kind() {
   158  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   159  		return v.Len() == 0
   160  	case reflect.Bool:
   161  		return !v.Bool()
   162  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   163  		return v.Int() == 0
   164  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   165  		return v.Uint() == 0
   166  	case reflect.Float32, reflect.Float64:
   167  		return v.Float() == 0
   168  	case reflect.Interface, reflect.Pointer:
   169  		return v.IsNil()
   170  	}
   171  	return false
   172  }
   173  
   174  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   175  	valueEncoder(v)(e, v, opts)
   176  }
   177  
   178  //go:generate go-option -type "encOpts"
   179  type encOpts struct {
   180  	// quoted causes primitive fields to be encoded inside JSON strings.
   181  	quoted bool
   182  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   183  	escapeHTML bool
   184  
   185  	truncateBytes  int
   186  	truncateString int
   187  	truncateMap    int
   188  	truncateSlice  int
   189  	truncateArray  int
   190  }
   191  
   192  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   193  
   194  var encoderCache sync.Map // map[reflect.Type]encoderFunc
   195  
   196  func valueEncoder(v reflect.Value) encoderFunc {
   197  	if !v.IsValid() {
   198  		return invalidValueEncoder
   199  	}
   200  	return typeEncoder(v.Type())
   201  }
   202  
   203  func typeEncoder(t reflect.Type) encoderFunc {
   204  	if fi, ok := encoderCache.Load(t); ok {
   205  		return fi.(encoderFunc)
   206  	}
   207  
   208  	// To deal with recursive types, populate the map with an
   209  	// indirect func before we build it. This type waits on the
   210  	// real func (f) to be ready and then calls it. This indirect
   211  	// func is only used for recursive types.
   212  	var (
   213  		wg sync.WaitGroup
   214  		f  encoderFunc
   215  	)
   216  	wg.Add(1)
   217  	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
   218  		wg.Wait()
   219  		f(e, v, opts)
   220  	}))
   221  	if loaded {
   222  		return fi.(encoderFunc)
   223  	}
   224  
   225  	// Compute the real encoder and replace the indirect func with it.
   226  	f = newTypeEncoder(t, true)
   227  	wg.Done()
   228  	encoderCache.Store(t, f)
   229  	return f
   230  }
   231  
   232  var (
   233  	marshalerType     = reflect.TypeOf((*json.Marshaler)(nil)).Elem()
   234  	textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
   235  )
   236  
   237  // newTypeEncoder constructs an encoderFunc for a type.
   238  // The returned encoder only checks CanAddr when allowAddr is true.
   239  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   240  	// If we have a non-pointer value whose type implements
   241  	// Marshaler with a value receiver, then we're better off taking
   242  	// the address of the value - otherwise we end up with an
   243  	// allocation as we cast the value to an interface.
   244  	if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(marshalerType) {
   245  		return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   246  	}
   247  	if t.Implements(marshalerType) {
   248  		return marshalerEncoder
   249  	}
   250  	if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(textMarshalerType) {
   251  		return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   252  	}
   253  	if t.Implements(textMarshalerType) {
   254  		return textMarshalerEncoder
   255  	}
   256  
   257  	switch t.Kind() {
   258  	case reflect.Bool:
   259  		return boolEncoder
   260  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   261  		return intEncoder
   262  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   263  		return uintEncoder
   264  	case reflect.Float32:
   265  		return float32Encoder
   266  	case reflect.Float64:
   267  		return float64Encoder
   268  	case reflect.String:
   269  		return stringEncoder
   270  	case reflect.Interface:
   271  		return interfaceEncoder
   272  	case reflect.Struct:
   273  		return newStructEncoder(t)
   274  	case reflect.Map:
   275  		return newMapEncoder(t)
   276  	case reflect.Slice:
   277  		return newSliceEncoder(t)
   278  	case reflect.Array:
   279  		return newArrayEncoder(t)
   280  	case reflect.Pointer:
   281  		return newPtrEncoder(t)
   282  	default:
   283  		return unsupportedTypeEncoder
   284  	}
   285  }
   286  
   287  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   288  	e.WriteString("null")
   289  }
   290  
   291  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   292  	if v.Kind() == reflect.Pointer && v.IsNil() {
   293  		e.WriteString("null")
   294  		return
   295  	}
   296  	m, ok := v.Interface().(json.Marshaler)
   297  	if !ok {
   298  		e.WriteString("null")
   299  		return
   300  	}
   301  	b, err := m.MarshalJSON()
   302  	if err == nil {
   303  		// copy JSON into buffer, checking validity.
   304  		err = compact(&e.Buffer, b, opts.escapeHTML)
   305  	}
   306  	if err != nil {
   307  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   308  	}
   309  }
   310  
   311  func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   312  	va := v.Addr()
   313  	if va.IsNil() {
   314  		e.WriteString("null")
   315  		return
   316  	}
   317  	m := va.Interface().(json.Marshaler)
   318  	b, err := m.MarshalJSON()
   319  	if err == nil {
   320  		// copy JSON into buffer, checking validity.
   321  		err = compact(&e.Buffer, b, opts.escapeHTML)
   322  	}
   323  	if err != nil {
   324  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   325  	}
   326  }
   327  
   328  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   329  	if v.Kind() == reflect.Pointer && v.IsNil() {
   330  		e.WriteString("null")
   331  		return
   332  	}
   333  	m, ok := v.Interface().(encoding.TextMarshaler)
   334  	if !ok {
   335  		e.WriteString("null")
   336  		return
   337  	}
   338  	b, err := m.MarshalText()
   339  	if err != nil {
   340  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   341  	}
   342  	e.stringBytes(b, opts.escapeHTML)
   343  }
   344  
   345  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   346  	va := v.Addr()
   347  	if va.IsNil() {
   348  		e.WriteString("null")
   349  		return
   350  	}
   351  	m := va.Interface().(encoding.TextMarshaler)
   352  	b, err := m.MarshalText()
   353  	if err != nil {
   354  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   355  	}
   356  	e.stringBytes(b, opts.escapeHTML)
   357  }
   358  
   359  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   360  	if opts.quoted {
   361  		e.WriteByte('"')
   362  	}
   363  	if v.Bool() {
   364  		e.WriteString("true")
   365  	} else {
   366  		e.WriteString("false")
   367  	}
   368  	if opts.quoted {
   369  		e.WriteByte('"')
   370  	}
   371  }
   372  
   373  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   374  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   375  	if opts.quoted {
   376  		e.WriteByte('"')
   377  	}
   378  	e.Write(b)
   379  	if opts.quoted {
   380  		e.WriteByte('"')
   381  	}
   382  }
   383  
   384  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   385  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   386  	if opts.quoted {
   387  		e.WriteByte('"')
   388  	}
   389  	e.Write(b)
   390  	if opts.quoted {
   391  		e.WriteByte('"')
   392  	}
   393  }
   394  
   395  type floatEncoder int // number of bits
   396  
   397  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   398  	f := v.Float()
   399  	if math.IsInf(f, 0) || math.IsNaN(f) {
   400  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   401  	}
   402  
   403  	// Convert as if by ES6 number to string conversion.
   404  	// This matches most other JSON generators.
   405  	// See golang.org/issue/6384 and golang.org/issue/14135.
   406  	// Like fmt %g, but the exponent cutoffs are different
   407  	// and exponents themselves are not padded to two digits.
   408  	b := e.scratch[:0]
   409  	abs := math.Abs(f)
   410  	fmt := byte('f')
   411  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   412  	if abs != 0 {
   413  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   414  			fmt = 'e'
   415  		}
   416  	}
   417  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   418  	if fmt == 'e' {
   419  		// clean up e-09 to e-9
   420  		n := len(b)
   421  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   422  			b[n-2] = b[n-1]
   423  			b = b[:n-1]
   424  		}
   425  	}
   426  
   427  	if opts.quoted {
   428  		e.WriteByte('"')
   429  	}
   430  	e.Write(b)
   431  	if opts.quoted {
   432  		e.WriteByte('"')
   433  	}
   434  }
   435  
   436  var (
   437  	float32Encoder = (floatEncoder(32)).encode
   438  	float64Encoder = (floatEncoder(64)).encode
   439  )
   440  
   441  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   442  	if v.Type() == numberType {
   443  		if opts.quoted {
   444  			e.WriteByte('"')
   445  		}
   446  		e.WriteString(v.String())
   447  		if opts.quoted {
   448  			e.WriteByte('"')
   449  		}
   450  		return
   451  	}
   452  	s := v.String()
   453  	if max := opts.truncateString; max > 0 && len(s) > max {
   454  		st := strings_.Truncate(s, max) + fmt.Sprintf(" [(%d)truncated %d chars]", len(s), len(s)-max)
   455  		if len(st) < len(s) {
   456  			s = st
   457  		}
   458  	}
   459  	if opts.quoted {
   460  		e2 := newEncodeState()
   461  		// Since we encode the string twice, we only need to escape HTML
   462  		// the first time.
   463  		e2.string(s, opts.escapeHTML)
   464  		e.stringBytes(e2.Bytes(), false)
   465  		encodeStatePool.Put(e2)
   466  	} else {
   467  		e.string(s, opts.escapeHTML)
   468  	}
   469  }
   470  
   471  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   472  	if v.IsNil() {
   473  		e.WriteString("null")
   474  		return
   475  	}
   476  	e.reflectValue(v.Elem(), opts)
   477  }
   478  
   479  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   480  	e.error(&UnsupportedTypeError{v.Type()})
   481  }
   482  
   483  type structEncoder struct {
   484  	fields structFields
   485  }
   486  
   487  type structFields struct {
   488  	list      []field
   489  	nameIndex map[string]int
   490  }
   491  
   492  func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   493  	next := byte('{')
   494  FieldLoop:
   495  	for i := range se.fields.list {
   496  		f := &se.fields.list[i]
   497  
   498  		// Find the nested struct field by following f.index.
   499  		fv := v
   500  		for _, i := range f.index {
   501  			if fv.Kind() == reflect.Pointer {
   502  				if fv.IsNil() {
   503  					continue FieldLoop
   504  				}
   505  				fv = fv.Elem()
   506  			}
   507  			fv = fv.Field(i)
   508  		}
   509  
   510  		if f.omitEmpty && isEmptyValue(fv) {
   511  			continue
   512  		}
   513  		e.WriteByte(next)
   514  		next = ','
   515  		if opts.escapeHTML {
   516  			e.WriteString(f.nameEscHTML)
   517  		} else {
   518  			e.WriteString(f.nameNonEsc)
   519  		}
   520  		opts.quoted = f.quoted
   521  		f.encoder(e, fv, opts)
   522  	}
   523  	if next == '{' {
   524  		e.WriteString("{}")
   525  	} else {
   526  		e.WriteByte('}')
   527  	}
   528  }
   529  
   530  func newStructEncoder(t reflect.Type) encoderFunc {
   531  	se := structEncoder{fields: cachedTypeFields(t)}
   532  	return se.encode
   533  }
   534  
   535  type mapEncoder struct {
   536  	elemEnc encoderFunc
   537  }
   538  
   539  func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   540  	if v.IsNil() {
   541  		e.WriteString("null")
   542  		return
   543  	}
   544  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   545  		// We're a large number of nested ptrEncoder.encode calls deep;
   546  		// start checking if we've run into a pointer cycle.
   547  		ptr := v.UnsafePointer()
   548  		if _, ok := e.ptrSeen[ptr]; ok {
   549  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   550  		}
   551  		e.ptrSeen[ptr] = struct{}{}
   552  		defer delete(e.ptrSeen, ptr)
   553  	}
   554  	e.WriteByte('{')
   555  
   556  	// Extract and sort the keys.
   557  	sv := make([]reflectWithString, v.Len())
   558  	mi := v.MapRange()
   559  	for i := 0; mi.Next(); i++ {
   560  		sv[i].k = mi.Key()
   561  		sv[i].v = mi.Value()
   562  		if err := sv[i].resolve(); err != nil {
   563  			e.error(fmt.Errorf("json: encoding error for type %q: %q", v.Type().String(), err.Error()))
   564  		}
   565  	}
   566  	sort.Slice(sv, func(i, j int) bool { return sv[i].ks < sv[j].ks })
   567  
   568  	n := len(sv)
   569  	var m string
   570  	if max := opts.truncateMap; max > 0 && n > max+1 {
   571  		m = fmt.Sprintf("[(%d)truncated %d elements]", n, n-max)
   572  		n = max
   573  	}
   574  
   575  	var j int
   576  	for i, kv := range sv {
   577  		if j >= n {
   578  			break
   579  		}
   580  		j++
   581  		if i > 0 {
   582  			e.WriteByte(',')
   583  		}
   584  		e.string(kv.ks, opts.escapeHTML)
   585  		e.WriteByte(':')
   586  		me.elemEnc(e, kv.v, opts)
   587  	}
   588  	if m != "" {
   589  		if n > 0 {
   590  			e.WriteByte(',')
   591  		}
   592  		e.string(m, opts.escapeHTML)
   593  		e.WriteByte(':')
   594  		e.string(fmt.Sprintf("%d", len(sv)), opts.escapeHTML)
   595  	}
   596  	e.WriteByte('}')
   597  	e.ptrLevel--
   598  }
   599  
   600  func newMapEncoder(t reflect.Type) encoderFunc {
   601  	me := mapEncoder{typeEncoder(t.Elem())}
   602  	return me.encode
   603  }
   604  
   605  func encodeByteSlice(e *encodeState, v reflect.Value, opts encOpts) {
   606  	if v.IsNil() {
   607  		e.WriteString("null")
   608  		return
   609  	}
   610  	s := v.Bytes()
   611  	e.WriteByte('"')
   612  	var m string
   613  	var st []byte
   614  	var encodedLenT int
   615  	encodedLenS := base64.StdEncoding.EncodedLen(len(s))
   616  	if max := opts.truncateSlice; max > 0 && len(s) > max {
   617  		m = fmt.Sprintf(" [(%d)truncated %d bytes]", len(s), len(s)-max)
   618  		st = bytes_.Truncate(s, max)
   619  		encodedLenT = base64.StdEncoding.EncodedLen(len(st))
   620  	}
   621  	var encodedLen int
   622  	if m != "" && len(m)+encodedLenT < encodedLenS {
   623  		encodedLen = encodedLenT
   624  		s = st
   625  	} else {
   626  		encodedLen = encodedLenS
   627  		m = ""
   628  	}
   629  
   630  	if encodedLen <= len(e.scratch) {
   631  		// If the encoded bytes fit in e.scratch, avoid an extra
   632  		// allocation and use the cheaper Encoding.Encode.
   633  		dst := e.scratch[:encodedLen]
   634  		base64.StdEncoding.Encode(dst, s)
   635  		e.Write(dst)
   636  	} else if encodedLen <= 1024 {
   637  		// The encoded bytes are short enough to allocate for, and
   638  		// Encoding.Encode is still cheaper.
   639  		dst := make([]byte, encodedLen)
   640  		base64.StdEncoding.Encode(dst, s)
   641  		e.Write(dst)
   642  	} else {
   643  		// The encoded bytes are too long to cheaply allocate, and
   644  		// Encoding.Encode is no longer noticeably cheaper.
   645  		enc := base64.NewEncoder(base64.StdEncoding, e)
   646  		enc.Write(s)
   647  		enc.Close()
   648  	}
   649  	e.WriteString(m)
   650  	e.WriteByte('"')
   651  }
   652  
   653  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   654  type sliceEncoder struct {
   655  	arrayEnc encoderFunc
   656  }
   657  
   658  func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   659  	if v.IsNil() {
   660  		e.WriteString("null")
   661  		return
   662  	}
   663  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   664  		// We're a large number of nested ptrEncoder.encode calls deep;
   665  		// start checking if we've run into a pointer cycle.
   666  		// Here we use a struct to memorize the pointer to the first element of the slice
   667  		// and its length.
   668  		ptr := struct {
   669  			ptr interface{} // always an unsafe.Pointer, but avoids a dependency on package unsafe
   670  			len int
   671  		}{v.UnsafePointer(), v.Len()}
   672  		if _, ok := e.ptrSeen[ptr]; ok {
   673  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   674  		}
   675  		e.ptrSeen[ptr] = struct{}{}
   676  		defer delete(e.ptrSeen, ptr)
   677  	}
   678  	se.arrayEnc(e, v, opts)
   679  	e.ptrLevel--
   680  }
   681  
   682  func newSliceEncoder(t reflect.Type) encoderFunc {
   683  	// Byte slices get special treatment; arrays don't.
   684  	if t.Elem().Kind() == reflect.Uint8 {
   685  		p := reflect.PointerTo(t.Elem())
   686  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   687  			return encodeByteSlice
   688  		}
   689  	}
   690  	enc := sliceEncoder{newArrayEncoder(t)}
   691  	return enc.encode
   692  }
   693  
   694  type arrayEncoder struct {
   695  	elemEnc encoderFunc
   696  }
   697  
   698  func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   699  	e.WriteByte('[')
   700  	n := v.Len()
   701  	var m string
   702  	if max := opts.truncateSlice; max > 0 && n > max+1 {
   703  		m = fmt.Sprintf(", \"[(%d)truncated %d elems]\"", n, n-max)
   704  		n = max
   705  	}
   706  
   707  	for i := 0; i < n; i++ {
   708  		if i > 0 {
   709  			e.WriteByte(',')
   710  		}
   711  		ae.elemEnc(e, v.Index(i), opts)
   712  	}
   713  	if m != "" {
   714  		e.WriteString(m)
   715  	}
   716  	e.WriteByte(']')
   717  }
   718  
   719  func newArrayEncoder(t reflect.Type) encoderFunc {
   720  	enc := arrayEncoder{typeEncoder(t.Elem())}
   721  	return enc.encode
   722  }
   723  
   724  type ptrEncoder struct {
   725  	elemEnc encoderFunc
   726  }
   727  
   728  func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   729  	if v.IsNil() {
   730  		e.WriteString("null")
   731  		return
   732  	}
   733  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   734  		// We're a large number of nested ptrEncoder.encode calls deep;
   735  		// start checking if we've run into a pointer cycle.
   736  		ptr := v.Interface()
   737  		if _, ok := e.ptrSeen[ptr]; ok {
   738  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   739  		}
   740  		e.ptrSeen[ptr] = struct{}{}
   741  		defer delete(e.ptrSeen, ptr)
   742  	}
   743  	pe.elemEnc(e, v.Elem(), opts)
   744  	e.ptrLevel--
   745  }
   746  
   747  func newPtrEncoder(t reflect.Type) encoderFunc {
   748  	enc := ptrEncoder{typeEncoder(t.Elem())}
   749  	return enc.encode
   750  }
   751  
   752  type condAddrEncoder struct {
   753  	canAddrEnc, elseEnc encoderFunc
   754  }
   755  
   756  func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   757  	if v.CanAddr() {
   758  		ce.canAddrEnc(e, v, opts)
   759  	} else {
   760  		ce.elseEnc(e, v, opts)
   761  	}
   762  }
   763  
   764  // newCondAddrEncoder returns an encoder that checks whether its value
   765  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   766  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   767  	enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   768  	return enc.encode
   769  }
   770  
   771  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   772  	for _, i := range index {
   773  		if t.Kind() == reflect.Pointer {
   774  			t = t.Elem()
   775  		}
   776  		t = t.Field(i).Type
   777  	}
   778  	return t
   779  }
   780  
   781  type reflectWithString struct {
   782  	k  reflect.Value
   783  	v  reflect.Value
   784  	ks string
   785  }
   786  
   787  func (w *reflectWithString) resolve() error {
   788  	if w.k.Kind() == reflect.String {
   789  		w.ks = w.k.String()
   790  		return nil
   791  	}
   792  	if tm, ok := w.k.Interface().(encoding.TextMarshaler); ok {
   793  		if w.k.Kind() == reflect.Pointer && w.k.IsNil() {
   794  			return nil
   795  		}
   796  		buf, err := tm.MarshalText()
   797  		w.ks = string(buf)
   798  		return err
   799  	}
   800  	switch w.k.Kind() {
   801  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   802  		w.ks = strconv.FormatInt(w.k.Int(), 10)
   803  		return nil
   804  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   805  		w.ks = strconv.FormatUint(w.k.Uint(), 10)
   806  		return nil
   807  	}
   808  	w.ks = w.k.String()
   809  	return nil
   810  }
   811  
   812  // NOTE: keep in sync with stringBytes below.
   813  func (e *encodeState) string(s string, escapeHTML bool) {
   814  	e.WriteByte('"')
   815  	start := 0
   816  	for i := 0; i < len(s); {
   817  		if b := s[i]; b < utf8.RuneSelf {
   818  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   819  				i++
   820  				continue
   821  			}
   822  			if start < i {
   823  				e.WriteString(s[start:i])
   824  			}
   825  			e.WriteByte('\\')
   826  			switch b {
   827  			case '\\', '"':
   828  				e.WriteByte(b)
   829  			case '\n':
   830  				e.WriteByte('n')
   831  			case '\r':
   832  				e.WriteByte('r')
   833  			case '\t':
   834  				e.WriteByte('t')
   835  			default:
   836  				// This encodes bytes < 0x20 except for \t, \n and \r.
   837  				// If escapeHTML is set, it also escapes <, >, and &
   838  				// because they can lead to security holes when
   839  				// user-controlled strings are rendered into JSON
   840  				// and served to some browsers.
   841  				e.WriteString(`u00`)
   842  				e.WriteByte(hex[b>>4])
   843  				e.WriteByte(hex[b&0xF])
   844  			}
   845  			i++
   846  			start = i
   847  			continue
   848  		}
   849  		c, size := utf8.DecodeRuneInString(s[i:])
   850  		if c == utf8.RuneError && size == 1 {
   851  			if start < i {
   852  				e.WriteString(s[start:i])
   853  			}
   854  			e.WriteString(`\ufffd`)
   855  			i += size
   856  			start = i
   857  			continue
   858  		}
   859  		// U+2028 is LINE SEPARATOR.
   860  		// U+2029 is PARAGRAPH SEPARATOR.
   861  		// They are both technically valid characters in JSON strings,
   862  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   863  		// and can lead to security holes there. It is valid JSON to
   864  		// escape them, so we do so unconditionally.
   865  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   866  		if c == '\u2028' || c == '\u2029' {
   867  			if start < i {
   868  				e.WriteString(s[start:i])
   869  			}
   870  			e.WriteString(`\u202`)
   871  			e.WriteByte(hex[c&0xF])
   872  			i += size
   873  			start = i
   874  			continue
   875  		}
   876  		i += size
   877  	}
   878  	if start < len(s) {
   879  		e.WriteString(s[start:])
   880  	}
   881  	e.WriteByte('"')
   882  }
   883  
   884  // NOTE: keep in sync with string above.
   885  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
   886  	e.WriteByte('"')
   887  	start := 0
   888  	for i := 0; i < len(s); {
   889  		if b := s[i]; b < utf8.RuneSelf {
   890  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   891  				i++
   892  				continue
   893  			}
   894  			if start < i {
   895  				e.Write(s[start:i])
   896  			}
   897  			e.WriteByte('\\')
   898  			switch b {
   899  			case '\\', '"':
   900  				e.WriteByte(b)
   901  			case '\n':
   902  				e.WriteByte('n')
   903  			case '\r':
   904  				e.WriteByte('r')
   905  			case '\t':
   906  				e.WriteByte('t')
   907  			default:
   908  				// This encodes bytes < 0x20 except for \t, \n and \r.
   909  				// If escapeHTML is set, it also escapes <, >, and &
   910  				// because they can lead to security holes when
   911  				// user-controlled strings are rendered into JSON
   912  				// and served to some browsers.
   913  				e.WriteString(`u00`)
   914  				e.WriteByte(hex[b>>4])
   915  				e.WriteByte(hex[b&0xF])
   916  			}
   917  			i++
   918  			start = i
   919  			continue
   920  		}
   921  		c, size := utf8.DecodeRune(s[i:])
   922  		if c == utf8.RuneError && size == 1 {
   923  			if start < i {
   924  				e.Write(s[start:i])
   925  			}
   926  			e.WriteString(`\ufffd`)
   927  			i += size
   928  			start = i
   929  			continue
   930  		}
   931  		// U+2028 is LINE SEPARATOR.
   932  		// U+2029 is PARAGRAPH SEPARATOR.
   933  		// They are both technically valid characters in JSON strings,
   934  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   935  		// and can lead to security holes there. It is valid JSON to
   936  		// escape them, so we do so unconditionally.
   937  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   938  		if c == '\u2028' || c == '\u2029' {
   939  			if start < i {
   940  				e.Write(s[start:i])
   941  			}
   942  			e.WriteString(`\u202`)
   943  			e.WriteByte(hex[c&0xF])
   944  			i += size
   945  			start = i
   946  			continue
   947  		}
   948  		i += size
   949  	}
   950  	if start < len(s) {
   951  		e.Write(s[start:])
   952  	}
   953  	e.WriteByte('"')
   954  }
   955  
   956  // A field represents a single field found in a struct.
   957  type field struct {
   958  	name      string
   959  	nameBytes []byte                 // []byte(name)
   960  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
   961  
   962  	nameNonEsc  string // `"` + name + `":`
   963  	nameEscHTML string // `"` + HTMLEscape(name) + `":`
   964  
   965  	tag       bool
   966  	index     []int
   967  	typ       reflect.Type
   968  	omitEmpty bool
   969  	quoted    bool
   970  
   971  	encoder encoderFunc
   972  }
   973  
   974  // byIndex sorts field by index sequence.
   975  type byIndex []field
   976  
   977  func (x byIndex) Len() int { return len(x) }
   978  
   979  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   980  
   981  func (x byIndex) Less(i, j int) bool {
   982  	for k, xik := range x[i].index {
   983  		if k >= len(x[j].index) {
   984  			return false
   985  		}
   986  		if xik != x[j].index[k] {
   987  			return xik < x[j].index[k]
   988  		}
   989  	}
   990  	return len(x[i].index) < len(x[j].index)
   991  }
   992  
   993  // typeFields returns a list of fields that JSON should recognize for the given type.
   994  // The algorithm is breadth-first search over the set of structs to include - the top struct
   995  // and then any reachable anonymous structs.
   996  func typeFields(t reflect.Type) structFields {
   997  	// Anonymous fields to explore at the current level and the next.
   998  	var current []field
   999  	next := []field{{typ: t}}
  1000  
  1001  	// Count of queued names for current level and the next.
  1002  	var count, nextCount map[reflect.Type]int
  1003  
  1004  	// Types already visited at an earlier level.
  1005  	visited := map[reflect.Type]bool{}
  1006  
  1007  	// Fields found.
  1008  	var fields []field
  1009  
  1010  	// Buffer to run HTMLEscape on field names.
  1011  	var nameEscBuf bytes.Buffer
  1012  
  1013  	for len(next) > 0 {
  1014  		current, next = next, current[:0]
  1015  		count, nextCount = nextCount, map[reflect.Type]int{}
  1016  
  1017  		for _, f := range current {
  1018  			if visited[f.typ] {
  1019  				continue
  1020  			}
  1021  			visited[f.typ] = true
  1022  
  1023  			// Scan f.typ for fields to include.
  1024  			for i := 0; i < f.typ.NumField(); i++ {
  1025  				sf := f.typ.Field(i)
  1026  				if sf.Anonymous {
  1027  					t := sf.Type
  1028  					if t.Kind() == reflect.Pointer {
  1029  						t = t.Elem()
  1030  					}
  1031  					if !sf.IsExported() && t.Kind() != reflect.Struct {
  1032  						// Ignore embedded fields of unexported non-struct types.
  1033  						continue
  1034  					}
  1035  					// Do not ignore embedded fields of unexported struct types
  1036  					// since they may have exported fields.
  1037  				} else if !sf.IsExported() {
  1038  					// Ignore unexported non-embedded fields.
  1039  					continue
  1040  				}
  1041  				tag := sf.Tag.Get("json")
  1042  				if tag == "-" {
  1043  					continue
  1044  				}
  1045  				name, opts := reflect_.ParseTagOptions(tag)
  1046  				if !reflect_.IsValidTagKey(name) {
  1047  					name = ""
  1048  				}
  1049  				index := make([]int, len(f.index)+1)
  1050  				copy(index, f.index)
  1051  				index[len(f.index)] = i
  1052  
  1053  				ft := sf.Type
  1054  				if ft.Name() == "" && ft.Kind() == reflect.Pointer {
  1055  					// Follow pointer.
  1056  					ft = ft.Elem()
  1057  				}
  1058  
  1059  				// Only strings, floats, integers, and booleans can be quoted.
  1060  				quoted := false
  1061  				if opts.Contains("string") {
  1062  					switch ft.Kind() {
  1063  					case reflect.Bool,
  1064  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1065  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
  1066  						reflect.Float32, reflect.Float64,
  1067  						reflect.String:
  1068  						quoted = true
  1069  					}
  1070  				}
  1071  
  1072  				// Record found field and index sequence.
  1073  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1074  					tagged := name != ""
  1075  					if name == "" {
  1076  						name = sf.Name
  1077  					}
  1078  					field := field{
  1079  						name:      name,
  1080  						tag:       tagged,
  1081  						index:     index,
  1082  						typ:       ft,
  1083  						omitEmpty: opts.Contains("omitempty"),
  1084  						quoted:    quoted,
  1085  					}
  1086  					field.nameBytes = []byte(field.name)
  1087  					field.equalFold = foldFunc(field.nameBytes)
  1088  
  1089  					// Build nameEscHTML and nameNonEsc ahead of time.
  1090  					nameEscBuf.Reset()
  1091  					nameEscBuf.WriteString(`"`)
  1092  					json.HTMLEscape(&nameEscBuf, field.nameBytes)
  1093  					nameEscBuf.WriteString(`":`)
  1094  					field.nameEscHTML = nameEscBuf.String()
  1095  					field.nameNonEsc = `"` + field.name + `":`
  1096  
  1097  					fields = append(fields, field)
  1098  					if count[f.typ] > 1 {
  1099  						// If there were multiple instances, add a second,
  1100  						// so that the annihilation code will see a duplicate.
  1101  						// It only cares about the distinction between 1 or 2,
  1102  						// so don't bother generating any more copies.
  1103  						fields = append(fields, fields[len(fields)-1])
  1104  					}
  1105  					continue
  1106  				}
  1107  
  1108  				// Record new anonymous struct to explore in next round.
  1109  				nextCount[ft]++
  1110  				if nextCount[ft] == 1 {
  1111  					next = append(next, field{name: ft.Name(), index: index, typ: ft})
  1112  				}
  1113  			}
  1114  		}
  1115  	}
  1116  
  1117  	sort.Slice(fields, func(i, j int) bool {
  1118  		x := fields
  1119  		// sort field by name, breaking ties with depth, then
  1120  		// breaking ties with "name came from json tag", then
  1121  		// breaking ties with index sequence.
  1122  		if x[i].name != x[j].name {
  1123  			return x[i].name < x[j].name
  1124  		}
  1125  		if len(x[i].index) != len(x[j].index) {
  1126  			return len(x[i].index) < len(x[j].index)
  1127  		}
  1128  		if x[i].tag != x[j].tag {
  1129  			return x[i].tag
  1130  		}
  1131  		return byIndex(x).Less(i, j)
  1132  	})
  1133  
  1134  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1135  	// except that fields with JSON tags are promoted.
  1136  
  1137  	// The fields are sorted in primary order of name, secondary order
  1138  	// of field index length. Loop over names; for each name, delete
  1139  	// hidden fields by choosing the one dominant field that survives.
  1140  	out := fields[:0]
  1141  	for advance, i := 0, 0; i < len(fields); i += advance {
  1142  		// One iteration per name.
  1143  		// Find the sequence of fields with the name of this first field.
  1144  		fi := fields[i]
  1145  		name := fi.name
  1146  		for advance = 1; i+advance < len(fields); advance++ {
  1147  			fj := fields[i+advance]
  1148  			if fj.name != name {
  1149  				break
  1150  			}
  1151  		}
  1152  		if advance == 1 { // Only one field with this name
  1153  			out = append(out, fi)
  1154  			continue
  1155  		}
  1156  		dominant, ok := dominantField(fields[i : i+advance])
  1157  		if ok {
  1158  			out = append(out, dominant)
  1159  		}
  1160  	}
  1161  
  1162  	fields = out
  1163  	sort.Sort(byIndex(fields))
  1164  
  1165  	for i := range fields {
  1166  		f := &fields[i]
  1167  		f.encoder = typeEncoder(typeByIndex(t, f.index))
  1168  	}
  1169  	nameIndex := make(map[string]int, len(fields))
  1170  	for i, field := range fields {
  1171  		nameIndex[field.name] = i
  1172  	}
  1173  	return structFields{fields, nameIndex}
  1174  }
  1175  
  1176  // dominantField looks through the fields, all of which are known to
  1177  // have the same name, to find the single field that dominates the
  1178  // others using Go's embedding rules, modified by the presence of
  1179  // JSON tags. If there are multiple top-level fields, the boolean
  1180  // will be false: This condition is an error in Go and we skip all
  1181  // the fields.
  1182  func dominantField(fields []field) (field, bool) {
  1183  	// The fields are sorted in increasing index-length order, then by presence of tag.
  1184  	// That means that the first field is the dominant one. We need only check
  1185  	// for error cases: two fields at top level, either both tagged or neither tagged.
  1186  	if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
  1187  		return field{}, false
  1188  	}
  1189  	return fields[0], true
  1190  }
  1191  
  1192  var fieldCache sync.Map // map[reflect.Type]structFields
  1193  
  1194  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1195  func cachedTypeFields(t reflect.Type) structFields {
  1196  	if f, ok := fieldCache.Load(t); ok {
  1197  		return f.(structFields)
  1198  	}
  1199  	f, _ := fieldCache.LoadOrStore(t, typeFields(t))
  1200  	return f.(structFields)
  1201  }