github.com/sentienttechnologies/studio-go-runner@v0.0.0-20201118202441-6d21f2ced8ee/docs/slides/test/examples/math.html (about)

     1  <!doctype html>
     2  <html lang="en">
     3  
     4  	<head>
     5  		<meta charset="utf-8">
     6  
     7  		<title>reveal.js - Math Plugin</title>
     8  
     9  		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
    10  
    11  		<link rel="stylesheet" href="../../css/reveal.css">
    12  		<link rel="stylesheet" href="../../css/theme/night.css" id="theme">
    13  	</head>
    14  
    15  	<body>
    16  
    17  		<div class="reveal">
    18  
    19  			<div class="slides">
    20  
    21  				<section>
    22  					<h2>reveal.js Math Plugin</h2>
    23  					<p>A thin wrapper for MathJax</p>
    24  				</section>
    25  
    26  				<section>
    27  					<h3>The Lorenz Equations</h3>
    28  
    29  					\[\begin{aligned}
    30  					\dot{x} &amp; = \sigma(y-x) \\
    31  					\dot{y} &amp; = \rho x - y - xz \\
    32  					\dot{z} &amp; = -\beta z + xy
    33  					\end{aligned} \]
    34  				</section>
    35  
    36  				<section>
    37  					<h3>The Cauchy-Schwarz Inequality</h3>
    38  
    39  					<script type="math/tex; mode=display">
    40  						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
    41  					</script>
    42  				</section>
    43  
    44  				<section>
    45  					<h3>A Cross Product Formula</h3>
    46  
    47  					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
    48  					\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
    49  					\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
    50  					\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
    51  					\end{vmatrix}  \]
    52  				</section>
    53  
    54  				<section>
    55  					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
    56  
    57  					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
    58  				</section>
    59  
    60  				<section>
    61  					<h3>An Identity of Ramanujan</h3>
    62  
    63  					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
    64  					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
    65  					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
    66  				</section>
    67  
    68  				<section>
    69  					<h3>A Rogers-Ramanujan Identity</h3>
    70  
    71  					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
    72  					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
    73  				</section>
    74  
    75  				<section>
    76  					<h3>Maxwell&#8217;s Equations</h3>
    77  
    78  					\[  \begin{aligned}
    79  					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
    80  					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
    81  					\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
    82  					\]
    83  				</section>
    84  
    85  				<section>
    86  					<section>
    87  						<h3>The Lorenz Equations</h3>
    88  
    89  						<div class="fragment">
    90  							\[\begin{aligned}
    91  							\dot{x} &amp; = \sigma(y-x) \\
    92  							\dot{y} &amp; = \rho x - y - xz \\
    93  							\dot{z} &amp; = -\beta z + xy
    94  							\end{aligned} \]
    95  						</div>
    96  					</section>
    97  
    98  					<section>
    99  						<h3>The Cauchy-Schwarz Inequality</h3>
   100  
   101  						<div class="fragment">
   102  							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
   103  						</div>
   104  					</section>
   105  
   106  					<section>
   107  						<h3>A Cross Product Formula</h3>
   108  
   109  						<div class="fragment">
   110  							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
   111  							\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
   112  							\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
   113  							\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
   114  							\end{vmatrix}  \]
   115  						</div>
   116  					</section>
   117  
   118  					<section>
   119  						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
   120  
   121  						<div class="fragment">
   122  							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
   123  						</div>
   124  					</section>
   125  
   126  					<section>
   127  						<h3>An Identity of Ramanujan</h3>
   128  
   129  						<div class="fragment">
   130  							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
   131  							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
   132  							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
   133  						</div>
   134  					</section>
   135  
   136  					<section>
   137  						<h3>A Rogers-Ramanujan Identity</h3>
   138  
   139  						<div class="fragment">
   140  							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
   141  							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
   142  						</div>
   143  					</section>
   144  
   145  					<section>
   146  						<h3>Maxwell&#8217;s Equations</h3>
   147  
   148  						<div class="fragment">
   149  							\[  \begin{aligned}
   150  							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
   151  							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
   152  							\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
   153  							\]
   154  						</div>
   155  					</section>
   156  				</section>
   157  
   158  			</div>
   159  
   160  		</div>
   161  
   162  		<script src="../../lib/js/head.min.js"></script>
   163  		<script src="../../js/reveal.js"></script>
   164  
   165  		<script>
   166  
   167  			Reveal.initialize({
   168  				history: true,
   169  				transition: 'linear',
   170  
   171  				math: {
   172  					// mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
   173  					config: 'TeX-AMS_HTML-full'
   174  				},
   175  
   176  				dependencies: [
   177  					{ src: '../../lib/js/classList.js' },
   178  					{ src: '../../plugin/math/math.js', async: true }
   179  				]
   180  			});
   181  
   182  		</script>
   183  
   184  	</body>
   185  </html>