github.com/shijuvar/go@v0.0.0-20141209052335-e8f13700b70c/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of November 11, 2014",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <!--
     8  TODO
     9  [ ] need language about function/method calls and parameter passing rules
    10  [ ] last paragraph of #Assignments (constant promotion) should be elsewhere
    11      and mention assignment to empty interface.
    12  [ ] need to say something about "scope" of selectors?
    13  [ ] clarify what a field name is in struct declarations
    14      (struct{T} vs struct {T T} vs struct {t T})
    15  [ ] need explicit language about the result type of operations
    16  [ ] should probably write something about evaluation order of statements even
    17  	though obvious
    18  [ ] in Selectors section, clarify what receiver value is passed in method invocations
    19  -->
    20  
    21  
    22  <h2 id="Introduction">Introduction</h2>
    23  
    24  <p>
    25  This is a reference manual for the Go programming language. For
    26  more information and other documents, see <a href="/">golang.org</a>.
    27  </p>
    28  
    29  <p>
    30  Go is a general-purpose language designed with systems programming
    31  in mind. It is strongly typed and garbage-collected and has explicit
    32  support for concurrent programming.  Programs are constructed from
    33  <i>packages</i>, whose properties allow efficient management of
    34  dependencies. The existing implementations use a traditional
    35  compile/link model to generate executable binaries.
    36  </p>
    37  
    38  <p>
    39  The grammar is compact and regular, allowing for easy analysis by
    40  automatic tools such as integrated development environments.
    41  </p>
    42  
    43  <h2 id="Notation">Notation</h2>
    44  <p>
    45  The syntax is specified using Extended Backus-Naur Form (EBNF):
    46  </p>
    47  
    48  <pre class="grammar">
    49  Production  = production_name "=" [ Expression ] "." .
    50  Expression  = Alternative { "|" Alternative } .
    51  Alternative = Term { Term } .
    52  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    53  Group       = "(" Expression ")" .
    54  Option      = "[" Expression "]" .
    55  Repetition  = "{" Expression "}" .
    56  </pre>
    57  
    58  <p>
    59  Productions are expressions constructed from terms and the following
    60  operators, in increasing precedence:
    61  </p>
    62  <pre class="grammar">
    63  |   alternation
    64  ()  grouping
    65  []  option (0 or 1 times)
    66  {}  repetition (0 to n times)
    67  </pre>
    68  
    69  <p>
    70  Lower-case production names are used to identify lexical tokens.
    71  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    72  double quotes <code>""</code> or back quotes <code>``</code>.
    73  </p>
    74  
    75  <p>
    76  The form <code>a … b</code> represents the set of characters from
    77  <code>a</code> through <code>b</code> as alternatives. The horizontal
    78  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    79  enumerations or code snippets that are not further specified. The character <code>…</code>
    80  (as opposed to the three characters <code>...</code>) is not a token of the Go
    81  language.
    82  </p>
    83  
    84  <h2 id="Source_code_representation">Source code representation</h2>
    85  
    86  <p>
    87  Source code is Unicode text encoded in
    88  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    89  canonicalized, so a single accented code point is distinct from the
    90  same character constructed from combining an accent and a letter;
    91  those are treated as two code points.  For simplicity, this document
    92  will use the unqualified term <i>character</i> to refer to a Unicode code point
    93  in the source text.
    94  </p>
    95  <p>
    96  Each code point is distinct; for instance, upper and lower case letters
    97  are different characters.
    98  </p>
    99  <p>
   100  Implementation restriction: For compatibility with other tools, a
   101  compiler may disallow the NUL character (U+0000) in the source text.
   102  </p>
   103  <p>
   104  Implementation restriction: For compatibility with other tools, a
   105  compiler may ignore a UTF-8-encoded byte order mark
   106  (U+FEFF) if it is the first Unicode code point in the source text.
   107  A byte order mark may be disallowed anywhere else in the source.
   108  </p>
   109  
   110  <h3 id="Characters">Characters</h3>
   111  
   112  <p>
   113  The following terms are used to denote specific Unicode character classes:
   114  </p>
   115  <pre class="ebnf">
   116  newline        = /* the Unicode code point U+000A */ .
   117  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   118  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   119  unicode_digit  = /* a Unicode code point classified as "Decimal Digit" */ .
   120  </pre>
   121  
   122  <p>
   123  In <a href="http://www.unicode.org/versions/Unicode6.3.0/">The Unicode Standard 6.3</a>,
   124  Section 4.5 "General Category"
   125  defines a set of character categories.  Go treats
   126  those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters,
   127  and those in category Nd as Unicode digits.
   128  </p>
   129  
   130  <h3 id="Letters_and_digits">Letters and digits</h3>
   131  
   132  <p>
   133  The underscore character <code>_</code> (U+005F) is considered a letter.
   134  </p>
   135  <pre class="ebnf">
   136  letter        = unicode_letter | "_" .
   137  decimal_digit = "0" … "9" .
   138  octal_digit   = "0" … "7" .
   139  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   140  </pre>
   141  
   142  <h2 id="Lexical_elements">Lexical elements</h2>
   143  
   144  <h3 id="Comments">Comments</h3>
   145  
   146  <p>
   147  There are two forms of comments:
   148  </p>
   149  
   150  <ol>
   151  <li>
   152  <i>Line comments</i> start with the character sequence <code>//</code>
   153  and stop at the end of the line. A line comment acts like a newline.
   154  </li>
   155  <li>
   156  <i>General comments</i> start with the character sequence <code>/*</code>
   157  and continue through the character sequence <code>*/</code>. A general
   158  comment containing one or more newlines acts like a newline, otherwise it acts
   159  like a space.
   160  </li>
   161  </ol>
   162  
   163  <p>
   164  Comments do not nest.
   165  </p>
   166  
   167  
   168  <h3 id="Tokens">Tokens</h3>
   169  
   170  <p>
   171  Tokens form the vocabulary of the Go language.
   172  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   173  and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
   174  spaces (U+0020), horizontal tabs (U+0009),
   175  carriage returns (U+000D), and newlines (U+000A),
   176  is ignored except as it separates tokens
   177  that would otherwise combine into a single token. Also, a newline or end of file
   178  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   179  While breaking the input into tokens,
   180  the next token is the longest sequence of characters that form a
   181  valid token.
   182  </p>
   183  
   184  <h3 id="Semicolons">Semicolons</h3>
   185  
   186  <p>
   187  The formal grammar uses semicolons <code>";"</code> as terminators in
   188  a number of productions. Go programs may omit most of these semicolons
   189  using the following two rules:
   190  </p>
   191  
   192  <ol>
   193  <li>
   194  <p>
   195  When the input is broken into tokens, a semicolon is automatically inserted
   196  into the token stream at the end of a non-blank line if the line's final
   197  token is
   198  </p>
   199  <ul>
   200  	<li>an
   201  	    <a href="#Identifiers">identifier</a>
   202  	</li>
   203  
   204  	<li>an
   205  	    <a href="#Integer_literals">integer</a>,
   206  	    <a href="#Floating-point_literals">floating-point</a>,
   207  	    <a href="#Imaginary_literals">imaginary</a>,
   208  	    <a href="#Rune_literals">rune</a>, or
   209  	    <a href="#String_literals">string</a> literal
   210  	</li>
   211  
   212  	<li>one of the <a href="#Keywords">keywords</a>
   213  	    <code>break</code>,
   214  	    <code>continue</code>,
   215  	    <code>fallthrough</code>, or
   216  	    <code>return</code>
   217  	</li>
   218  
   219  	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
   220  	    <code>++</code>,
   221  	    <code>--</code>,
   222  	    <code>)</code>,
   223  	    <code>]</code>, or
   224  	    <code>}</code>
   225  	</li>
   226  </ul>
   227  </li>
   228  
   229  <li>
   230  To allow complex statements to occupy a single line, a semicolon
   231  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   232  </li>
   233  </ol>
   234  
   235  <p>
   236  To reflect idiomatic use, code examples in this document elide semicolons
   237  using these rules.
   238  </p>
   239  
   240  
   241  <h3 id="Identifiers">Identifiers</h3>
   242  
   243  <p>
   244  Identifiers name program entities such as variables and types.
   245  An identifier is a sequence of one or more letters and digits.
   246  The first character in an identifier must be a letter.
   247  </p>
   248  <pre class="ebnf">
   249  identifier = letter { letter | unicode_digit } .
   250  </pre>
   251  <pre>
   252  a
   253  _x9
   254  ThisVariableIsExported
   255  αβ
   256  </pre>
   257  
   258  <p>
   259  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   260  </p>
   261  
   262  
   263  <h3 id="Keywords">Keywords</h3>
   264  
   265  <p>
   266  The following keywords are reserved and may not be used as identifiers.
   267  </p>
   268  <pre class="grammar">
   269  break        default      func         interface    select
   270  case         defer        go           map          struct
   271  chan         else         goto         package      switch
   272  const        fallthrough  if           range        type
   273  continue     for          import       return       var
   274  </pre>
   275  
   276  <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
   277  
   278  <p>
   279  The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
   280  </p>
   281  <pre class="grammar">
   282  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   283  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   284  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   285  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   286  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   287       &amp;^          &amp;^=
   288  </pre>
   289  
   290  <h3 id="Integer_literals">Integer literals</h3>
   291  
   292  <p>
   293  An integer literal is a sequence of digits representing an
   294  <a href="#Constants">integer constant</a>.
   295  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   296  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   297  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   298  </p>
   299  <pre class="ebnf">
   300  int_lit     = decimal_lit | octal_lit | hex_lit .
   301  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   302  octal_lit   = "0" { octal_digit } .
   303  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   304  </pre>
   305  
   306  <pre>
   307  42
   308  0600
   309  0xBadFace
   310  170141183460469231731687303715884105727
   311  </pre>
   312  
   313  <h3 id="Floating-point_literals">Floating-point literals</h3>
   314  <p>
   315  A floating-point literal is a decimal representation of a
   316  <a href="#Constants">floating-point constant</a>.
   317  It has an integer part, a decimal point, a fractional part,
   318  and an exponent part.  The integer and fractional part comprise
   319  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   320  followed by an optionally signed decimal exponent.  One of the
   321  integer part or the fractional part may be elided; one of the decimal
   322  point or the exponent may be elided.
   323  </p>
   324  <pre class="ebnf">
   325  float_lit = decimals "." [ decimals ] [ exponent ] |
   326              decimals exponent |
   327              "." decimals [ exponent ] .
   328  decimals  = decimal_digit { decimal_digit } .
   329  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   330  </pre>
   331  
   332  <pre>
   333  0.
   334  72.40
   335  072.40  // == 72.40
   336  2.71828
   337  1.e+0
   338  6.67428e-11
   339  1E6
   340  .25
   341  .12345E+5
   342  </pre>
   343  
   344  <h3 id="Imaginary_literals">Imaginary literals</h3>
   345  <p>
   346  An imaginary literal is a decimal representation of the imaginary part of a
   347  <a href="#Constants">complex constant</a>.
   348  It consists of a
   349  <a href="#Floating-point_literals">floating-point literal</a>
   350  or decimal integer followed
   351  by the lower-case letter <code>i</code>.
   352  </p>
   353  <pre class="ebnf">
   354  imaginary_lit = (decimals | float_lit) "i" .
   355  </pre>
   356  
   357  <pre>
   358  0i
   359  011i  // == 11i
   360  0.i
   361  2.71828i
   362  1.e+0i
   363  6.67428e-11i
   364  1E6i
   365  .25i
   366  .12345E+5i
   367  </pre>
   368  
   369  
   370  <h3 id="Rune_literals">Rune literals</h3>
   371  
   372  <p>
   373  A rune literal represents a <a href="#Constants">rune constant</a>,
   374  an integer value identifying a Unicode code point.
   375  A rune literal is expressed as one or more characters enclosed in single quotes.
   376  Within the quotes, any character may appear except single
   377  quote and newline. A single quoted character represents the Unicode value
   378  of the character itself,
   379  while multi-character sequences beginning with a backslash encode
   380  values in various formats.
   381  </p>
   382  <p>
   383  The simplest form represents the single character within the quotes;
   384  since Go source text is Unicode characters encoded in UTF-8, multiple
   385  UTF-8-encoded bytes may represent a single integer value.  For
   386  instance, the literal <code>'a'</code> holds a single byte representing
   387  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   388  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   389  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   390  </p>
   391  <p>
   392  Several backslash escapes allow arbitrary values to be encoded as
   393  ASCII text.  There are four ways to represent the integer value
   394  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   395  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   396  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   397  plain backslash <code>\</code> followed by exactly three octal digits.
   398  In each case the value of the literal is the value represented by
   399  the digits in the corresponding base.
   400  </p>
   401  <p>
   402  Although these representations all result in an integer, they have
   403  different valid ranges.  Octal escapes must represent a value between
   404  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   405  by construction. The escapes <code>\u</code> and <code>\U</code>
   406  represent Unicode code points so within them some values are illegal,
   407  in particular those above <code>0x10FFFF</code> and surrogate halves.
   408  </p>
   409  <p>
   410  After a backslash, certain single-character escapes represent special values:
   411  </p>
   412  <pre class="grammar">
   413  \a   U+0007 alert or bell
   414  \b   U+0008 backspace
   415  \f   U+000C form feed
   416  \n   U+000A line feed or newline
   417  \r   U+000D carriage return
   418  \t   U+0009 horizontal tab
   419  \v   U+000b vertical tab
   420  \\   U+005c backslash
   421  \'   U+0027 single quote  (valid escape only within rune literals)
   422  \"   U+0022 double quote  (valid escape only within string literals)
   423  </pre>
   424  <p>
   425  All other sequences starting with a backslash are illegal inside rune literals.
   426  </p>
   427  <pre class="ebnf">
   428  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   429  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   430  byte_value       = octal_byte_value | hex_byte_value .
   431  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   432  hex_byte_value   = `\` "x" hex_digit hex_digit .
   433  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   434  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   435                             hex_digit hex_digit hex_digit hex_digit .
   436  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   437  </pre>
   438  
   439  <pre>
   440  'a'
   441  'ä'
   442  '本'
   443  '\t'
   444  '\000'
   445  '\007'
   446  '\377'
   447  '\x07'
   448  '\xff'
   449  '\u12e4'
   450  '\U00101234'
   451  'aa'         // illegal: too many characters
   452  '\xa'        // illegal: too few hexadecimal digits
   453  '\0'         // illegal: too few octal digits
   454  '\uDFFF'     // illegal: surrogate half
   455  '\U00110000' // illegal: invalid Unicode code point
   456  </pre>
   457  
   458  
   459  <h3 id="String_literals">String literals</h3>
   460  
   461  <p>
   462  A string literal represents a <a href="#Constants">string constant</a>
   463  obtained from concatenating a sequence of characters. There are two forms:
   464  raw string literals and interpreted string literals.
   465  </p>
   466  <p>
   467  Raw string literals are character sequences between back quotes
   468  <code>``</code>.  Within the quotes, any character is legal except
   469  back quote. The value of a raw string literal is the
   470  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   471  between the quotes;
   472  in particular, backslashes have no special meaning and the string may
   473  contain newlines.
   474  Carriage return characters ('\r') inside raw string literals
   475  are discarded from the raw string value.
   476  </p>
   477  <p>
   478  Interpreted string literals are character sequences between double
   479  quotes <code>&quot;&quot;</code>. The text between the quotes,
   480  which may not contain newlines, forms the
   481  value of the literal, with backslash escapes interpreted as they
   482  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   483  <code>\"</code> is legal), with the same restrictions.
   484  The three-digit octal (<code>\</code><i>nnn</i>)
   485  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   486  <i>bytes</i> of the resulting string; all other escapes represent
   487  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   488  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   489  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   490  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   491  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   492  U+00FF.
   493  </p>
   494  
   495  <pre class="ebnf">
   496  string_lit             = raw_string_lit | interpreted_string_lit .
   497  raw_string_lit         = "`" { unicode_char | newline } "`" .
   498  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   499  </pre>
   500  
   501  <pre>
   502  `abc`  // same as "abc"
   503  `\n
   504  \n`    // same as "\\n\n\\n"
   505  "\n"
   506  ""
   507  "Hello, world!\n"
   508  "日本語"
   509  "\u65e5本\U00008a9e"
   510  "\xff\u00FF"
   511  "\uD800"       // illegal: surrogate half
   512  "\U00110000"   // illegal: invalid Unicode code point
   513  </pre>
   514  
   515  <p>
   516  These examples all represent the same string:
   517  </p>
   518  
   519  <pre>
   520  "日本語"                                 // UTF-8 input text
   521  `日本語`                                 // UTF-8 input text as a raw literal
   522  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   523  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   524  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   525  </pre>
   526  
   527  <p>
   528  If the source code represents a character as two code points, such as
   529  a combining form involving an accent and a letter, the result will be
   530  an error if placed in a rune literal (it is not a single code
   531  point), and will appear as two code points if placed in a string
   532  literal.
   533  </p>
   534  
   535  
   536  <h2 id="Constants">Constants</h2>
   537  
   538  <p>There are <i>boolean constants</i>,
   539  <i>rune constants</i>,
   540  <i>integer constants</i>,
   541  <i>floating-point constants</i>, <i>complex constants</i>,
   542  and <i>string constants</i>. Rune, integer, floating-point,
   543  and complex constants are
   544  collectively called <i>numeric constants</i>.
   545  </p>
   546  
   547  <p>
   548  A constant value is represented by a
   549  <a href="#Rune_literals">rune</a>,
   550  <a href="#Integer_literals">integer</a>,
   551  <a href="#Floating-point_literals">floating-point</a>,
   552  <a href="#Imaginary_literals">imaginary</a>,
   553  or
   554  <a href="#String_literals">string</a> literal,
   555  an identifier denoting a constant,
   556  a <a href="#Constant_expressions">constant expression</a>,
   557  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   558  the result value of some built-in functions such as
   559  <code>unsafe.Sizeof</code> applied to any value,
   560  <code>cap</code> or <code>len</code> applied to
   561  <a href="#Length_and_capacity">some expressions</a>,
   562  <code>real</code> and <code>imag</code> applied to a complex constant
   563  and <code>complex</code> applied to numeric constants.
   564  The boolean truth values are represented by the predeclared constants
   565  <code>true</code> and <code>false</code>. The predeclared identifier
   566  <a href="#Iota">iota</a> denotes an integer constant.
   567  </p>
   568  
   569  <p>
   570  In general, complex constants are a form of
   571  <a href="#Constant_expressions">constant expression</a>
   572  and are discussed in that section.
   573  </p>
   574  
   575  <p>
   576  Numeric constants represent values of arbitrary precision and do not overflow.
   577  </p>
   578  
   579  <p>
   580  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   581  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   582  and certain <a href="#Constant_expressions">constant expressions</a>
   583  containing only untyped constant operands are untyped.
   584  </p>
   585  
   586  <p>
   587  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   588  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   589  <a href="#Variable_declarations">variable declaration</a> or an
   590  <a href="#Assignments">assignment</a> or as an
   591  operand in an <a href="#Expressions">expression</a>.
   592  It is an error if the constant value
   593  cannot be represented as a value of the respective type.
   594  For instance, <code>3.0</code> can be given any integer or any
   595  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   596  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   597  not <code>int32</code> or <code>string</code>.
   598  </p>
   599  
   600  <p>
   601  An untyped constant has a <i>default type</i> which is the type to which the
   602  constant is implicitly converted in contexts where a typed value is required,
   603  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   604  such as <code>i := 0</code> where there is no explicit type.
   605  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   606  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   607  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   608  complex, or string constant.
   609  </p>
   610  
   611  <p>
   612  There are no constants denoting the IEEE-754 infinity and not-a-number values,
   613  but the <a href="/pkg/math/"><code>math</code> package</a>'s
   614  <a href="/pkg/math/#Inf">Inf</a>,
   615  <a href="/pkg/math/#NaN">NaN</a>,
   616  <a href="/pkg/math/#IsInf">IsInf</a>, and
   617  <a href="/pkg/math/#IsNaN">IsNaN</a>
   618  functions return and test for those values at run time.
   619  </p>
   620  
   621  <p>
   622  Implementation restriction: Although numeric constants have arbitrary
   623  precision in the language, a compiler may implement them using an
   624  internal representation with limited precision.  That said, every
   625  implementation must:
   626  </p>
   627  <ul>
   628  	<li>Represent integer constants with at least 256 bits.</li>
   629  
   630  	<li>Represent floating-point constants, including the parts of
   631  	    a complex constant, with a mantissa of at least 256 bits
   632  	    and a signed exponent of at least 32 bits.</li>
   633  
   634  	<li>Give an error if unable to represent an integer constant
   635  	    precisely.</li>
   636  
   637  	<li>Give an error if unable to represent a floating-point or
   638  	    complex constant due to overflow.</li>
   639  
   640  	<li>Round to the nearest representable constant if unable to
   641  	    represent a floating-point or complex constant due to limits
   642  	    on precision.</li>
   643  </ul>
   644  <p>
   645  These requirements apply both to literal constants and to the result
   646  of evaluating <a href="#Constant_expressions">constant
   647  expressions</a>.
   648  </p>
   649  
   650  <h2 id="Variables">Variables</h2>
   651  
   652  <p>
   653  A variable is a storage location for holding a <i>value</i>.
   654  The set of permissible values is determined by the
   655  variable's <i><a href="#Types">type</a></i>.
   656  </p>
   657  
   658  <p>
   659  A <a href="#Variable_declarations">variable declaration</a>
   660  or, for function parameters and results, the signature
   661  of a <a href="#Function_declarations">function declaration</a>
   662  or <a href="#Function_literals">function literal</a> reserves
   663  storage for a named variable.
   664  
   665  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   666  or taking the address of a <a href="#Composite_literals">composite literal</a>
   667  allocates storage for a variable at run time.
   668  Such an anonymous variable is referred to via a (possibly implicit)
   669  <a href="#Address_operators">pointer indirection</a>.
   670  </p>
   671  
   672  <p>
   673  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   674  and <a href="#Struct_types">struct</a> types have elements and fields that may
   675  be <a href="#Address_operators">addressed</a> individually. Each such element
   676  acts like a variable.
   677  </p>
   678  
   679  <p>
   680  The <i>static type</i> (or just <i>type</i>) of a variable is the	
   681  type given in its declaration, the type provided in the
   682  <code>new</code> call or composite literal, or the type of
   683  an element of a structured variable.
   684  Variables of interface type also have a distinct <i>dynamic type</i>,
   685  which is the concrete type of the value assigned to the variable at run time
   686  (unless the value is the predeclared identifier <code>nil</code>,
   687  which has no type).
   688  The dynamic type may vary during execution but values stored in interface
   689  variables are always <a href="#Assignability">assignable</a>
   690  to the static type of the variable.	
   691  </p>	
   692  
   693  <pre>
   694  var x interface{}  // x is nil and has static type interface{}
   695  var v *T           // v has value nil, static type *T
   696  x = 42             // x has value 42 and dynamic type int
   697  x = v              // x has value (*T)(nil) and dynamic type *T
   698  </pre>
   699  
   700  <p>
   701  A variable's value is retrieved by referring to the variable in an
   702  <a href="#Expressions">expression</a>; it is the most recent value
   703  <a href="#Assignments">assigned</a> to the variable.
   704  If a variable has not yet been assigned a value, its value is the
   705  <a href="#The_zero_value">zero value</a> for its type.
   706  </p>
   707  
   708  
   709  <h2 id="Types">Types</h2>
   710  
   711  <p>
   712  A type determines the set of values and operations specific to values of that
   713  type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified
   714  by a (possibly <a href="#Qualified_identifiers">qualified</a>)
   715  <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified
   716  using a <i>type literal</i>, which composes a new type from existing types.
   717  </p>
   718  
   719  <pre class="ebnf">
   720  Type      = TypeName | TypeLit | "(" Type ")" .
   721  TypeName  = identifier | QualifiedIdent .
   722  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   723  	    SliceType | MapType | ChannelType .
   724  </pre>
   725  
   726  <p>
   727  Named instances of the boolean, numeric, and string types are
   728  <a href="#Predeclared_identifiers">predeclared</a>.
   729  <i>Composite types</i>&mdash;array, struct, pointer, function,
   730  interface, slice, map, and channel types&mdash;may be constructed using
   731  type literals.
   732  </p>
   733  
   734  <p>
   735  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   736  is one of the predeclared boolean, numeric, or string types, or a type literal,
   737  the corresponding underlying
   738  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   739  is the underlying type of the type to which <code>T</code> refers in its
   740  <a href="#Type_declarations">type declaration</a>.
   741  </p>
   742  
   743  <pre>
   744     type T1 string
   745     type T2 T1
   746     type T3 []T1
   747     type T4 T3
   748  </pre>
   749  
   750  <p>
   751  The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
   752  is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
   753  and <code>T4</code> is <code>[]T1</code>.
   754  </p>
   755  
   756  <h3 id="Method_sets">Method sets</h3>
   757  <p>
   758  A type may have a <i>method set</i> associated with it.
   759  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   760  The method set of any other type <code>T</code> consists of all
   761  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   762  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   763  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   764  (that is, it also contains the method set of <code>T</code>).
   765  Further rules apply to structs containing anonymous fields, as described
   766  in the section on <a href="#Struct_types">struct types</a>.
   767  Any other type has an empty method set.
   768  In a method set, each method must have a
   769  <a href="#Uniqueness_of_identifiers">unique</a>
   770  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   771  </p>
   772  
   773  <p>
   774  The method set of a type determines the interfaces that the
   775  type <a href="#Interface_types">implements</a>
   776  and the methods that can be <a href="#Calls">called</a>
   777  using a receiver of that type.
   778  </p>
   779  
   780  <h3 id="Boolean_types">Boolean types</h3>
   781  
   782  <p>
   783  A <i>boolean type</i> represents the set of Boolean truth values
   784  denoted by the predeclared constants <code>true</code>
   785  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   786  </p>
   787  
   788  <h3 id="Numeric_types">Numeric types</h3>
   789  
   790  <p>
   791  A <i>numeric type</i> represents sets of integer or floating-point values.
   792  The predeclared architecture-independent numeric types are:
   793  </p>
   794  
   795  <pre class="grammar">
   796  uint8       the set of all unsigned  8-bit integers (0 to 255)
   797  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   798  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   799  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   800  
   801  int8        the set of all signed  8-bit integers (-128 to 127)
   802  int16       the set of all signed 16-bit integers (-32768 to 32767)
   803  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   804  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   805  
   806  float32     the set of all IEEE-754 32-bit floating-point numbers
   807  float64     the set of all IEEE-754 64-bit floating-point numbers
   808  
   809  complex64   the set of all complex numbers with float32 real and imaginary parts
   810  complex128  the set of all complex numbers with float64 real and imaginary parts
   811  
   812  byte        alias for uint8
   813  rune        alias for int32
   814  </pre>
   815  
   816  <p>
   817  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   818  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   819  </p>
   820  
   821  <p>
   822  There is also a set of predeclared numeric types with implementation-specific sizes:
   823  </p>
   824  
   825  <pre class="grammar">
   826  uint     either 32 or 64 bits
   827  int      same size as uint
   828  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   829  </pre>
   830  
   831  <p>
   832  To avoid portability issues all numeric types are distinct except
   833  <code>byte</code>, which is an alias for <code>uint8</code>, and
   834  <code>rune</code>, which is an alias for <code>int32</code>.
   835  Conversions
   836  are required when different numeric types are mixed in an expression
   837  or assignment. For instance, <code>int32</code> and <code>int</code>
   838  are not the same type even though they may have the same size on a
   839  particular architecture.
   840  
   841  
   842  <h3 id="String_types">String types</h3>
   843  
   844  <p>
   845  A <i>string type</i> represents the set of string values.
   846  A string value is a (possibly empty) sequence of bytes.
   847  Strings are immutable: once created,
   848  it is impossible to change the contents of a string.
   849  The predeclared string type is <code>string</code>.
   850  </p>
   851  
   852  <p>
   853  The length of a string <code>s</code> (its size in bytes) can be discovered using
   854  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   855  The length is a compile-time constant if the string is a constant.
   856  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   857  0 through <code>len(s)-1</code>.
   858  It is illegal to take the address of such an element; if
   859  <code>s[i]</code> is the <code>i</code>'th byte of a
   860  string, <code>&amp;s[i]</code> is invalid.
   861  </p>
   862  
   863  
   864  <h3 id="Array_types">Array types</h3>
   865  
   866  <p>
   867  An array is a numbered sequence of elements of a single
   868  type, called the element type.
   869  The number of elements is called the length and is never
   870  negative.
   871  </p>
   872  
   873  <pre class="ebnf">
   874  ArrayType   = "[" ArrayLength "]" ElementType .
   875  ArrayLength = Expression .
   876  ElementType = Type .
   877  </pre>
   878  
   879  <p>
   880  The length is part of the array's type; it must evaluate to a
   881  non-negative <a href="#Constants">constant</a> representable by a value
   882  of type <code>int</code>.
   883  The length of array <code>a</code> can be discovered
   884  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   885  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   886  0 through <code>len(a)-1</code>.
   887  Array types are always one-dimensional but may be composed to form
   888  multi-dimensional types.
   889  </p>
   890  
   891  <pre>
   892  [32]byte
   893  [2*N] struct { x, y int32 }
   894  [1000]*float64
   895  [3][5]int
   896  [2][2][2]float64  // same as [2]([2]([2]float64))
   897  </pre>
   898  
   899  <h3 id="Slice_types">Slice types</h3>
   900  
   901  <p>
   902  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   903  provides access to a numbered sequence of elements from that array.
   904  A slice type denotes the set of all slices of arrays of its element type.
   905  The value of an uninitialized slice is <code>nil</code>.
   906  </p>
   907  
   908  <pre class="ebnf">
   909  SliceType = "[" "]" ElementType .
   910  </pre>
   911  
   912  <p>
   913  Like arrays, slices are indexable and have a length.  The length of a
   914  slice <code>s</code> can be discovered by the built-in function
   915  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   916  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   917  0 through <code>len(s)-1</code>.  The slice index of a
   918  given element may be less than the index of the same element in the
   919  underlying array.
   920  </p>
   921  <p>
   922  A slice, once initialized, is always associated with an underlying
   923  array that holds its elements.  A slice therefore shares storage
   924  with its array and with other slices of the same array; by contrast,
   925  distinct arrays always represent distinct storage.
   926  </p>
   927  <p>
   928  The array underlying a slice may extend past the end of the slice.
   929  The <i>capacity</i> is a measure of that extent: it is the sum of
   930  the length of the slice and the length of the array beyond the slice;
   931  a slice of length up to that capacity can be created by
   932  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   933  The capacity of a slice <code>a</code> can be discovered using the
   934  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   935  </p>
   936  
   937  <p>
   938  A new, initialized slice value for a given element type <code>T</code> is
   939  made using the built-in function
   940  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   941  which takes a slice type
   942  and parameters specifying the length and optionally the capacity.
   943  A slice created with <code>make</code> always allocates a new, hidden array
   944  to which the returned slice value refers. That is, executing
   945  </p>
   946  
   947  <pre>
   948  make([]T, length, capacity)
   949  </pre>
   950  
   951  <p>
   952  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   953  it, so these two expressions are equivalent:
   954  </p>
   955  
   956  <pre>
   957  make([]int, 50, 100)
   958  new([100]int)[0:50]
   959  </pre>
   960  
   961  <p>
   962  Like arrays, slices are always one-dimensional but may be composed to construct
   963  higher-dimensional objects.
   964  With arrays of arrays, the inner arrays are, by construction, always the same length;
   965  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   966  Moreover, the inner slices must be initialized individually.
   967  </p>
   968  
   969  <h3 id="Struct_types">Struct types</h3>
   970  
   971  <p>
   972  A struct is a sequence of named elements, called fields, each of which has a
   973  name and a type. Field names may be specified explicitly (IdentifierList) or
   974  implicitly (AnonymousField).
   975  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   976  be <a href="#Uniqueness_of_identifiers">unique</a>.
   977  </p>
   978  
   979  <pre class="ebnf">
   980  StructType     = "struct" "{" { FieldDecl ";" } "}" .
   981  FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
   982  AnonymousField = [ "*" ] TypeName .
   983  Tag            = string_lit .
   984  </pre>
   985  
   986  <pre>
   987  // An empty struct.
   988  struct {}
   989  
   990  // A struct with 6 fields.
   991  struct {
   992  	x, y int
   993  	u float32
   994  	_ float32  // padding
   995  	A *[]int
   996  	F func()
   997  }
   998  </pre>
   999  
  1000  <p>
  1001  A field declared with a type but no explicit field name is an <i>anonymous field</i>,
  1002  also called an <i>embedded</i> field or an embedding of the type in the struct.
  1003  An embedded type must be specified as
  1004  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
  1005  and <code>T</code> itself may not be
  1006  a pointer type. The unqualified type name acts as the field name.
  1007  </p>
  1008  
  1009  <pre>
  1010  // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
  1011  struct {
  1012  	T1        // field name is T1
  1013  	*T2       // field name is T2
  1014  	P.T3      // field name is T3
  1015  	*P.T4     // field name is T4
  1016  	x, y int  // field names are x and y
  1017  }
  1018  </pre>
  1019  
  1020  <p>
  1021  The following declaration is illegal because field names must be unique
  1022  in a struct type:
  1023  </p>
  1024  
  1025  <pre>
  1026  struct {
  1027  	T     // conflicts with anonymous field *T and *P.T
  1028  	*T    // conflicts with anonymous field T and *P.T
  1029  	*P.T  // conflicts with anonymous field T and *T
  1030  }
  1031  </pre>
  1032  
  1033  <p>
  1034  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1035  anonymous field in a struct <code>x</code> is called <i>promoted</i> if
  1036  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1037  that field or method <code>f</code>.
  1038  </p>
  1039  
  1040  <p>
  1041  Promoted fields act like ordinary fields
  1042  of a struct except that they cannot be used as field names in
  1043  <a href="#Composite_literals">composite literals</a> of the struct.
  1044  </p>
  1045  
  1046  <p>
  1047  Given a struct type <code>S</code> and a type named <code>T</code>,
  1048  promoted methods are included in the method set of the struct as follows:
  1049  </p>
  1050  <ul>
  1051  	<li>
  1052  	If <code>S</code> contains an anonymous field <code>T</code>,
  1053  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1054  	and <code>*S</code> both include promoted methods with receiver
  1055  	<code>T</code>. The method set of <code>*S</code> also
  1056  	includes promoted methods with receiver <code>*T</code>.
  1057  	</li>
  1058  
  1059  	<li>
  1060  	If <code>S</code> contains an anonymous field <code>*T</code>,
  1061  	the method sets of <code>S</code> and <code>*S</code> both
  1062  	include promoted methods with receiver <code>T</code> or
  1063  	<code>*T</code>.
  1064  	</li>
  1065  </ul>
  1066  
  1067  <p>
  1068  A field declaration may be followed by an optional string literal <i>tag</i>,
  1069  which becomes an attribute for all the fields in the corresponding
  1070  field declaration. The tags are made
  1071  visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1072  and take part in <a href="#Type_identity">type identity</a> for structs
  1073  but are otherwise ignored.
  1074  </p>
  1075  
  1076  <pre>
  1077  // A struct corresponding to the TimeStamp protocol buffer.
  1078  // The tag strings define the protocol buffer field numbers.
  1079  struct {
  1080  	microsec  uint64 "field 1"
  1081  	serverIP6 uint64 "field 2"
  1082  	process   string "field 3"
  1083  }
  1084  </pre>
  1085  
  1086  <h3 id="Pointer_types">Pointer types</h3>
  1087  
  1088  <p>
  1089  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1090  type, called the <i>base type</i> of the pointer.
  1091  The value of an uninitialized pointer is <code>nil</code>.
  1092  </p>
  1093  
  1094  <pre class="ebnf">
  1095  PointerType = "*" BaseType .
  1096  BaseType    = Type .
  1097  </pre>
  1098  
  1099  <pre>
  1100  *Point
  1101  *[4]int
  1102  </pre>
  1103  
  1104  <h3 id="Function_types">Function types</h3>
  1105  
  1106  <p>
  1107  A function type denotes the set of all functions with the same parameter
  1108  and result types. The value of an uninitialized variable of function type
  1109  is <code>nil</code>.
  1110  </p>
  1111  
  1112  <pre class="ebnf">
  1113  FunctionType   = "func" Signature .
  1114  Signature      = Parameters [ Result ] .
  1115  Result         = Parameters | Type .
  1116  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1117  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1118  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1119  </pre>
  1120  
  1121  <p>
  1122  Within a list of parameters or results, the names (IdentifierList)
  1123  must either all be present or all be absent. If present, each name
  1124  stands for one item (parameter or result) of the specified type and
  1125  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1126  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1127  If absent, each type stands for one item of that type.
  1128  Parameter and result
  1129  lists are always parenthesized except that if there is exactly
  1130  one unnamed result it may be written as an unparenthesized type.
  1131  </p>
  1132  
  1133  <p>
  1134  The final parameter in a function signature may have
  1135  a type prefixed with <code>...</code>.
  1136  A function with such a parameter is called <i>variadic</i> and
  1137  may be invoked with zero or more arguments for that parameter.
  1138  </p>
  1139  
  1140  <pre>
  1141  func()
  1142  func(x int) int
  1143  func(a, _ int, z float32) bool
  1144  func(a, b int, z float32) (bool)
  1145  func(prefix string, values ...int)
  1146  func(a, b int, z float64, opt ...interface{}) (success bool)
  1147  func(int, int, float64) (float64, *[]int)
  1148  func(n int) func(p *T)
  1149  </pre>
  1150  
  1151  
  1152  <h3 id="Interface_types">Interface types</h3>
  1153  
  1154  <p>
  1155  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1156  A variable of interface type can store a value of any type with a method set
  1157  that is any superset of the interface. Such a type is said to
  1158  <i>implement the interface</i>.
  1159  The value of an uninitialized variable of interface type is <code>nil</code>.
  1160  </p>
  1161  
  1162  <pre class="ebnf">
  1163  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1164  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1165  MethodName         = identifier .
  1166  InterfaceTypeName  = TypeName .
  1167  </pre>
  1168  
  1169  <p>
  1170  As with all method sets, in an interface type, each method must have a
  1171  <a href="#Uniqueness_of_identifiers">unique</a>
  1172  non-<a href="#Blank_identifier">blank</a> name.
  1173  </p>
  1174  
  1175  <pre>
  1176  // A simple File interface
  1177  interface {
  1178  	Read(b Buffer) bool
  1179  	Write(b Buffer) bool
  1180  	Close()
  1181  }
  1182  </pre>
  1183  
  1184  <p>
  1185  More than one type may implement an interface.
  1186  For instance, if two types <code>S1</code> and <code>S2</code>
  1187  have the method set
  1188  </p>
  1189  
  1190  <pre>
  1191  func (p T) Read(b Buffer) bool { return … }
  1192  func (p T) Write(b Buffer) bool { return … }
  1193  func (p T) Close() { … }
  1194  </pre>
  1195  
  1196  <p>
  1197  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1198  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1199  <code>S2</code>, regardless of what other methods
  1200  <code>S1</code> and <code>S2</code> may have or share.
  1201  </p>
  1202  
  1203  <p>
  1204  A type implements any interface comprising any subset of its methods
  1205  and may therefore implement several distinct interfaces. For
  1206  instance, all types implement the <i>empty interface</i>:
  1207  </p>
  1208  
  1209  <pre>
  1210  interface{}
  1211  </pre>
  1212  
  1213  <p>
  1214  Similarly, consider this interface specification,
  1215  which appears within a <a href="#Type_declarations">type declaration</a>
  1216  to define an interface called <code>Locker</code>:
  1217  </p>
  1218  
  1219  <pre>
  1220  type Locker interface {
  1221  	Lock()
  1222  	Unlock()
  1223  }
  1224  </pre>
  1225  
  1226  <p>
  1227  If <code>S1</code> and <code>S2</code> also implement
  1228  </p>
  1229  
  1230  <pre>
  1231  func (p T) Lock() { … }
  1232  func (p T) Unlock() { … }
  1233  </pre>
  1234  
  1235  <p>
  1236  they implement the <code>Locker</code> interface as well
  1237  as the <code>File</code> interface.
  1238  </p>
  1239  
  1240  <p>
  1241  An interface <code>T</code> may use a (possibly qualified) interface type
  1242  name <code>E</code> in place of a method specification. This is called
  1243  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1244  all (exported and non-exported) methods of <code>E</code> to the interface
  1245  <code>T</code>.
  1246  </p>
  1247  
  1248  <pre>
  1249  type ReadWriter interface {
  1250  	Read(b Buffer) bool
  1251  	Write(b Buffer) bool
  1252  }
  1253  
  1254  type File interface {
  1255  	ReadWriter  // same as adding the methods of ReadWriter
  1256  	Locker      // same as adding the methods of Locker
  1257  	Close()
  1258  }
  1259  
  1260  type LockedFile interface {
  1261  	Locker
  1262  	File        // illegal: Lock, Unlock not unique
  1263  	Lock()      // illegal: Lock not unique
  1264  }
  1265  </pre>
  1266  
  1267  <p>
  1268  An interface type <code>T</code> may not embed itself
  1269  or any interface type that embeds <code>T</code>, recursively.
  1270  </p>
  1271  
  1272  <pre>
  1273  // illegal: Bad cannot embed itself
  1274  type Bad interface {
  1275  	Bad
  1276  }
  1277  
  1278  // illegal: Bad1 cannot embed itself using Bad2
  1279  type Bad1 interface {
  1280  	Bad2
  1281  }
  1282  type Bad2 interface {
  1283  	Bad1
  1284  }
  1285  </pre>
  1286  
  1287  <h3 id="Map_types">Map types</h3>
  1288  
  1289  <p>
  1290  A map is an unordered group of elements of one type, called the
  1291  element type, indexed by a set of unique <i>keys</i> of another type,
  1292  called the key type.
  1293  The value of an uninitialized map is <code>nil</code>.
  1294  </p>
  1295  
  1296  <pre class="ebnf">
  1297  MapType     = "map" "[" KeyType "]" ElementType .
  1298  KeyType     = Type .
  1299  </pre>
  1300  
  1301  <p>
  1302  The <a href="#Comparison_operators">comparison operators</a>
  1303  <code>==</code> and <code>!=</code> must be fully defined
  1304  for operands of the key type; thus the key type must not be a function, map, or
  1305  slice.
  1306  If the key type is an interface type, these
  1307  comparison operators must be defined for the dynamic key values;
  1308  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1309  
  1310  </p>
  1311  
  1312  <pre>
  1313  map[string]int
  1314  map[*T]struct{ x, y float64 }
  1315  map[string]interface{}
  1316  </pre>
  1317  
  1318  <p>
  1319  The number of map elements is called its length.
  1320  For a map <code>m</code>, it can be discovered using the
  1321  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1322  and may change during execution. Elements may be added during execution
  1323  using <a href="#Assignments">assignments</a> and retrieved with
  1324  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1325  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1326  </p>
  1327  <p>
  1328  A new, empty map value is made using the built-in
  1329  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1330  which takes the map type and an optional capacity hint as arguments:
  1331  </p>
  1332  
  1333  <pre>
  1334  make(map[string]int)
  1335  make(map[string]int, 100)
  1336  </pre>
  1337  
  1338  <p>
  1339  The initial capacity does not bound its size:
  1340  maps grow to accommodate the number of items
  1341  stored in them, with the exception of <code>nil</code> maps.
  1342  A <code>nil</code> map is equivalent to an empty map except that no elements
  1343  may be added.
  1344  
  1345  <h3 id="Channel_types">Channel types</h3>
  1346  
  1347  <p>
  1348  A channel provides a mechanism for
  1349  <a href="#Go_statements">concurrently executing functions</a>
  1350  to communicate by
  1351  <a href="#Send_statements">sending</a> and
  1352  <a href="#Receive_operator">receiving</a>
  1353  values of a specified element type.
  1354  The value of an uninitialized channel is <code>nil</code>.
  1355  </p>
  1356  
  1357  <pre class="ebnf">
  1358  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1359  </pre>
  1360  
  1361  <p>
  1362  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1363  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1364  <i>bidirectional</i>.
  1365  A channel may be constrained only to send or only to receive by
  1366  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1367  </p>
  1368  
  1369  <pre>
  1370  chan T          // can be used to send and receive values of type T
  1371  chan&lt;- float64  // can only be used to send float64s
  1372  &lt;-chan int      // can only be used to receive ints
  1373  </pre>
  1374  
  1375  <p>
  1376  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1377  possible:
  1378  </p>
  1379  
  1380  <pre>
  1381  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1382  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1383  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1384  chan (&lt;-chan int)
  1385  </pre>
  1386  
  1387  <p>
  1388  A new, initialized channel
  1389  value can be made using the built-in function
  1390  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1391  which takes the channel type and an optional <i>capacity</i> as arguments:
  1392  </p>
  1393  
  1394  <pre>
  1395  make(chan int, 100)
  1396  </pre>
  1397  
  1398  <p>
  1399  The capacity, in number of elements, sets the size of the buffer in the channel.
  1400  If the capacity is zero or absent, the channel is unbuffered and communication
  1401  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1402  is buffered and communication succeeds without blocking if the buffer
  1403  is not full (sends) or not empty (receives).
  1404  A <code>nil</code> channel is never ready for communication.
  1405  </p>
  1406  
  1407  <p>
  1408  A channel may be closed with the built-in function
  1409  <a href="#Close"><code>close</code></a>.
  1410  The multi-valued assignment form of the
  1411  <a href="#Receive_operator">receive operator</a>
  1412  reports whether a received value was sent before
  1413  the channel was closed.
  1414  </p>
  1415  
  1416  <p>
  1417  A single channel may be used in
  1418  <a href="#Send_statements">send statements</a>,
  1419  <a href="#Receive_operator">receive operations</a>,
  1420  and calls to the built-in functions
  1421  <a href="#Length_and_capacity"><code>cap</code></a> and
  1422  <a href="#Length_and_capacity"><code>len</code></a>
  1423  by any number of goroutines without further synchronization.
  1424  Channels act as first-in-first-out queues.
  1425  For example, if one goroutine sends values on a channel
  1426  and a second goroutine receives them, the values are
  1427  received in the order sent.
  1428  </p>
  1429  
  1430  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1431  
  1432  <h3 id="Type_identity">Type identity</h3>
  1433  
  1434  <p>
  1435  Two types are either <i>identical</i> or <i>different</i>.
  1436  </p>
  1437  
  1438  <p>
  1439  Two <a href="#Types">named types</a> are identical if their type names originate in the same
  1440  <a href="#Type_declarations">TypeSpec</a>.
  1441  A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical
  1442  if the corresponding type literals are identical, that is, if they have the same
  1443  literal structure and corresponding components have identical types. In detail:
  1444  </p>
  1445  
  1446  <ul>
  1447  	<li>Two array types are identical if they have identical element types and
  1448  	    the same array length.</li>
  1449  
  1450  	<li>Two slice types are identical if they have identical element types.</li>
  1451  
  1452  	<li>Two struct types are identical if they have the same sequence of fields,
  1453  	    and if corresponding fields have the same names, and identical types,
  1454  	    and identical tags.
  1455  	    Two anonymous fields are considered to have the same name. Lower-case field
  1456  	    names from different packages are always different.</li>
  1457  
  1458  	<li>Two pointer types are identical if they have identical base types.</li>
  1459  
  1460  	<li>Two function types are identical if they have the same number of parameters
  1461  	    and result values, corresponding parameter and result types are
  1462  	    identical, and either both functions are variadic or neither is.
  1463  	    Parameter and result names are not required to match.</li>
  1464  
  1465  	<li>Two interface types are identical if they have the same set of methods
  1466  	    with the same names and identical function types. Lower-case method names from
  1467  	    different packages are always different. The order of the methods is irrelevant.</li>
  1468  
  1469  	<li>Two map types are identical if they have identical key and value types.</li>
  1470  
  1471  	<li>Two channel types are identical if they have identical value types and
  1472  	    the same direction.</li>
  1473  </ul>
  1474  
  1475  <p>
  1476  Given the declarations
  1477  </p>
  1478  
  1479  <pre>
  1480  type (
  1481  	T0 []string
  1482  	T1 []string
  1483  	T2 struct{ a, b int }
  1484  	T3 struct{ a, c int }
  1485  	T4 func(int, float64) *T0
  1486  	T5 func(x int, y float64) *[]string
  1487  )
  1488  </pre>
  1489  
  1490  <p>
  1491  these types are identical:
  1492  </p>
  1493  
  1494  <pre>
  1495  T0 and T0
  1496  []int and []int
  1497  struct{ a, b *T5 } and struct{ a, b *T5 }
  1498  func(x int, y float64) *[]string and func(int, float64) (result *[]string)
  1499  </pre>
  1500  
  1501  <p>
  1502  <code>T0</code> and <code>T1</code> are different because they are named types
  1503  with distinct declarations; <code>func(int, float64) *T0</code> and
  1504  <code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
  1505  is different from <code>[]string</code>.
  1506  </p>
  1507  
  1508  
  1509  <h3 id="Assignability">Assignability</h3>
  1510  
  1511  <p>
  1512  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1513  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1514  </p>
  1515  
  1516  <ul>
  1517  <li>
  1518  <code>x</code>'s type is identical to <code>T</code>.
  1519  </li>
  1520  <li>
  1521  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1522  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1523  or <code>T</code> is not a <a href="#Types">named type</a>.
  1524  </li>
  1525  <li>
  1526  <code>T</code> is an interface type and
  1527  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1528  </li>
  1529  <li>
  1530  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1531  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1532  and at least one of <code>V</code> or <code>T</code> is not a named type.
  1533  </li>
  1534  <li>
  1535  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1536  is a pointer, function, slice, map, channel, or interface type.
  1537  </li>
  1538  <li>
  1539  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1540  by a value of type <code>T</code>.
  1541  </li>
  1542  </ul>
  1543  
  1544  
  1545  <h2 id="Blocks">Blocks</h2>
  1546  
  1547  <p>
  1548  A <i>block</i> is a possibly empty sequence of declarations and statements
  1549  within matching brace brackets.
  1550  </p>
  1551  
  1552  <pre class="ebnf">
  1553  Block = "{" StatementList "}" .
  1554  StatementList = { Statement ";" } .
  1555  </pre>
  1556  
  1557  <p>
  1558  In addition to explicit blocks in the source code, there are implicit blocks:
  1559  </p>
  1560  
  1561  <ol>
  1562  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1563  
  1564  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1565  	    Go source text for that package.</li>
  1566  
  1567  	<li>Each file has a <i>file block</i> containing all Go source text
  1568  	    in that file.</li>
  1569  
  1570  	<li>Each <a href="#If_statements">"if"</a>,
  1571  	    <a href="#For_statements">"for"</a>, and
  1572  	    <a href="#Switch_statements">"switch"</a>
  1573  	    statement is considered to be in its own implicit block.</li>
  1574  
  1575  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1576  	    or <a href="#Select_statements">"select"</a> statement
  1577  	    acts as an implicit block.</li>
  1578  </ol>
  1579  
  1580  <p>
  1581  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1582  </p>
  1583  
  1584  
  1585  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1586  
  1587  <p>
  1588  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1589  <a href="#Constant_declarations">constant</a>,
  1590  <a href="#Type_declarations">type</a>,
  1591  <a href="#Variable_declarations">variable</a>,
  1592  <a href="#Function_declarations">function</a>,
  1593  <a href="#Labeled_statements">label</a>, or
  1594  <a href="#Import_declarations">package</a>.
  1595  Every identifier in a program must be declared.
  1596  No identifier may be declared twice in the same block, and
  1597  no identifier may be declared in both the file and package block.
  1598  </p>
  1599  
  1600  <p>
  1601  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1602  in a declaration, but it does not introduce a binding and thus is not declared.
  1603  In the package block, the identifier <code>init</code> may only be used for
  1604  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1605  and like the blank identifier it does not introduce a new binding.
  1606  </p>
  1607  
  1608  <pre class="ebnf">
  1609  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1610  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1611  </pre>
  1612  
  1613  <p>
  1614  The <i>scope</i> of a declared identifier is the extent of source text in which
  1615  the identifier denotes the specified constant, type, variable, function, label, or package.
  1616  </p>
  1617  
  1618  <p>
  1619  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1620  </p>
  1621  
  1622  <ol>
  1623  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1624  
  1625  	<li>The scope of an identifier denoting a constant, type, variable,
  1626  	    or function (but not method) declared at top level (outside any
  1627  	    function) is the package block.</li>
  1628  
  1629  	<li>The scope of the package name of an imported package is the file block
  1630  	    of the file containing the import declaration.</li>
  1631  
  1632  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1633  	    or result variable is the function body.</li>
  1634  
  1635  	<li>The scope of a constant or variable identifier declared
  1636  	    inside a function begins at the end of the ConstSpec or VarSpec
  1637  	    (ShortVarDecl for short variable declarations)
  1638  	    and ends at the end of the innermost containing block.</li>
  1639  
  1640  	<li>The scope of a type identifier declared inside a function
  1641  	    begins at the identifier in the TypeSpec
  1642  	    and ends at the end of the innermost containing block.</li>
  1643  </ol>
  1644  
  1645  <p>
  1646  An identifier declared in a block may be redeclared in an inner block.
  1647  While the identifier of the inner declaration is in scope, it denotes
  1648  the entity declared by the inner declaration.
  1649  </p>
  1650  
  1651  <p>
  1652  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1653  does not appear in any scope. Its purpose is to identify the files belonging
  1654  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1655  declarations.
  1656  </p>
  1657  
  1658  
  1659  <h3 id="Label_scopes">Label scopes</h3>
  1660  
  1661  <p>
  1662  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1663  used in the <a href="#Break_statements">"break"</a>,
  1664  <a href="#Continue_statements">"continue"</a>, and
  1665  <a href="#Goto_statements">"goto"</a> statements.
  1666  It is illegal to define a label that is never used.
  1667  In contrast to other identifiers, labels are not block scoped and do
  1668  not conflict with identifiers that are not labels. The scope of a label
  1669  is the body of the function in which it is declared and excludes
  1670  the body of any nested function.
  1671  </p>
  1672  
  1673  
  1674  <h3 id="Blank_identifier">Blank identifier</h3>
  1675  
  1676  <p>
  1677  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1678  It serves as an anonymous placeholder instead of a regular (non-blank)
  1679  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1680  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1681  </p>
  1682  
  1683  
  1684  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1685  
  1686  <p>
  1687  The following identifiers are implicitly declared in the
  1688  <a href="#Blocks">universe block</a>:
  1689  </p>
  1690  <pre class="grammar">
  1691  Types:
  1692  	bool byte complex64 complex128 error float32 float64
  1693  	int int8 int16 int32 int64 rune string
  1694  	uint uint8 uint16 uint32 uint64 uintptr
  1695  
  1696  Constants:
  1697  	true false iota
  1698  
  1699  Zero value:
  1700  	nil
  1701  
  1702  Functions:
  1703  	append cap close complex copy delete imag len
  1704  	make new panic print println real recover
  1705  </pre>
  1706  
  1707  
  1708  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1709  
  1710  <p>
  1711  An identifier may be <i>exported</i> to permit access to it from another package.
  1712  An identifier is exported if both:
  1713  </p>
  1714  <ol>
  1715  	<li>the first character of the identifier's name is a Unicode upper case
  1716  	letter (Unicode class "Lu"); and</li>
  1717  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1718  	or it is a <a href="#Struct_types">field name</a> or
  1719  	<a href="#MethodName">method name</a>.</li>
  1720  </ol>
  1721  <p>
  1722  All other identifiers are not exported.
  1723  </p>
  1724  
  1725  
  1726  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1727  
  1728  <p>
  1729  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1730  <i>different</i> from every other in the set.
  1731  Two identifiers are different if they are spelled differently, or if they
  1732  appear in different <a href="#Packages">packages</a> and are not
  1733  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1734  </p>
  1735  
  1736  <h3 id="Constant_declarations">Constant declarations</h3>
  1737  
  1738  <p>
  1739  A constant declaration binds a list of identifiers (the names of
  1740  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1741  The number of identifiers must be equal
  1742  to the number of expressions, and the <i>n</i>th identifier on
  1743  the left is bound to the value of the <i>n</i>th expression on the
  1744  right.
  1745  </p>
  1746  
  1747  <pre class="ebnf">
  1748  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1749  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1750  
  1751  IdentifierList = identifier { "," identifier } .
  1752  ExpressionList = Expression { "," Expression } .
  1753  </pre>
  1754  
  1755  <p>
  1756  If the type is present, all constants take the type specified, and
  1757  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1758  If the type is omitted, the constants take the
  1759  individual types of the corresponding expressions.
  1760  If the expression values are untyped <a href="#Constants">constants</a>,
  1761  the declared constants remain untyped and the constant identifiers
  1762  denote the constant values. For instance, if the expression is a
  1763  floating-point literal, the constant identifier denotes a floating-point
  1764  constant, even if the literal's fractional part is zero.
  1765  </p>
  1766  
  1767  <pre>
  1768  const Pi float64 = 3.14159265358979323846
  1769  const zero = 0.0         // untyped floating-point constant
  1770  const (
  1771  	size int64 = 1024
  1772  	eof        = -1  // untyped integer constant
  1773  )
  1774  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1775  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1776  </pre>
  1777  
  1778  <p>
  1779  Within a parenthesized <code>const</code> declaration list the
  1780  expression list may be omitted from any but the first declaration.
  1781  Such an empty list is equivalent to the textual substitution of the
  1782  first preceding non-empty expression list and its type if any.
  1783  Omitting the list of expressions is therefore equivalent to
  1784  repeating the previous list.  The number of identifiers must be equal
  1785  to the number of expressions in the previous list.
  1786  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1787  this mechanism permits light-weight declaration of sequential values:
  1788  </p>
  1789  
  1790  <pre>
  1791  const (
  1792  	Sunday = iota
  1793  	Monday
  1794  	Tuesday
  1795  	Wednesday
  1796  	Thursday
  1797  	Friday
  1798  	Partyday
  1799  	numberOfDays  // this constant is not exported
  1800  )
  1801  </pre>
  1802  
  1803  
  1804  <h3 id="Iota">Iota</h3>
  1805  
  1806  <p>
  1807  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1808  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1809  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1810  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1811  It can be used to construct a set of related constants:
  1812  </p>
  1813  
  1814  <pre>
  1815  const (  // iota is reset to 0
  1816  	c0 = iota  // c0 == 0
  1817  	c1 = iota  // c1 == 1
  1818  	c2 = iota  // c2 == 2
  1819  )
  1820  
  1821  const (
  1822  	a = 1 &lt;&lt; iota  // a == 1 (iota has been reset)
  1823  	b = 1 &lt;&lt; iota  // b == 2
  1824  	c = 1 &lt;&lt; iota  // c == 4
  1825  )
  1826  
  1827  const (
  1828  	u         = iota * 42  // u == 0     (untyped integer constant)
  1829  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1830  	w         = iota * 42  // w == 84    (untyped integer constant)
  1831  )
  1832  
  1833  const x = iota  // x == 0 (iota has been reset)
  1834  const y = iota  // y == 0 (iota has been reset)
  1835  </pre>
  1836  
  1837  <p>
  1838  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1839  it is only incremented after each ConstSpec:
  1840  </p>
  1841  
  1842  <pre>
  1843  const (
  1844  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1845  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1846  	_, _                                  // skips iota == 2
  1847  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1848  )
  1849  </pre>
  1850  
  1851  <p>
  1852  This last example exploits the implicit repetition of the
  1853  last non-empty expression list.
  1854  </p>
  1855  
  1856  
  1857  <h3 id="Type_declarations">Type declarations</h3>
  1858  
  1859  <p>
  1860  A type declaration binds an identifier, the <i>type name</i>, to a new type
  1861  that has the same <a href="#Types">underlying type</a> as an existing type,
  1862  and operations defined for the existing type are also defined for the new type.
  1863  The new type is <a href="#Type_identity">different</a> from the existing type.
  1864  </p>
  1865  
  1866  <pre class="ebnf">
  1867  TypeDecl     = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1868  TypeSpec     = identifier Type .
  1869  </pre>
  1870  
  1871  <pre>
  1872  type IntArray [16]int
  1873  
  1874  type (
  1875  	Point struct{ x, y float64 }
  1876  	Polar Point
  1877  )
  1878  
  1879  type TreeNode struct {
  1880  	left, right *TreeNode
  1881  	value *Comparable
  1882  }
  1883  
  1884  type Block interface {
  1885  	BlockSize() int
  1886  	Encrypt(src, dst []byte)
  1887  	Decrypt(src, dst []byte)
  1888  }
  1889  </pre>
  1890  
  1891  <p>
  1892  The declared type does not inherit any <a href="#Method_declarations">methods</a>
  1893  bound to the existing type, but the <a href="#Method_sets">method set</a>
  1894  of an interface type or of elements of a composite type remains unchanged:
  1895  </p>
  1896  
  1897  <pre>
  1898  // A Mutex is a data type with two methods, Lock and Unlock.
  1899  type Mutex struct         { /* Mutex fields */ }
  1900  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1901  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1902  
  1903  // NewMutex has the same composition as Mutex but its method set is empty.
  1904  type NewMutex Mutex
  1905  
  1906  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1907  // but the method set of PtrMutex is empty.
  1908  type PtrMutex *Mutex
  1909  
  1910  // The method set of *PrintableMutex contains the methods
  1911  // Lock and Unlock bound to its anonymous field Mutex.
  1912  type PrintableMutex struct {
  1913  	Mutex
  1914  }
  1915  
  1916  // MyBlock is an interface type that has the same method set as Block.
  1917  type MyBlock Block
  1918  </pre>
  1919  
  1920  <p>
  1921  A type declaration may be used to define a different boolean, numeric, or string
  1922  type and attach methods to it:
  1923  </p>
  1924  
  1925  <pre>
  1926  type TimeZone int
  1927  
  1928  const (
  1929  	EST TimeZone = -(5 + iota)
  1930  	CST
  1931  	MST
  1932  	PST
  1933  )
  1934  
  1935  func (tz TimeZone) String() string {
  1936  	return fmt.Sprintf("GMT+%dh", tz)
  1937  }
  1938  </pre>
  1939  
  1940  
  1941  <h3 id="Variable_declarations">Variable declarations</h3>
  1942  
  1943  <p>
  1944  A variable declaration creates one or more variables, binds corresponding
  1945  identifiers to them, and gives each a type and an initial value.
  1946  </p>
  1947  
  1948  <pre class="ebnf">
  1949  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1950  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1951  </pre>
  1952  
  1953  <pre>
  1954  var i int
  1955  var U, V, W float64
  1956  var k = 0
  1957  var x, y float32 = -1, -2
  1958  var (
  1959  	i       int
  1960  	u, v, s = 2.0, 3.0, "bar"
  1961  )
  1962  var re, im = complexSqrt(-1)
  1963  var _, found = entries[name]  // map lookup; only interested in "found"
  1964  </pre>
  1965  
  1966  <p>
  1967  If a list of expressions is given, the variables are initialized
  1968  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  1969  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  1970  </p>
  1971  
  1972  <p>
  1973  If a type is present, each variable is given that type.
  1974  Otherwise, each variable is given the type of the corresponding
  1975  initialization value in the assignment.
  1976  If that value is an untyped constant, it is first
  1977  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  1978  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  1979  The predeclared value <code>nil</code> cannot be used to initialize a variable
  1980  with no explicit type.
  1981  </p>
  1982  
  1983  <pre>
  1984  var d = math.Sin(0.5)  // d is int64
  1985  var i = 42             // i is int
  1986  var t, ok = x.(T)      // t is T, ok is bool
  1987  var n = nil            // illegal
  1988  </pre>
  1989  
  1990  <p>
  1991  Implementation restriction: A compiler may make it illegal to declare a variable
  1992  inside a <a href="#Function_declarations">function body</a> if the variable is
  1993  never used.
  1994  </p>
  1995  
  1996  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  1997  
  1998  <p>
  1999  A <i>short variable declaration</i> uses the syntax:
  2000  </p>
  2001  
  2002  <pre class="ebnf">
  2003  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2004  </pre>
  2005  
  2006  <p>
  2007  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2008  with initializer expressions but no types:
  2009  </p>
  2010  
  2011  <pre class="grammar">
  2012  "var" IdentifierList = ExpressionList .
  2013  </pre>
  2014  
  2015  <pre>
  2016  i, j := 0, 10
  2017  f := func() int { return 7 }
  2018  ch := make(chan int)
  2019  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2020  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2021  </pre>
  2022  
  2023  <p>
  2024  Unlike regular variable declarations, a short variable declaration may redeclare variables provided they
  2025  were originally declared earlier in the same block with the same type, and at
  2026  least one of the non-<a href="#Blank_identifier">blank</a> variables is new.  As a consequence, redeclaration
  2027  can only appear in a multi-variable short declaration.
  2028  Redeclaration does not introduce a new
  2029  variable; it just assigns a new value to the original.
  2030  </p>
  2031  
  2032  <pre>
  2033  field1, offset := nextField(str, 0)
  2034  field2, offset := nextField(str, offset)  // redeclares offset
  2035  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2036  </pre>
  2037  
  2038  <p>
  2039  Short variable declarations may appear only inside functions.
  2040  In some contexts such as the initializers for
  2041  <a href="#If_statements">"if"</a>,
  2042  <a href="#For_statements">"for"</a>, or
  2043  <a href="#Switch_statements">"switch"</a> statements,
  2044  they can be used to declare local temporary variables.
  2045  </p>
  2046  
  2047  <h3 id="Function_declarations">Function declarations</h3>
  2048  
  2049  <p>
  2050  A function declaration binds an identifier, the <i>function name</i>,
  2051  to a function.
  2052  </p>
  2053  
  2054  <pre class="ebnf">
  2055  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2056  FunctionName = identifier .
  2057  Function     = Signature FunctionBody .
  2058  FunctionBody = Block .
  2059  </pre>
  2060  
  2061  <p>
  2062  If the function's <a href="#Function_types">signature</a> declares
  2063  result parameters, the function body's statement list must end in
  2064  a <a href="#Terminating_statements">terminating statement</a>.
  2065  </p>
  2066  
  2067  <pre>
  2068  func findMarker(c &lt;-chan int) int {
  2069  	for i := range c {
  2070  		if x := &lt;-c; isMarker(x) {
  2071  			return x
  2072  		}
  2073  	}
  2074  	// invalid: missing return statement.
  2075  }
  2076  </pre>
  2077  
  2078  <p>
  2079  A function declaration may omit the body. Such a declaration provides the
  2080  signature for a function implemented outside Go, such as an assembly routine.
  2081  </p>
  2082  
  2083  <pre>
  2084  func min(x int, y int) int {
  2085  	if x &lt; y {
  2086  		return x
  2087  	}
  2088  	return y
  2089  }
  2090  
  2091  func flushICache(begin, end uintptr)  // implemented externally
  2092  </pre>
  2093  
  2094  <h3 id="Method_declarations">Method declarations</h3>
  2095  
  2096  <p>
  2097  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2098  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2099  and associates the method with the receiver's <i>base type</i>.
  2100  </p>
  2101  
  2102  <pre class="ebnf">
  2103  MethodDecl   = "func" Receiver MethodName ( Function | Signature ) .
  2104  Receiver     = Parameters .
  2105  </pre>
  2106  
  2107  <p>
  2108  The receiver is specified via an extra parameter section preceeding the method
  2109  name. That parameter section must declare a single parameter, the receiver.
  2110  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2111  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2112  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2113  it must be declared in the same package as the method.
  2114  The method is said to be <i>bound</i> to the base type and the method name
  2115  is visible only within selectors for that type.
  2116  </p>
  2117  
  2118  <p>
  2119  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2120  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2121  If the receiver's value is not referenced inside the body of the method,
  2122  its identifier may be omitted in the declaration. The same applies in
  2123  general to parameters of functions and methods.
  2124  </p>
  2125  
  2126  <p>
  2127  For a base type, the non-blank names of methods bound to it must be unique.
  2128  If the base type is a <a href="#Struct_types">struct type</a>,
  2129  the non-blank method and field names must be distinct.
  2130  </p>
  2131  
  2132  <p>
  2133  Given type <code>Point</code>, the declarations
  2134  </p>
  2135  
  2136  <pre>
  2137  func (p *Point) Length() float64 {
  2138  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2139  }
  2140  
  2141  func (p *Point) Scale(factor float64) {
  2142  	p.x *= factor
  2143  	p.y *= factor
  2144  }
  2145  </pre>
  2146  
  2147  <p>
  2148  bind the methods <code>Length</code> and <code>Scale</code>,
  2149  with receiver type <code>*Point</code>,
  2150  to the base type <code>Point</code>.
  2151  </p>
  2152  
  2153  <p>
  2154  The type of a method is the type of a function with the receiver as first
  2155  argument.  For instance, the method <code>Scale</code> has type
  2156  </p>
  2157  
  2158  <pre>
  2159  func(p *Point, factor float64)
  2160  </pre>
  2161  
  2162  <p>
  2163  However, a function declared this way is not a method.
  2164  </p>
  2165  
  2166  
  2167  <h2 id="Expressions">Expressions</h2>
  2168  
  2169  <p>
  2170  An expression specifies the computation of a value by applying
  2171  operators and functions to operands.
  2172  </p>
  2173  
  2174  <h3 id="Operands">Operands</h3>
  2175  
  2176  <p>
  2177  Operands denote the elementary values in an expression. An operand may be a
  2178  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2179  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2180  <a href="#Constant_declarations">constant</a>,
  2181  <a href="#Variable_declarations">variable</a>, or
  2182  <a href="#Function_declarations">function</a>,
  2183  a <a href="#Method_expressions">method expression</a> yielding a function,
  2184  or a parenthesized expression.
  2185  </p>
  2186  
  2187  <p>
  2188  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2189  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2190  </p>
  2191  
  2192  <pre class="ebnf">
  2193  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2194  Literal     = BasicLit | CompositeLit | FunctionLit .
  2195  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2196  OperandName = identifier | QualifiedIdent.
  2197  </pre>
  2198  
  2199  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2200  
  2201  <p>
  2202  A qualified identifier is an identifier qualified with a package name prefix.
  2203  Both the package name and the identifier must not be
  2204  <a href="#Blank_identifier">blank</a>.
  2205  </p>
  2206  
  2207  <pre class="ebnf">
  2208  QualifiedIdent = PackageName "." identifier .
  2209  </pre>
  2210  
  2211  <p>
  2212  A qualified identifier accesses an identifier in a different package, which
  2213  must be <a href="#Import_declarations">imported</a>.
  2214  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2215  declared in the <a href="#Blocks">package block</a> of that package.
  2216  </p>
  2217  
  2218  <pre>
  2219  math.Sin	// denotes the Sin function in package math
  2220  </pre>
  2221  
  2222  <h3 id="Composite_literals">Composite literals</h3>
  2223  
  2224  <p>
  2225  Composite literals construct values for structs, arrays, slices, and maps
  2226  and create a new value each time they are evaluated.
  2227  They consist of the type of the value
  2228  followed by a brace-bound list of composite elements. An element may be
  2229  a single expression or a key-value pair.
  2230  </p>
  2231  
  2232  <pre class="ebnf">
  2233  CompositeLit  = LiteralType LiteralValue .
  2234  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2235                  SliceType | MapType | TypeName .
  2236  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2237  ElementList   = Element { "," Element } .
  2238  Element       = [ Key ":" ] Value .
  2239  Key           = FieldName | ElementIndex .
  2240  FieldName     = identifier .
  2241  ElementIndex  = Expression .
  2242  Value         = Expression | LiteralValue .
  2243  </pre>
  2244  
  2245  <p>
  2246  The LiteralType must be a struct, array, slice, or map type
  2247  (the grammar enforces this constraint except when the type is given
  2248  as a TypeName).
  2249  The types of the expressions must be <a href="#Assignability">assignable</a>
  2250  to the respective field, element, and key types of the LiteralType;
  2251  there is no additional conversion.
  2252  The key is interpreted as a field name for struct literals,
  2253  an index for array and slice literals, and a key for map literals.
  2254  For map literals, all elements must have a key. It is an error
  2255  to specify multiple elements with the same field name or
  2256  constant key value.
  2257  </p>
  2258  
  2259  <p>
  2260  For struct literals the following rules apply:
  2261  </p>
  2262  <ul>
  2263  	<li>A key must be a field name declared in the LiteralType.
  2264  	</li>
  2265  	<li>An element list that does not contain any keys must
  2266  	    list an element for each struct field in the
  2267  	    order in which the fields are declared.
  2268  	</li>
  2269  	<li>If any element has a key, every element must have a key.
  2270  	</li>
  2271  	<li>An element list that contains keys does not need to
  2272  	    have an element for each struct field. Omitted fields
  2273  	    get the zero value for that field.
  2274  	</li>
  2275  	<li>A literal may omit the element list; such a literal evaluates
  2276  	    to the zero value for its type.
  2277  	</li>
  2278  	<li>It is an error to specify an element for a non-exported
  2279  	    field of a struct belonging to a different package.
  2280  	</li>
  2281  </ul>
  2282  
  2283  <p>
  2284  Given the declarations
  2285  </p>
  2286  <pre>
  2287  type Point3D struct { x, y, z float64 }
  2288  type Line struct { p, q Point3D }
  2289  </pre>
  2290  
  2291  <p>
  2292  one may write
  2293  </p>
  2294  
  2295  <pre>
  2296  origin := Point3D{}                            // zero value for Point3D
  2297  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2298  </pre>
  2299  
  2300  <p>
  2301  For array and slice literals the following rules apply:
  2302  </p>
  2303  <ul>
  2304  	<li>Each element has an associated integer index marking
  2305  	    its position in the array.
  2306  	</li>
  2307  	<li>An element with a key uses the key as its index; the
  2308  	    key must be a constant integer expression.
  2309  	</li>
  2310  	<li>An element without a key uses the previous element's index plus one.
  2311  	    If the first element has no key, its index is zero.
  2312  	</li>
  2313  </ul>
  2314  
  2315  <p>
  2316  <a href="#Address_operators">Taking the address</a> of a composite literal
  2317  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2318  with the literal's value.
  2319  </p>
  2320  <pre>
  2321  var pointer *Point3D = &amp;Point3D{y: 1000}
  2322  </pre>
  2323  
  2324  <p>
  2325  The length of an array literal is the length specified in the LiteralType.
  2326  If fewer elements than the length are provided in the literal, the missing
  2327  elements are set to the zero value for the array element type.
  2328  It is an error to provide elements with index values outside the index range
  2329  of the array. The notation <code>...</code> specifies an array length equal
  2330  to the maximum element index plus one.
  2331  </p>
  2332  
  2333  <pre>
  2334  buffer := [10]string{}             // len(buffer) == 10
  2335  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2336  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2337  </pre>
  2338  
  2339  <p>
  2340  A slice literal describes the entire underlying array literal.
  2341  Thus, the length and capacity of a slice literal are the maximum
  2342  element index plus one. A slice literal has the form
  2343  </p>
  2344  
  2345  <pre>
  2346  []T{x1, x2, … xn}
  2347  </pre>
  2348  
  2349  <p>
  2350  and is shorthand for a slice operation applied to an array:
  2351  </p>
  2352  
  2353  <pre>
  2354  tmp := [n]T{x1, x2, … xn}
  2355  tmp[0 : n]
  2356  </pre>
  2357  
  2358  <p>
  2359  Within a composite literal of array, slice, or map type <code>T</code>,
  2360  elements that are themselves composite literals may elide the respective
  2361  literal type if it is identical to the element type of <code>T</code>.
  2362  Similarly, elements that are addresses of composite literals may elide
  2363  the <code>&amp;T</code> when the element type is <code>*T</code>.
  2364  </p>
  2365  
  2366  <pre>
  2367  [...]Point{{1.5, -3.5}, {0, 0}}   // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2368  [][]int{{1, 2, 3}, {4, 5}}        // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2369  
  2370  [...]*Point{{1.5, -3.5}, {0, 0}}  // same as [...]*Point{&amp;Point{1.5, -3.5}, &amp;Point{0, 0}}
  2371  </pre>
  2372  
  2373  <p>
  2374  A parsing ambiguity arises when a composite literal using the
  2375  TypeName form of the LiteralType appears as an operand between the
  2376  <a href="#Keywords">keyword</a> and the opening brace of the block
  2377  of an "if", "for", or "switch" statement, and the composite literal
  2378  is not enclosed in parentheses, square brackets, or curly braces.
  2379  In this rare case, the opening brace of the literal is erroneously parsed
  2380  as the one introducing the block of statements. To resolve the ambiguity,
  2381  the composite literal must appear within parentheses.
  2382  </p>
  2383  
  2384  <pre>
  2385  if x == (T{a,b,c}[i]) { … }
  2386  if (x == T{a,b,c}[i]) { … }
  2387  </pre>
  2388  
  2389  <p>
  2390  Examples of valid array, slice, and map literals:
  2391  </p>
  2392  
  2393  <pre>
  2394  // list of prime numbers
  2395  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2396  
  2397  // vowels[ch] is true if ch is a vowel
  2398  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2399  
  2400  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2401  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2402  
  2403  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2404  noteFrequency := map[string]float32{
  2405  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2406  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2407  }
  2408  </pre>
  2409  
  2410  
  2411  <h3 id="Function_literals">Function literals</h3>
  2412  
  2413  <p>
  2414  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2415  </p>
  2416  
  2417  <pre class="ebnf">
  2418  FunctionLit = "func" Function .
  2419  </pre>
  2420  
  2421  <pre>
  2422  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2423  </pre>
  2424  
  2425  <p>
  2426  A function literal can be assigned to a variable or invoked directly.
  2427  </p>
  2428  
  2429  <pre>
  2430  f := func(x, y int) int { return x + y }
  2431  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2432  </pre>
  2433  
  2434  <p>
  2435  Function literals are <i>closures</i>: they may refer to variables
  2436  defined in a surrounding function. Those variables are then shared between
  2437  the surrounding function and the function literal, and they survive as long
  2438  as they are accessible.
  2439  </p>
  2440  
  2441  
  2442  <h3 id="Primary_expressions">Primary expressions</h3>
  2443  
  2444  <p>
  2445  Primary expressions are the operands for unary and binary expressions.
  2446  </p>
  2447  
  2448  <pre class="ebnf">
  2449  PrimaryExpr =
  2450  	Operand |
  2451  	Conversion |
  2452  	PrimaryExpr Selector |
  2453  	PrimaryExpr Index |
  2454  	PrimaryExpr Slice |
  2455  	PrimaryExpr TypeAssertion |
  2456  	PrimaryExpr Arguments .
  2457  
  2458  Selector       = "." identifier .
  2459  Index          = "[" Expression "]" .
  2460  Slice          = "[" ( [ Expression ] ":" [ Expression ] ) |
  2461                       ( [ Expression ] ":" Expression ":" Expression )
  2462                   "]" .
  2463  TypeAssertion  = "." "(" Type ")" .
  2464  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2465  </pre>
  2466  
  2467  
  2468  <pre>
  2469  x
  2470  2
  2471  (s + ".txt")
  2472  f(3.1415, true)
  2473  Point{1, 2}
  2474  m["foo"]
  2475  s[i : j + 1]
  2476  obj.color
  2477  f.p[i].x()
  2478  </pre>
  2479  
  2480  
  2481  <h3 id="Selectors">Selectors</h3>
  2482  
  2483  <p>
  2484  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2485  that is not a <a href="#Package_clause">package name</a>, the
  2486  <i>selector expression</i>
  2487  </p>
  2488  
  2489  <pre>
  2490  x.f
  2491  </pre>
  2492  
  2493  <p>
  2494  denotes the field or method <code>f</code> of the value <code>x</code>
  2495  (or sometimes <code>*x</code>; see below).
  2496  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2497  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2498  The type of the selector expression is the type of <code>f</code>.
  2499  If <code>x</code> is a package name, see the section on
  2500  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2501  </p>
  2502  
  2503  <p>
  2504  A selector <code>f</code> may denote a field or method <code>f</code> of
  2505  a type <code>T</code>, or it may refer
  2506  to a field or method <code>f</code> of a nested
  2507  <a href="#Struct_types">anonymous field</a> of <code>T</code>.
  2508  The number of anonymous fields traversed
  2509  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2510  The depth of a field or method <code>f</code>
  2511  declared in <code>T</code> is zero.
  2512  The depth of a field or method <code>f</code> declared in
  2513  an anonymous field <code>A</code> in <code>T</code> is the
  2514  depth of <code>f</code> in <code>A</code> plus one.
  2515  </p>
  2516  
  2517  <p>
  2518  The following rules apply to selectors:
  2519  </p>
  2520  
  2521  <ol>
  2522  <li>
  2523  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2524  where <code>T</code> is not a pointer or interface type,
  2525  <code>x.f</code> denotes the field or method at the shallowest depth
  2526  in <code>T</code> where there
  2527  is such an <code>f</code>.
  2528  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2529  with shallowest depth, the selector expression is illegal.
  2530  </li>
  2531  
  2532  <li>
  2533  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2534  is an interface type, <code>x.f</code> denotes the actual method with name
  2535  <code>f</code> of the dynamic value of <code>x</code>.
  2536  If there is no method with name <code>f</code> in the
  2537  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2538  expression is illegal.
  2539  </li>
  2540  
  2541  <li>
  2542  As an exception, if the type of <code>x</code> is a named pointer type
  2543  and <code>(*x).f</code> is a valid selector expression denoting a field
  2544  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2545  </li>
  2546  
  2547  <li>
  2548  In all other cases, <code>x.f</code> is illegal.
  2549  </li>
  2550  
  2551  <li>
  2552  If <code>x</code> is of pointer type and has the value
  2553  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2554  assigning to or evaluating <code>x.f</code>
  2555  causes a <a href="#Run_time_panics">run-time panic</a>.
  2556  </li>
  2557  
  2558  <li>
  2559  If <code>x</code> is of interface type and has the value
  2560  <code>nil</code>, <a href="#Calls">calling</a> or
  2561  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2562  causes a <a href="#Run_time_panics">run-time panic</a>.
  2563  </li>
  2564  </ol>
  2565  
  2566  <p>
  2567  For example, given the declarations:
  2568  </p>
  2569  
  2570  <pre>
  2571  type T0 struct {
  2572  	x int
  2573  }
  2574  
  2575  func (*T0) M0()
  2576  
  2577  type T1 struct {
  2578  	y int
  2579  }
  2580  
  2581  func (T1) M1()
  2582  
  2583  type T2 struct {
  2584  	z int
  2585  	T1
  2586  	*T0
  2587  }
  2588  
  2589  func (*T2) M2()
  2590  
  2591  type Q *T2
  2592  
  2593  var t T2     // with t.T0 != nil
  2594  var p *T2    // with p != nil and (*p).T0 != nil
  2595  var q Q = p
  2596  </pre>
  2597  
  2598  <p>
  2599  one may write:
  2600  </p>
  2601  
  2602  <pre>
  2603  t.z          // t.z
  2604  t.y          // t.T1.y
  2605  t.x          // (*t.TO).x
  2606  
  2607  p.z          // (*p).z
  2608  p.y          // (*p).T1.y
  2609  p.x          // (*(*p).T0).x
  2610  
  2611  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2612  
  2613  p.M2()       // p.M2()              M2 expects *T2 receiver
  2614  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2615  p.M0()       // ((&(*p).T0)).M0()   M0 expects *T0 receiver, see section on Calls
  2616  </pre>
  2617  
  2618  <p>
  2619  but the following is invalid:
  2620  </p>
  2621  
  2622  <pre>
  2623  q.M0()       // (*q).M0 is valid but not a field selector
  2624  </pre>
  2625  
  2626  
  2627  <h3 id="Method_expressions">Method expressions</h3>
  2628  
  2629  <p>
  2630  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2631  <code>T.M</code> is a function that is callable as a regular function
  2632  with the same arguments as <code>M</code> prefixed by an additional
  2633  argument that is the receiver of the method.
  2634  </p>
  2635  
  2636  <pre class="ebnf">
  2637  MethodExpr    = ReceiverType "." MethodName .
  2638  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2639  </pre>
  2640  
  2641  <p>
  2642  Consider a struct type <code>T</code> with two methods,
  2643  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2644  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2645  </p>
  2646  
  2647  <pre>
  2648  type T struct {
  2649  	a int
  2650  }
  2651  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2652  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2653  
  2654  var t T
  2655  </pre>
  2656  
  2657  <p>
  2658  The expression
  2659  </p>
  2660  
  2661  <pre>
  2662  T.Mv
  2663  </pre>
  2664  
  2665  <p>
  2666  yields a function equivalent to <code>Mv</code> but
  2667  with an explicit receiver as its first argument; it has signature
  2668  </p>
  2669  
  2670  <pre>
  2671  func(tv T, a int) int
  2672  </pre>
  2673  
  2674  <p>
  2675  That function may be called normally with an explicit receiver, so
  2676  these five invocations are equivalent:
  2677  </p>
  2678  
  2679  <pre>
  2680  t.Mv(7)
  2681  T.Mv(t, 7)
  2682  (T).Mv(t, 7)
  2683  f1 := T.Mv; f1(t, 7)
  2684  f2 := (T).Mv; f2(t, 7)
  2685  </pre>
  2686  
  2687  <p>
  2688  Similarly, the expression
  2689  </p>
  2690  
  2691  <pre>
  2692  (*T).Mp
  2693  </pre>
  2694  
  2695  <p>
  2696  yields a function value representing <code>Mp</code> with signature
  2697  </p>
  2698  
  2699  <pre>
  2700  func(tp *T, f float32) float32
  2701  </pre>
  2702  
  2703  <p>
  2704  For a method with a value receiver, one can derive a function
  2705  with an explicit pointer receiver, so
  2706  </p>
  2707  
  2708  <pre>
  2709  (*T).Mv
  2710  </pre>
  2711  
  2712  <p>
  2713  yields a function value representing <code>Mv</code> with signature
  2714  </p>
  2715  
  2716  <pre>
  2717  func(tv *T, a int) int
  2718  </pre>
  2719  
  2720  <p>
  2721  Such a function indirects through the receiver to create a value
  2722  to pass as the receiver to the underlying method;
  2723  the method does not overwrite the value whose address is passed in
  2724  the function call.
  2725  </p>
  2726  
  2727  <p>
  2728  The final case, a value-receiver function for a pointer-receiver method,
  2729  is illegal because pointer-receiver methods are not in the method set
  2730  of the value type.
  2731  </p>
  2732  
  2733  <p>
  2734  Function values derived from methods are called with function call syntax;
  2735  the receiver is provided as the first argument to the call.
  2736  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2737  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2738  To construct a function that binds the receiver, use a
  2739  <a href="#Function_literals">function literal</a> or
  2740  <a href="#Method_values">method value</a>.
  2741  </p>
  2742  
  2743  <p>
  2744  It is legal to derive a function value from a method of an interface type.
  2745  The resulting function takes an explicit receiver of that interface type.
  2746  </p>
  2747  
  2748  <h3 id="Method_values">Method values</h3>
  2749  
  2750  <p>
  2751  If the expression <code>x</code> has static type <code>T</code> and
  2752  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2753  <code>x.M</code> is called a <i>method value</i>.
  2754  The method value <code>x.M</code> is a function value that is callable
  2755  with the same arguments as a method call of <code>x.M</code>.
  2756  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2757  method value; the saved copy is then used as the receiver in any calls,
  2758  which may be executed later.
  2759  </p>
  2760  
  2761  <p>
  2762  The type <code>T</code> may be an interface or non-interface type.
  2763  </p>
  2764  
  2765  <p>
  2766  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2767  consider a struct type <code>T</code> with two methods,
  2768  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2769  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2770  </p>
  2771  
  2772  <pre>
  2773  type T struct {
  2774  	a int
  2775  }
  2776  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2777  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2778  
  2779  var t T
  2780  var pt *T
  2781  func makeT() T
  2782  </pre>
  2783  
  2784  <p>
  2785  The expression
  2786  </p>
  2787  
  2788  <pre>
  2789  t.Mv
  2790  </pre>
  2791  
  2792  <p>
  2793  yields a function value of type
  2794  </p>
  2795  
  2796  <pre>
  2797  func(int) int
  2798  </pre>
  2799  
  2800  <p>
  2801  These two invocations are equivalent:
  2802  </p>
  2803  
  2804  <pre>
  2805  t.Mv(7)
  2806  f := t.Mv; f(7)
  2807  </pre>
  2808  
  2809  <p>
  2810  Similarly, the expression
  2811  </p>
  2812  
  2813  <pre>
  2814  pt.Mp
  2815  </pre>
  2816  
  2817  <p>
  2818  yields a function value of type
  2819  </p>
  2820  
  2821  <pre>
  2822  func(float32) float32
  2823  </pre>
  2824  
  2825  <p>
  2826  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2827  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2828  </p>
  2829  
  2830  <p>
  2831  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2832  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2833  </p>
  2834  
  2835  <pre>
  2836  f := t.Mv; f(7)   // like t.Mv(7)
  2837  f := pt.Mp; f(7)  // like pt.Mp(7)
  2838  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2839  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2840  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2841  </pre>
  2842  
  2843  <p>
  2844  Although the examples above use non-interface types, it is also legal to create a method value
  2845  from a value of interface type.
  2846  </p>
  2847  
  2848  <pre>
  2849  var i interface { M(int) } = myVal
  2850  f := i.M; f(7)  // like i.M(7)
  2851  </pre>
  2852  
  2853  
  2854  <h3 id="Index_expressions">Index expressions</h3>
  2855  
  2856  <p>
  2857  A primary expression of the form
  2858  </p>
  2859  
  2860  <pre>
  2861  a[x]
  2862  </pre>
  2863  
  2864  <p>
  2865  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2866  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2867  The following rules apply:
  2868  </p>
  2869  
  2870  <p>
  2871  If <code>a</code> is not a map:
  2872  </p>
  2873  <ul>
  2874  	<li>the index <code>x</code> must be of integer type or untyped;
  2875  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2876  	    otherwise it is <i>out of range</i></li>
  2877  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2878  	    and representable by a value of type <code>int</code>
  2879  </ul>
  2880  
  2881  <p>
  2882  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2883  </p>
  2884  <ul>
  2885  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2886  	<li>if <code>x</code> is out of range at run time,
  2887  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2888  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2889  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2890  </ul>
  2891  
  2892  <p>
  2893  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2894  </p>
  2895  <ul>
  2896  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2897  </ul>
  2898  
  2899  <p>
  2900  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2901  </p>
  2902  <ul>
  2903  	<li>if <code>x</code> is out of range at run time,
  2904  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2905  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2906  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2907  </ul>
  2908  
  2909  <p>
  2910  For <code>a</code> of <a href="#String_types">string type</a>:
  2911  </p>
  2912  <ul>
  2913  	<li>a <a href="#Constants">constant</a> index must be in range
  2914  	    if the string <code>a</code> is also constant</li>
  2915  	<li>if <code>x</code> is out of range at run time,
  2916  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2917  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2918  	    <code>a[x]</code> is <code>byte</code></li>
  2919  	<li><code>a[x]</code> may not be assigned to</li>
  2920  </ul>
  2921  
  2922  <p>
  2923  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2924  </p>
  2925  <ul>
  2926  	<li><code>x</code>'s type must be
  2927  	    <a href="#Assignability">assignable</a>
  2928  	    to the key type of <code>M</code></li>
  2929  	<li>if the map contains an entry with key <code>x</code>,
  2930  	    <code>a[x]</code> is the map value with key <code>x</code>
  2931  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2932  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2933  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2934  	    for the value type of <code>M</code></li>
  2935  </ul>
  2936  
  2937  <p>
  2938  Otherwise <code>a[x]</code> is illegal.
  2939  </p>
  2940  
  2941  <p>
  2942  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2943  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2944  </p>
  2945  
  2946  <pre>
  2947  v, ok = a[x]
  2948  v, ok := a[x]
  2949  var v, ok = a[x]
  2950  </pre>
  2951  
  2952  <p>
  2953  yields an additional untyped boolean value. The value of <code>ok</code> is
  2954  <code>true</code> if the key <code>x</code> is present in the map, and
  2955  <code>false</code> otherwise.
  2956  </p>
  2957  
  2958  <p>
  2959  Assigning to an element of a <code>nil</code> map causes a
  2960  <a href="#Run_time_panics">run-time panic</a>.
  2961  </p>
  2962  
  2963  
  2964  <h3 id="Slice_expressions">Slice expressions</h3>
  2965  
  2966  <p>
  2967  Slice expressions construct a substring or slice from a string, array, pointer
  2968  to array, or slice. There are two variants: a simple form that specifies a low
  2969  and high bound, and a full form that also specifies a bound on the capacity.
  2970  </p>
  2971  
  2972  <h4>Simple slice expressions</h4>
  2973  
  2974  <p>
  2975  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  2976  </p>
  2977  
  2978  <pre>
  2979  a[low : high]
  2980  </pre>
  2981  
  2982  <p>
  2983  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  2984  <code>high</code> select which elements of operand <code>a</code> appear
  2985  in the result. The result has indices starting at 0 and length equal to
  2986  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  2987  After slicing the array <code>a</code>
  2988  </p>
  2989  
  2990  <pre>
  2991  a := [5]int{1, 2, 3, 4, 5}
  2992  s := a[1:4]
  2993  </pre>
  2994  
  2995  <p>
  2996  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  2997  </p>
  2998  
  2999  <pre>
  3000  s[0] == 2
  3001  s[1] == 3
  3002  s[2] == 4
  3003  </pre>
  3004  
  3005  <p>
  3006  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3007  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3008  sliced operand:
  3009  </p>
  3010  
  3011  <pre>
  3012  a[2:]  // same as a[2 : len(a)]
  3013  a[:3]  // same as a[0 : 3]
  3014  a[:]   // same as a[0 : len(a)]
  3015  </pre>
  3016  
  3017  <p>
  3018  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3019  <code>(*a)[low : high]</code>.
  3020  </p>
  3021  
  3022  <p>
  3023  For arrays or strings, the indices are <i>in range</i> if
  3024  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3025  otherwise they are <i>out of range</i>.
  3026  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3027  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3028  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3029  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3030  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3031  </p>
  3032  
  3033  <p>
  3034  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3035  the result of the slice operation is a non-constant value of the same type as the operand.
  3036  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3037  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3038  and the result of the slice operation is a slice with the same element type as the array.
  3039  </p>
  3040  
  3041  <p>
  3042  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3043  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3044  operand.
  3045  </p>
  3046  
  3047  <h4>Full slice expressions</h4>
  3048  
  3049  <p>
  3050  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3051  </p>
  3052  
  3053  <pre>
  3054  a[low : high : max]
  3055  </pre>
  3056  
  3057  <p>
  3058  constructs a slice of the same type, and with the same length and elements as the simple slice
  3059  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3060  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3061  After slicing the array <code>a</code>
  3062  </p>
  3063  
  3064  <pre>
  3065  a := [5]int{1, 2, 3, 4, 5}
  3066  t := a[1:3:5]
  3067  </pre>
  3068  
  3069  <p>
  3070  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3071  </p>
  3072  
  3073  <pre>
  3074  t[0] == 2
  3075  t[1] == 3
  3076  </pre>
  3077  
  3078  <p>
  3079  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3080  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3081  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3082  </p>
  3083  
  3084  <p>
  3085  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3086  otherwise they are <i>out of range</i>.
  3087  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3088  <code>int</code>; for arrays, constant indices must also be in range.
  3089  If multiple indices are constant, the constants that are present must be in range relative to each
  3090  other.
  3091  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3092  </p>
  3093  
  3094  <h3 id="Type_assertions">Type assertions</h3>
  3095  
  3096  <p>
  3097  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3098  and a type <code>T</code>, the primary expression
  3099  </p>
  3100  
  3101  <pre>
  3102  x.(T)
  3103  </pre>
  3104  
  3105  <p>
  3106  asserts that <code>x</code> is not <code>nil</code>
  3107  and that the value stored in <code>x</code> is of type <code>T</code>.
  3108  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3109  </p>
  3110  <p>
  3111  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3112  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3113  to the type <code>T</code>.
  3114  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3115  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3116  to store a value of type <code>T</code>.
  3117  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3118  of <code>x</code> implements the interface <code>T</code>.
  3119  </p>
  3120  <p>
  3121  If the type assertion holds, the value of the expression is the value
  3122  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3123  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3124  In other words, even though the dynamic type of <code>x</code>
  3125  is known only at run time, the type of <code>x.(T)</code> is
  3126  known to be <code>T</code> in a correct program.
  3127  </p>
  3128  
  3129  <pre>
  3130  var x interface{} = 7  // x has dynamic type int and value 7
  3131  i := x.(int)           // i has type int and value 7
  3132  
  3133  type I interface { m() }
  3134  var y I
  3135  s := y.(string)        // illegal: string does not implement I (missing method m)
  3136  r := y.(io.Reader)     // r has type io.Reader and y must implement both I and io.Reader
  3137  </pre>
  3138  
  3139  <p>
  3140  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3141  </p>
  3142  
  3143  <pre>
  3144  v, ok = x.(T)
  3145  v, ok := x.(T)
  3146  var v, ok = x.(T)
  3147  </pre>
  3148  
  3149  <p>
  3150  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3151  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3152  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3153  No run-time panic occurs in this case.
  3154  </p>
  3155  
  3156  
  3157  <h3 id="Calls">Calls</h3>
  3158  
  3159  <p>
  3160  Given an expression <code>f</code> of function type
  3161  <code>F</code>,
  3162  </p>
  3163  
  3164  <pre>
  3165  f(a1, a2, … an)
  3166  </pre>
  3167  
  3168  <p>
  3169  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3170  Except for one special case, arguments must be single-valued expressions
  3171  <a href="#Assignability">assignable</a> to the parameter types of
  3172  <code>F</code> and are evaluated before the function is called.
  3173  The type of the expression is the result type
  3174  of <code>F</code>.
  3175  A method invocation is similar but the method itself
  3176  is specified as a selector upon a value of the receiver type for
  3177  the method.
  3178  </p>
  3179  
  3180  <pre>
  3181  math.Atan2(x, y)  // function call
  3182  var pt *Point
  3183  pt.Scale(3.5)     // method call with receiver pt
  3184  </pre>
  3185  
  3186  <p>
  3187  In a function call, the function value and arguments are evaluated in
  3188  <a href="#Order_of_evaluation">the usual order</a>.
  3189  After they are evaluated, the parameters of the call are passed by value to the function
  3190  and the called function begins execution.
  3191  The return parameters of the function are passed by value
  3192  back to the calling function when the function returns.
  3193  </p>
  3194  
  3195  <p>
  3196  Calling a <code>nil</code> function value
  3197  causes a <a href="#Run_time_panics">run-time panic</a>.
  3198  </p>
  3199  
  3200  <p>
  3201  As a special case, if the return values of a function or method
  3202  <code>g</code> are equal in number and individually
  3203  assignable to the parameters of another function or method
  3204  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3205  will invoke <code>f</code> after binding the return values of
  3206  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3207  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3208  and <code>g</code> must have at least one return value.
  3209  If <code>f</code> has a final <code>...</code> parameter, it is
  3210  assigned the return values of <code>g</code> that remain after
  3211  assignment of regular parameters.
  3212  </p>
  3213  
  3214  <pre>
  3215  func Split(s string, pos int) (string, string) {
  3216  	return s[0:pos], s[pos:]
  3217  }
  3218  
  3219  func Join(s, t string) string {
  3220  	return s + t
  3221  }
  3222  
  3223  if Join(Split(value, len(value)/2)) != value {
  3224  	log.Panic("test fails")
  3225  }
  3226  </pre>
  3227  
  3228  <p>
  3229  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3230  of (the type of) <code>x</code> contains <code>m</code> and the
  3231  argument list can be assigned to the parameter list of <code>m</code>.
  3232  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3233  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3234  for <code>(&amp;x).m()</code>:
  3235  </p>
  3236  
  3237  <pre>
  3238  var p Point
  3239  p.Scale(3.5)
  3240  </pre>
  3241  
  3242  <p>
  3243  There is no distinct method type and there are no method literals.
  3244  </p>
  3245  
  3246  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3247  
  3248  <p>
  3249  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3250  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3251  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3252  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3253  the value passed to <code>p</code> is <code>nil</code>.
  3254  Otherwise, the value passed is a new slice
  3255  of type <code>[]T</code> with a new underlying array whose successive elements
  3256  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3257  to <code>T</code>. The length and capacity of the slice is therefore
  3258  the number of arguments bound to <code>p</code> and may differ for each
  3259  call site.
  3260  </p>
  3261  
  3262  <p>
  3263  Given the function and calls
  3264  </p>
  3265  <pre>
  3266  func Greeting(prefix string, who ...string)
  3267  Greeting("nobody")
  3268  Greeting("hello:", "Joe", "Anna", "Eileen")
  3269  </pre>
  3270  
  3271  <p>
  3272  within <code>Greeting</code>, <code>who</code> will have the value
  3273  <code>nil</code> in the first call, and
  3274  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3275  </p>
  3276  
  3277  <p>
  3278  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3279  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3280  is followed by <code>...</code>. In this case no new slice is created.
  3281  </p>
  3282  
  3283  <p>
  3284  Given the slice <code>s</code> and call
  3285  </p>
  3286  
  3287  <pre>
  3288  s := []string{"James", "Jasmine"}
  3289  Greeting("goodbye:", s...)
  3290  </pre>
  3291  
  3292  <p>
  3293  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3294  with the same underlying array.
  3295  </p>
  3296  
  3297  
  3298  <h3 id="Operators">Operators</h3>
  3299  
  3300  <p>
  3301  Operators combine operands into expressions.
  3302  </p>
  3303  
  3304  <pre class="ebnf">
  3305  Expression = UnaryExpr | Expression binary_op UnaryExpr .
  3306  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3307  
  3308  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3309  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3310  add_op     = "+" | "-" | "|" | "^" .
  3311  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3312  
  3313  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3314  </pre>
  3315  
  3316  <p>
  3317  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3318  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3319  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3320  For operations involving constants only, see the section on
  3321  <a href="#Constant_expressions">constant expressions</a>.
  3322  </p>
  3323  
  3324  <p>
  3325  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3326  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3327  to the type of the other operand.
  3328  </p>
  3329  
  3330  <p>
  3331  The right operand in a shift expression must have unsigned integer type
  3332  or be an untyped constant that can be converted to unsigned integer type.
  3333  If the left operand of a non-constant shift expression is an untyped constant,
  3334  the type of the constant is what it would be if the shift expression were
  3335  replaced by its left operand alone.
  3336  </p>
  3337  
  3338  <pre>
  3339  var s uint = 33
  3340  var i = 1&lt;&lt;s           // 1 has type int
  3341  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3342  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3343  var m int = 1.0&lt;&lt;s     // 1.0 has type int
  3344  var n = 1.0&lt;&lt;s != i    // 1.0 has type int; n == false if ints are 32bits in size
  3345  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3346  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3347  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3348  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3349  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3350  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3351  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3352  </pre>
  3353  
  3354  <h3 id="Operator_precedence">Operator precedence</h3>
  3355  <p>
  3356  Unary operators have the highest precedence.
  3357  As the  <code>++</code> and <code>--</code> operators form
  3358  statements, not expressions, they fall
  3359  outside the operator hierarchy.
  3360  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3361  <p>
  3362  There are five precedence levels for binary operators.
  3363  Multiplication operators bind strongest, followed by addition
  3364  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3365  and finally <code>||</code> (logical OR):
  3366  </p>
  3367  
  3368  <pre class="grammar">
  3369  Precedence    Operator
  3370      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3371      4             +  -  |  ^
  3372      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3373      2             &amp;&amp;
  3374      1             ||
  3375  </pre>
  3376  
  3377  <p>
  3378  Binary operators of the same precedence associate from left to right.
  3379  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3380  </p>
  3381  
  3382  <pre>
  3383  +x
  3384  23 + 3*x[i]
  3385  x &lt;= f()
  3386  ^a &gt;&gt; b
  3387  f() || g()
  3388  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3389  </pre>
  3390  
  3391  
  3392  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3393  <p>
  3394  Arithmetic operators apply to numeric values and yield a result of the same
  3395  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3396  <code>-</code>,  <code>*</code>, <code>/</code>) apply to integer,
  3397  floating-point, and complex types; <code>+</code> also applies
  3398  to strings. All other arithmetic operators apply to integers only.
  3399  </p>
  3400  
  3401  <pre class="grammar">
  3402  +    sum                    integers, floats, complex values, strings
  3403  -    difference             integers, floats, complex values
  3404  *    product                integers, floats, complex values
  3405  /    quotient               integers, floats, complex values
  3406  %    remainder              integers
  3407  
  3408  &amp;    bitwise AND            integers
  3409  |    bitwise OR             integers
  3410  ^    bitwise XOR            integers
  3411  &amp;^   bit clear (AND NOT)    integers
  3412  
  3413  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3414  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3415  </pre>
  3416  
  3417  <p>
  3418  Strings can be concatenated using the <code>+</code> operator
  3419  or the <code>+=</code> assignment operator:
  3420  </p>
  3421  
  3422  <pre>
  3423  s := "hi" + string(c)
  3424  s += " and good bye"
  3425  </pre>
  3426  
  3427  <p>
  3428  String addition creates a new string by concatenating the operands.
  3429  </p>
  3430  <p>
  3431  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3432  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3433  relationships:
  3434  </p>
  3435  
  3436  <pre>
  3437  x = q*y + r  and  |r| &lt; |y|
  3438  </pre>
  3439  
  3440  <p>
  3441  with <code>x / y</code> truncated towards zero
  3442  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3443  </p>
  3444  
  3445  <pre>
  3446   x     y     x / y     x % y
  3447   5     3       1         2
  3448  -5     3      -1        -2
  3449   5    -3      -1         2
  3450  -5    -3       1        -2
  3451  </pre>
  3452  
  3453  <p>
  3454  As an exception to this rule, if the dividend <code>x</code> is the most
  3455  negative value for the int type of <code>x</code>, the quotient
  3456  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3457  </p>
  3458  
  3459  <pre>
  3460  			 x, q
  3461  int8                     -128
  3462  int16                  -32768
  3463  int32             -2147483648
  3464  int64    -9223372036854775808
  3465  </pre>
  3466  
  3467  <p>
  3468  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3469  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3470  If the dividend is non-negative and the divisor is a constant power of 2,
  3471  the division may be replaced by a right shift, and computing the remainder may
  3472  be replaced by a bitwise AND operation:
  3473  </p>
  3474  
  3475  <pre>
  3476   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3477   11      2         3         2          3
  3478  -11     -2        -3        -3          1
  3479  </pre>
  3480  
  3481  <p>
  3482  The shift operators shift the left operand by the shift count specified by the
  3483  right operand. They implement arithmetic shifts if the left operand is a signed
  3484  integer and logical shifts if it is an unsigned integer.
  3485  There is no upper limit on the shift count. Shifts behave
  3486  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3487  count of <code>n</code>.
  3488  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3489  and <code>x &gt;&gt; 1</code> is the same as
  3490  <code>x/2</code> but truncated towards negative infinity.
  3491  </p>
  3492  
  3493  <p>
  3494  For integer operands, the unary operators
  3495  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3496  follows:
  3497  </p>
  3498  
  3499  <pre class="grammar">
  3500  +x                          is 0 + x
  3501  -x    negation              is 0 - x
  3502  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3503                                        and  m = -1 for signed x
  3504  </pre>
  3505  
  3506  <p>
  3507  For floating-point and complex numbers,
  3508  <code>+x</code> is the same as <code>x</code>,
  3509  while <code>-x</code> is the negation of <code>x</code>.
  3510  The result of a floating-point or complex division by zero is not specified beyond the
  3511  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3512  occurs is implementation-specific.
  3513  </p>
  3514  
  3515  <h3 id="Integer_overflow">Integer overflow</h3>
  3516  
  3517  <p>
  3518  For unsigned integer values, the operations <code>+</code>,
  3519  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3520  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3521  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3522  Loosely speaking, these unsigned integer operations
  3523  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3524  </p>
  3525  <p>
  3526  For signed integers, the operations <code>+</code>,
  3527  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3528  overflow and the resulting value exists and is deterministically defined
  3529  by the signed integer representation, the operation, and its operands.
  3530  No exception is raised as a result of overflow. A
  3531  compiler may not optimize code under the assumption that overflow does
  3532  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3533  </p>
  3534  
  3535  
  3536  <h3 id="Comparison_operators">Comparison operators</h3>
  3537  
  3538  <p>
  3539  Comparison operators compare two operands and yield an untyped boolean value.
  3540  </p>
  3541  
  3542  <pre class="grammar">
  3543  ==    equal
  3544  !=    not equal
  3545  &lt;     less
  3546  &lt;=    less or equal
  3547  &gt;     greater
  3548  &gt;=    greater or equal
  3549  </pre>
  3550  
  3551  <p>
  3552  In any comparison, the first operand
  3553  must be <a href="#Assignability">assignable</a>
  3554  to the type of the second operand, or vice versa.
  3555  </p>
  3556  <p>
  3557  The equality operators <code>==</code> and <code>!=</code> apply
  3558  to operands that are <i>comparable</i>.
  3559  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3560  apply to operands that are <i>ordered</i>.
  3561  These terms and the result of the comparisons are defined as follows:
  3562  </p>
  3563  
  3564  <ul>
  3565  	<li>
  3566  	Boolean values are comparable.
  3567  	Two boolean values are equal if they are either both
  3568  	<code>true</code> or both <code>false</code>.
  3569  	</li>
  3570  
  3571  	<li>
  3572  	Integer values are comparable and ordered, in the usual way.
  3573  	</li>
  3574  
  3575  	<li>
  3576  	Floating point values are comparable and ordered,
  3577  	as defined by the IEEE-754 standard.
  3578  	</li>
  3579  
  3580  	<li>
  3581  	Complex values are comparable.
  3582  	Two complex values <code>u</code> and <code>v</code> are
  3583  	equal if both <code>real(u) == real(v)</code> and
  3584  	<code>imag(u) == imag(v)</code>.
  3585  	</li>
  3586  
  3587  	<li>
  3588  	String values are comparable and ordered, lexically byte-wise.
  3589  	</li>
  3590  
  3591  	<li>
  3592  	Pointer values are comparable.
  3593  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3594  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3595  	</li>
  3596  
  3597  	<li>
  3598  	Channel values are comparable.
  3599  	Two channel values are equal if they were created by the same call to
  3600  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3601  	or if both have value <code>nil</code>.
  3602  	</li>
  3603  
  3604  	<li>
  3605  	Interface values are comparable.
  3606  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3607  	and equal dynamic values or if both have value <code>nil</code>.
  3608  	</li>
  3609  
  3610  	<li>
  3611  	A value <code>x</code> of non-interface type <code>X</code> and
  3612  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3613  	of type <code>X</code> are comparable and
  3614  	<code>X</code> implements <code>T</code>.
  3615  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3616  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3617  	</li>
  3618  
  3619  	<li>
  3620  	Struct values are comparable if all their fields are comparable.
  3621  	Two struct values are equal if their corresponding
  3622  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3623  	</li>
  3624  
  3625  	<li>
  3626  	Array values are comparable if values of the array element type are comparable.
  3627  	Two array values are equal if their corresponding elements are equal.
  3628  	</li>
  3629  </ul>
  3630  
  3631  <p>
  3632  A comparison of two interface values with identical dynamic types
  3633  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3634  of that type are not comparable.  This behavior applies not only to direct interface
  3635  value comparisons but also when comparing arrays of interface values
  3636  or structs with interface-valued fields.
  3637  </p>
  3638  
  3639  <p>
  3640  Slice, map, and function values are not comparable.
  3641  However, as a special case, a slice, map, or function value may
  3642  be compared to the predeclared identifier <code>nil</code>.
  3643  Comparison of pointer, channel, and interface values to <code>nil</code>
  3644  is also allowed and follows from the general rules above.
  3645  </p>
  3646  
  3647  <pre>
  3648  const c = 3 &lt; 4            // c is the untyped bool constant true
  3649  
  3650  type MyBool bool
  3651  var x, y int
  3652  var (
  3653  	// The result of a comparison is an untyped bool.
  3654  	// The usual assignment rules apply.
  3655  	b3        = x == y // b3 has type bool
  3656  	b4 bool   = x == y // b4 has type bool
  3657  	b5 MyBool = x == y // b5 has type MyBool
  3658  )
  3659  </pre>
  3660  
  3661  <h3 id="Logical_operators">Logical operators</h3>
  3662  
  3663  <p>
  3664  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3665  and yield a result of the same type as the operands.
  3666  The right operand is evaluated conditionally.
  3667  </p>
  3668  
  3669  <pre class="grammar">
  3670  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3671  ||    conditional OR     p || q  is  "if p then true else q"
  3672  !     NOT                !p      is  "not p"
  3673  </pre>
  3674  
  3675  
  3676  <h3 id="Address_operators">Address operators</h3>
  3677  
  3678  <p>
  3679  For an operand <code>x</code> of type <code>T</code>, the address operation
  3680  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3681  The operand must be <i>addressable</i>,
  3682  that is, either a variable, pointer indirection, or slice indexing
  3683  operation; or a field selector of an addressable struct operand;
  3684  or an array indexing operation of an addressable array.
  3685  As an exception to the addressability requirement, <code>x</code> may also be a
  3686  (possibly parenthesized)
  3687  <a href="#Composite_literals">composite literal</a>.
  3688  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3689  then the evaluation of <code>&amp;x</code> does too.
  3690  </p>
  3691  
  3692  <p>
  3693  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3694  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3695  to by <code>x</code>.
  3696  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3697  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3698  </p>
  3699  
  3700  <pre>
  3701  &amp;x
  3702  &amp;a[f(2)]
  3703  &amp;Point{2, 3}
  3704  *p
  3705  *pf(x)
  3706  
  3707  var x *int = nil
  3708  *x   // causes a run-time panic
  3709  &amp;*x  // causes a run-time panic
  3710  </pre>
  3711  
  3712  
  3713  <h3 id="Receive_operator">Receive operator</h3>
  3714  
  3715  <p>
  3716  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3717  the value of the receive operation <code>&lt;-ch</code> is the value received
  3718  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3719  and the type of the receive operation is the element type of the channel.
  3720  The expression blocks until a value is available.
  3721  Receiving from a <code>nil</code> channel blocks forever.
  3722  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3723  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3724  after any previously sent values have been received.
  3725  </p>
  3726  
  3727  <pre>
  3728  v1 := &lt;-ch
  3729  v2 = &lt;-ch
  3730  f(&lt;-ch)
  3731  &lt;-strobe  // wait until clock pulse and discard received value
  3732  </pre>
  3733  
  3734  <p>
  3735  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3736  </p>
  3737  
  3738  <pre>
  3739  x, ok = &lt;-ch
  3740  x, ok := &lt;-ch
  3741  var x, ok = &lt;-ch
  3742  </pre>
  3743  
  3744  <p>
  3745  yields an additional untyped boolean result reporting whether the
  3746  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3747  if the value received was delivered by a successful send operation to the
  3748  channel, or <code>false</code> if it is a zero value generated because the
  3749  channel is closed and empty.
  3750  </p>
  3751  
  3752  
  3753  <h3 id="Conversions">Conversions</h3>
  3754  
  3755  <p>
  3756  Conversions are expressions of the form <code>T(x)</code>
  3757  where <code>T</code> is a type and <code>x</code> is an expression
  3758  that can be converted to type <code>T</code>.
  3759  </p>
  3760  
  3761  <pre class="ebnf">
  3762  Conversion = Type "(" Expression [ "," ] ")" .
  3763  </pre>
  3764  
  3765  <p>
  3766  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3767  or if the type starts with the keyword <code>func</code>
  3768  and has no result list, it must be parenthesized when
  3769  necessary to avoid ambiguity:
  3770  </p>
  3771  
  3772  <pre>
  3773  *Point(p)        // same as *(Point(p))
  3774  (*Point)(p)      // p is converted to *Point
  3775  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3776  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3777  func()(x)        // function signature func() x
  3778  (func())(x)      // x is converted to func()
  3779  (func() int)(x)  // x is converted to func() int
  3780  func() int(x)    // x is converted to func() int (unambiguous)
  3781  </pre>
  3782  
  3783  <p>
  3784  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3785  type <code>T</code> in any of these cases:
  3786  </p>
  3787  
  3788  <ul>
  3789  	<li>
  3790  	<code>x</code> is representable by a value of type <code>T</code>.
  3791  	</li>
  3792  	<li>
  3793  	<code>x</code> is a floating-point constant,
  3794  	<code>T</code> is a floating-point type,
  3795  	and <code>x</code> is representable by a value
  3796  	of type <code>T</code> after rounding using
  3797  	IEEE 754 round-to-even rules.
  3798  	The constant <code>T(x)</code> is the rounded value.
  3799  	</li>
  3800  	<li>
  3801  	<code>x</code> is an integer constant and <code>T</code> is a
  3802  	<a href="#String_types">string type</a>.
  3803  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3804  	as for non-constant <code>x</code> applies in this case.
  3805  	</li>
  3806  </ul>
  3807  
  3808  <p>
  3809  Converting a constant yields a typed constant as result.
  3810  </p>
  3811  
  3812  <pre>
  3813  uint(iota)               // iota value of type uint
  3814  float32(2.718281828)     // 2.718281828 of type float32
  3815  complex128(1)            // 1.0 + 0.0i of type complex128
  3816  float32(0.49999999)      // 0.5 of type float32
  3817  string('x')              // "x" of type string
  3818  string(0x266c)           // "♬" of type string
  3819  MyString("foo" + "bar")  // "foobar" of type MyString
  3820  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3821  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3822  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3823  string(65.0)             // illegal: 65.0 is not an integer constant
  3824  </pre>
  3825  
  3826  <p>
  3827  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3828  in any of these cases:
  3829  </p>
  3830  
  3831  <ul>
  3832  	<li>
  3833  	<code>x</code> is <a href="#Assignability">assignable</a>
  3834  	to <code>T</code>.
  3835  	</li>
  3836  	<li>
  3837  	<code>x</code>'s type and <code>T</code> have identical
  3838  	<a href="#Types">underlying types</a>.
  3839  	</li>
  3840  	<li>
  3841  	<code>x</code>'s type and <code>T</code> are unnamed pointer types
  3842  	and their pointer base types have identical underlying types.
  3843  	</li>
  3844  	<li>
  3845  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3846  	point types.
  3847  	</li>
  3848  	<li>
  3849  	<code>x</code>'s type and <code>T</code> are both complex types.
  3850  	</li>
  3851  	<li>
  3852  	<code>x</code> is an integer or a slice of bytes or runes
  3853  	and <code>T</code> is a string type.
  3854  	</li>
  3855  	<li>
  3856  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3857  	</li>
  3858  </ul>
  3859  
  3860  <p>
  3861  Specific rules apply to (non-constant) conversions between numeric types or
  3862  to and from a string type.
  3863  These conversions may change the representation of <code>x</code>
  3864  and incur a run-time cost.
  3865  All other conversions only change the type but not the representation
  3866  of <code>x</code>.
  3867  </p>
  3868  
  3869  <p>
  3870  There is no linguistic mechanism to convert between pointers and integers.
  3871  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3872  implements this functionality under
  3873  restricted circumstances.
  3874  </p>
  3875  
  3876  <h4>Conversions between numeric types</h4>
  3877  
  3878  <p>
  3879  For the conversion of non-constant numeric values, the following rules apply:
  3880  </p>
  3881  
  3882  <ol>
  3883  <li>
  3884  When converting between integer types, if the value is a signed integer, it is
  3885  sign extended to implicit infinite precision; otherwise it is zero extended.
  3886  It is then truncated to fit in the result type's size.
  3887  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3888  The conversion always yields a valid value; there is no indication of overflow.
  3889  </li>
  3890  <li>
  3891  When converting a floating-point number to an integer, the fraction is discarded
  3892  (truncation towards zero).
  3893  </li>
  3894  <li>
  3895  When converting an integer or floating-point number to a floating-point type,
  3896  or a complex number to another complex type, the result value is rounded
  3897  to the precision specified by the destination type.
  3898  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3899  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3900  but float32(x) represents the result of rounding <code>x</code>'s value to
  3901  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  3902  of precision, but <code>float32(x + 0.1)</code> does not.
  3903  </li>
  3904  </ol>
  3905  
  3906  <p>
  3907  In all non-constant conversions involving floating-point or complex values,
  3908  if the result type cannot represent the value the conversion
  3909  succeeds but the result value is implementation-dependent.
  3910  </p>
  3911  
  3912  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  3913  
  3914  <ol>
  3915  <li>
  3916  Converting a signed or unsigned integer value to a string type yields a
  3917  string containing the UTF-8 representation of the integer. Values outside
  3918  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  3919  
  3920  <pre>
  3921  string('a')       // "a"
  3922  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  3923  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  3924  type MyString string
  3925  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  3926  </pre>
  3927  </li>
  3928  
  3929  <li>
  3930  Converting a slice of bytes to a string type yields
  3931  a string whose successive bytes are the elements of the slice.
  3932  
  3933  <pre>
  3934  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  3935  string([]byte{})                                     // ""
  3936  string([]byte(nil))                                  // ""
  3937  
  3938  type MyBytes []byte
  3939  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  3940  </pre>
  3941  </li>
  3942  
  3943  <li>
  3944  Converting a slice of runes to a string type yields
  3945  a string that is the concatenation of the individual rune values
  3946  converted to strings.
  3947  
  3948  <pre>
  3949  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3950  string([]rune{})                         // ""
  3951  string([]rune(nil))                      // ""
  3952  
  3953  type MyRunes []rune
  3954  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3955  </pre>
  3956  </li>
  3957  
  3958  <li>
  3959  Converting a value of a string type to a slice of bytes type
  3960  yields a slice whose successive elements are the bytes of the string.
  3961  
  3962  <pre>
  3963  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  3964  []byte("")        // []byte{}
  3965  
  3966  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  3967  </pre>
  3968  </li>
  3969  
  3970  <li>
  3971  Converting a value of a string type to a slice of runes type
  3972  yields a slice containing the individual Unicode code points of the string.
  3973  
  3974  <pre>
  3975  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  3976  []rune("")                 // []rune{}
  3977  
  3978  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  3979  </pre>
  3980  </li>
  3981  </ol>
  3982  
  3983  
  3984  <h3 id="Constant_expressions">Constant expressions</h3>
  3985  
  3986  <p>
  3987  Constant expressions may contain only <a href="#Constants">constant</a>
  3988  operands and are evaluated at compile time.
  3989  </p>
  3990  
  3991  <p>
  3992  Untyped boolean, numeric, and string constants may be used as operands
  3993  wherever it is legal to use an operand of boolean, numeric, or string type,
  3994  respectively.
  3995  Except for shift operations, if the operands of a binary operation are
  3996  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  3997  the kind that appears later in this list: integer, rune, floating-point, complex.
  3998  For example, an untyped integer constant divided by an
  3999  untyped complex constant yields an untyped complex constant.
  4000  </p>
  4001  
  4002  <p>
  4003  A constant <a href="#Comparison_operators">comparison</a> always yields
  4004  an untyped boolean constant.  If the left operand of a constant
  4005  <a href="#Operators">shift expression</a> is an untyped constant, the
  4006  result is an integer constant; otherwise it is a constant of the same
  4007  type as the left operand, which must be of
  4008  <a href="#Numeric_types">integer type</a>.
  4009  Applying all other operators to untyped constants results in an untyped
  4010  constant of the same kind (that is, a boolean, integer, floating-point,
  4011  complex, or string constant).
  4012  </p>
  4013  
  4014  <pre>
  4015  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4016  const b = 15 / 4           // b == 3     (untyped integer constant)
  4017  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4018  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4019  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4020  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4021  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4022  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4023  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4024  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4025  const j = true             // j == true  (untyped boolean constant)
  4026  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4027  const l = "hi"             // l == "hi"  (untyped string constant)
  4028  const m = string(k)        // m == "x"   (type string)
  4029  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4030  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4031  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4032  </pre>
  4033  
  4034  <p>
  4035  Applying the built-in function <code>complex</code> to untyped
  4036  integer, rune, or floating-point constants yields
  4037  an untyped complex constant.
  4038  </p>
  4039  
  4040  <pre>
  4041  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4042  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4043  </pre>
  4044  
  4045  <p>
  4046  Constant expressions are always evaluated exactly; intermediate values and the
  4047  constants themselves may require precision significantly larger than supported
  4048  by any predeclared type in the language. The following are legal declarations:
  4049  </p>
  4050  
  4051  <pre>
  4052  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4053  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4054  </pre>
  4055  
  4056  <p>
  4057  The divisor of a constant division or remainder operation must not be zero:
  4058  </p>
  4059  
  4060  <pre>
  4061  3.14 / 0.0   // illegal: division by zero
  4062  </pre>
  4063  
  4064  <p>
  4065  The values of <i>typed</i> constants must always be accurately representable as values
  4066  of the constant type. The following constant expressions are illegal:
  4067  </p>
  4068  
  4069  <pre>
  4070  uint(-1)     // -1 cannot be represented as a uint
  4071  int(3.14)    // 3.14 cannot be represented as an int
  4072  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4073  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4074  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4075  </pre>
  4076  
  4077  <p>
  4078  The mask used by the unary bitwise complement operator <code>^</code> matches
  4079  the rule for non-constants: the mask is all 1s for unsigned constants
  4080  and -1 for signed and untyped constants.
  4081  </p>
  4082  
  4083  <pre>
  4084  ^1         // untyped integer constant, equal to -2
  4085  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4086  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4087  int8(^1)   // same as int8(-2)
  4088  ^int8(1)   // same as -1 ^ int8(1) = -2
  4089  </pre>
  4090  
  4091  <p>
  4092  Implementation restriction: A compiler may use rounding while
  4093  computing untyped floating-point or complex constant expressions; see
  4094  the implementation restriction in the section
  4095  on <a href="#Constants">constants</a>.  This rounding may cause a
  4096  floating-point constant expression to be invalid in an integer
  4097  context, even if it would be integral when calculated using infinite
  4098  precision.
  4099  </p>
  4100  
  4101  
  4102  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4103  
  4104  <p>
  4105  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4106  determine the evaluation order of individual initialization expressions in
  4107  <a href="#Variable_declarations">variable declarations</a>.
  4108  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4109  expression, assignment, or
  4110  <a href="#Return_statements">return statement</a>,
  4111  all function calls, method calls, and
  4112  communication operations are evaluated in lexical left-to-right
  4113  order.
  4114  </p>
  4115  
  4116  <p>
  4117  For example, in the (function-local) assignment
  4118  </p>
  4119  <pre>
  4120  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4121  </pre>
  4122  <p>
  4123  the function calls and communication happen in the order
  4124  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4125  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4126  However, the order of those events compared to the evaluation
  4127  and indexing of <code>x</code> and the evaluation
  4128  of <code>y</code> is not specified.
  4129  </p>
  4130  
  4131  <pre>
  4132  a := 1
  4133  f := func() int { a++; return a }
  4134  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4135  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4136  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4137  </pre>
  4138  
  4139  <p>
  4140  At package level, initialization dependencies override the left-to-right rule
  4141  for individual initialization expressions, but not for operands within each
  4142  expression:
  4143  </p>
  4144  
  4145  <pre>
  4146  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4147  
  4148  func f() int        { return c }
  4149  func g() int        { return a }
  4150  func sqr(x int) int { return x*x }
  4151  
  4152  // functions u and v are independent of all other variables and functions
  4153  </pre>
  4154  
  4155  <p>
  4156  The function calls happen in the order
  4157  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4158  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4159  </p>
  4160  
  4161  <p>
  4162  Floating-point operations within a single expression are evaluated according to
  4163  the associativity of the operators.  Explicit parentheses affect the evaluation
  4164  by overriding the default associativity.
  4165  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4166  is performed before adding <code>x</code>.
  4167  </p>
  4168  
  4169  <h2 id="Statements">Statements</h2>
  4170  
  4171  <p>
  4172  Statements control execution.
  4173  </p>
  4174  
  4175  <pre class="ebnf">
  4176  Statement =
  4177  	Declaration | LabeledStmt | SimpleStmt |
  4178  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4179  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4180  	DeferStmt .
  4181  
  4182  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4183  </pre>
  4184  
  4185  <h3 id="Terminating_statements">Terminating statements</h3>
  4186  
  4187  <p>
  4188  A terminating statement is one of the following:
  4189  </p>
  4190  
  4191  <ol>
  4192  <li>
  4193  	A <a href="#Return_statements">"return"</a> or
  4194      	<a href="#Goto_statements">"goto"</a> statement.
  4195  	<!-- ul below only for regular layout -->
  4196  	<ul> </ul>
  4197  </li>
  4198  
  4199  <li>
  4200  	A call to the built-in function
  4201  	<a href="#Handling_panics"><code>panic</code></a>.
  4202  	<!-- ul below only for regular layout -->
  4203  	<ul> </ul>
  4204  </li>
  4205  
  4206  <li>
  4207  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4208  	<!-- ul below only for regular layout -->
  4209  	<ul> </ul>
  4210  </li>
  4211  
  4212  <li>
  4213  	An <a href="#If_statements">"if" statement</a> in which:
  4214  	<ul>
  4215  	<li>the "else" branch is present, and</li>
  4216  	<li>both branches are terminating statements.</li>
  4217  	</ul>
  4218  </li>
  4219  
  4220  <li>
  4221  	A <a href="#For_statements">"for" statement</a> in which:
  4222  	<ul>
  4223  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4224  	<li>the loop condition is absent.</li>
  4225  	</ul>
  4226  </li>
  4227  
  4228  <li>
  4229  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4230  	<ul>
  4231  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4232  	<li>there is a default case, and</li>
  4233  	<li>the statement lists in each case, including the default, end in a terminating
  4234  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4235  	    statement</a>.</li>
  4236  	</ul>
  4237  </li>
  4238  
  4239  <li>
  4240  	A <a href="#Select_statements">"select" statement</a> in which:
  4241  	<ul>
  4242  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4243  	<li>the statement lists in each case, including the default if present,
  4244  	    end in a terminating statement.</li>
  4245  	</ul>
  4246  </li>
  4247  
  4248  <li>
  4249  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4250  	a terminating statement.
  4251  </li>
  4252  </ol>
  4253  
  4254  <p>
  4255  All other statements are not terminating.
  4256  </p>
  4257  
  4258  <p>
  4259  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4260  is not empty and its final statement is terminating.
  4261  </p>
  4262  
  4263  
  4264  <h3 id="Empty_statements">Empty statements</h3>
  4265  
  4266  <p>
  4267  The empty statement does nothing.
  4268  </p>
  4269  
  4270  <pre class="ebnf">
  4271  EmptyStmt = .
  4272  </pre>
  4273  
  4274  
  4275  <h3 id="Labeled_statements">Labeled statements</h3>
  4276  
  4277  <p>
  4278  A labeled statement may be the target of a <code>goto</code>,
  4279  <code>break</code> or <code>continue</code> statement.
  4280  </p>
  4281  
  4282  <pre class="ebnf">
  4283  LabeledStmt = Label ":" Statement .
  4284  Label       = identifier .
  4285  </pre>
  4286  
  4287  <pre>
  4288  Error: log.Panic("error encountered")
  4289  </pre>
  4290  
  4291  
  4292  <h3 id="Expression_statements">Expression statements</h3>
  4293  
  4294  <p>
  4295  With the exception of specific built-in functions,
  4296  function and method <a href="#Calls">calls</a> and
  4297  <a href="#Receive_operator">receive operations</a>
  4298  can appear in statement context. Such statements may be parenthesized.
  4299  </p>
  4300  
  4301  <pre class="ebnf">
  4302  ExpressionStmt = Expression .
  4303  </pre>
  4304  
  4305  <p>
  4306  The following built-in functions are not permitted in statement context:
  4307  </p>
  4308  
  4309  <pre>
  4310  append cap complex imag len make new real
  4311  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4312  </pre>
  4313  
  4314  <pre>
  4315  h(x+y)
  4316  f.Close()
  4317  &lt;-ch
  4318  (&lt;-ch)
  4319  len("foo")  // illegal if len is the built-in function
  4320  </pre>
  4321  
  4322  
  4323  <h3 id="Send_statements">Send statements</h3>
  4324  
  4325  <p>
  4326  A send statement sends a value on a channel.
  4327  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4328  the channel direction must permit send operations,
  4329  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4330  to the channel's element type.
  4331  </p>
  4332  
  4333  <pre class="ebnf">
  4334  SendStmt = Channel "&lt;-" Expression .
  4335  Channel  = Expression .
  4336  </pre>
  4337  
  4338  <p>
  4339  Both the channel and the value expression are evaluated before communication
  4340  begins. Communication blocks until the send can proceed.
  4341  A send on an unbuffered channel can proceed if a receiver is ready.
  4342  A send on a buffered channel can proceed if there is room in the buffer.
  4343  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4344  A send on a <code>nil</code> channel blocks forever.
  4345  </p>
  4346  
  4347  <pre>
  4348  ch &lt;- 3  // send value 3 to channel ch
  4349  </pre>
  4350  
  4351  
  4352  <h3 id="IncDec_statements">IncDec statements</h3>
  4353  
  4354  <p>
  4355  The "++" and "--" statements increment or decrement their operands
  4356  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4357  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4358  or a map index expression.
  4359  </p>
  4360  
  4361  <pre class="ebnf">
  4362  IncDecStmt = Expression ( "++" | "--" ) .
  4363  </pre>
  4364  
  4365  <p>
  4366  The following <a href="#Assignments">assignment statements</a> are semantically
  4367  equivalent:
  4368  </p>
  4369  
  4370  <pre class="grammar">
  4371  IncDec statement    Assignment
  4372  x++                 x += 1
  4373  x--                 x -= 1
  4374  </pre>
  4375  
  4376  
  4377  <h3 id="Assignments">Assignments</h3>
  4378  
  4379  <pre class="ebnf">
  4380  Assignment = ExpressionList assign_op ExpressionList .
  4381  
  4382  assign_op = [ add_op | mul_op ] "=" .
  4383  </pre>
  4384  
  4385  <p>
  4386  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4387  a map index expression, or (for <code>=</code> assignments only) the
  4388  <a href="#Blank_identifier">blank identifier</a>.
  4389  Operands may be parenthesized.
  4390  </p>
  4391  
  4392  <pre>
  4393  x = 1
  4394  *p = f()
  4395  a[i] = 23
  4396  (k) = &lt;-ch  // same as: k = &lt;-ch
  4397  </pre>
  4398  
  4399  <p>
  4400  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4401  <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
  4402  to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4403  <code>y</code> but evaluates <code>x</code>
  4404  only once.  The <i>op</i><code>=</code> construct is a single token.
  4405  In assignment operations, both the left- and right-hand expression lists
  4406  must contain exactly one single-valued expression, and the left-hand
  4407  expression must not be the blank identifier.
  4408  </p>
  4409  
  4410  <pre>
  4411  a[i] &lt;&lt;= 2
  4412  i &amp;^= 1&lt;&lt;n
  4413  </pre>
  4414  
  4415  <p>
  4416  A tuple assignment assigns the individual elements of a multi-valued
  4417  operation to a list of variables.  There are two forms.  In the
  4418  first, the right hand operand is a single multi-valued expression
  4419  such as a function call, a <a href="#Channel_types">channel</a> or
  4420  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4421  The number of operands on the left
  4422  hand side must match the number of values.  For instance, if
  4423  <code>f</code> is a function returning two values,
  4424  </p>
  4425  
  4426  <pre>
  4427  x, y = f()
  4428  </pre>
  4429  
  4430  <p>
  4431  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4432  In the second form, the number of operands on the left must equal the number
  4433  of expressions on the right, each of which must be single-valued, and the
  4434  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4435  operand on the left:
  4436  </p>
  4437  
  4438  <pre>
  4439  one, two, three = '一', '二', '三'
  4440  </pre>
  4441  
  4442  <p>
  4443  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4444  ignore right-hand side values in an assignment:
  4445  </p>
  4446  
  4447  <pre>
  4448  _ = x       // evaluate x but ignore it
  4449  x, _ = f()  // evaluate f() but ignore second result value
  4450  </pre>
  4451  
  4452  <p>
  4453  The assignment proceeds in two phases.
  4454  First, the operands of <a href="#Index_expressions">index expressions</a>
  4455  and <a href="#Address_operators">pointer indirections</a>
  4456  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4457  on the left and the expressions on the right are all
  4458  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4459  Second, the assignments are carried out in left-to-right order.
  4460  </p>
  4461  
  4462  <pre>
  4463  a, b = b, a  // exchange a and b
  4464  
  4465  x := []int{1, 2, 3}
  4466  i := 0
  4467  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4468  
  4469  i = 0
  4470  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4471  
  4472  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4473  
  4474  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4475  
  4476  type Point struct { x, y int }
  4477  var p *Point
  4478  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4479  
  4480  i = 2
  4481  x = []int{3, 5, 7}
  4482  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4483  	break
  4484  }
  4485  // after this loop, i == 0 and x == []int{3, 5, 3}
  4486  </pre>
  4487  
  4488  <p>
  4489  In assignments, each value must be <a href="#Assignability">assignable</a>
  4490  to the type of the operand to which it is assigned, with the following special cases:
  4491  </p>
  4492  
  4493  <ol>
  4494  <li>
  4495  	Any typed value may be assigned to the blank identifier.
  4496  </li>
  4497  
  4498  <li>
  4499  	If an untyped constant
  4500  	is assigned to a variable of interface type or the blank identifier,
  4501  	the constant is first <a href="#Conversions">converted</a> to its
  4502  	 <a href="#Constants">default type</a>.
  4503  </li>
  4504  
  4505  <li>
  4506  	If an untyped boolean value is assigned to a variable of interface type or
  4507  	the blank identifier, it is first converted to type <code>bool</code>.
  4508  </li>
  4509  </ol>
  4510  
  4511  <h3 id="If_statements">If statements</h3>
  4512  
  4513  <p>
  4514  "If" statements specify the conditional execution of two branches
  4515  according to the value of a boolean expression.  If the expression
  4516  evaluates to true, the "if" branch is executed, otherwise, if
  4517  present, the "else" branch is executed.
  4518  </p>
  4519  
  4520  <pre class="ebnf">
  4521  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4522  </pre>
  4523  
  4524  <pre>
  4525  if x &gt; max {
  4526  	x = max
  4527  }
  4528  </pre>
  4529  
  4530  <p>
  4531  The expression may be preceded by a simple statement, which
  4532  executes before the expression is evaluated.
  4533  </p>
  4534  
  4535  <pre>
  4536  if x := f(); x &lt; y {
  4537  	return x
  4538  } else if x &gt; z {
  4539  	return z
  4540  } else {
  4541  	return y
  4542  }
  4543  </pre>
  4544  
  4545  
  4546  <h3 id="Switch_statements">Switch statements</h3>
  4547  
  4548  <p>
  4549  "Switch" statements provide multi-way execution.
  4550  An expression or type specifier is compared to the "cases"
  4551  inside the "switch" to determine which branch
  4552  to execute.
  4553  </p>
  4554  
  4555  <pre class="ebnf">
  4556  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4557  </pre>
  4558  
  4559  <p>
  4560  There are two forms: expression switches and type switches.
  4561  In an expression switch, the cases contain expressions that are compared
  4562  against the value of the switch expression.
  4563  In a type switch, the cases contain types that are compared against the
  4564  type of a specially annotated switch expression.
  4565  </p>
  4566  
  4567  <h4 id="Expression_switches">Expression switches</h4>
  4568  
  4569  <p>
  4570  In an expression switch,
  4571  the switch expression is evaluated and
  4572  the case expressions, which need not be constants,
  4573  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4574  switch expression
  4575  triggers execution of the statements of the associated case;
  4576  the other cases are skipped.
  4577  If no case matches and there is a "default" case,
  4578  its statements are executed.
  4579  There can be at most one default case and it may appear anywhere in the
  4580  "switch" statement.
  4581  A missing switch expression is equivalent to the boolean value
  4582  <code>true</code>.
  4583  </p>
  4584  
  4585  <pre class="ebnf">
  4586  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4587  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4588  ExprSwitchCase = "case" ExpressionList | "default" .
  4589  </pre>
  4590  
  4591  <p>
  4592  In a case or default clause, the last non-empty statement
  4593  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4594  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4595  indicate that control should flow from the end of this clause to
  4596  the first statement of the next clause.
  4597  Otherwise control flows to the end of the "switch" statement.
  4598  A "fallthrough" statement may appear as the last statement of all
  4599  but the last clause of an expression switch.
  4600  </p>
  4601  
  4602  <p>
  4603  The expression may be preceded by a simple statement, which
  4604  executes before the expression is evaluated.
  4605  </p>
  4606  
  4607  <pre>
  4608  switch tag {
  4609  default: s3()
  4610  case 0, 1, 2, 3: s1()
  4611  case 4, 5, 6, 7: s2()
  4612  }
  4613  
  4614  switch x := f(); {  // missing switch expression means "true"
  4615  case x &lt; 0: return -x
  4616  default: return x
  4617  }
  4618  
  4619  switch {
  4620  case x &lt; y: f1()
  4621  case x &lt; z: f2()
  4622  case x == 4: f3()
  4623  }
  4624  </pre>
  4625  
  4626  <h4 id="Type_switches">Type switches</h4>
  4627  
  4628  <p>
  4629  A type switch compares types rather than values. It is otherwise similar
  4630  to an expression switch. It is marked by a special switch expression that
  4631  has the form of a <a href="#Type_assertions">type assertion</a>
  4632  using the reserved word <code>type</code> rather than an actual type:
  4633  </p>
  4634  
  4635  <pre>
  4636  switch x.(type) {
  4637  // cases
  4638  }
  4639  </pre>
  4640  
  4641  <p>
  4642  Cases then match actual types <code>T</code> against the dynamic type of the
  4643  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4644  <a href="#Interface_types">interface type</a>, and each non-interface type
  4645  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4646  </p>
  4647  
  4648  <pre class="ebnf">
  4649  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4650  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4651  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4652  TypeSwitchCase  = "case" TypeList | "default" .
  4653  TypeList        = Type { "," Type } .
  4654  </pre>
  4655  
  4656  <p>
  4657  The TypeSwitchGuard may include a
  4658  <a href="#Short_variable_declarations">short variable declaration</a>.
  4659  When that form is used, the variable is declared at the beginning of
  4660  the <a href="#Blocks">implicit block</a> in each clause.
  4661  In clauses with a case listing exactly one type, the variable
  4662  has that type; otherwise, the variable has the type of the expression
  4663  in the TypeSwitchGuard.
  4664  </p>
  4665  
  4666  <p>
  4667  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4668  that case is used when the expression in the TypeSwitchGuard
  4669  is a <code>nil</code> interface value.
  4670  </p>
  4671  
  4672  <p>
  4673  Given an expression <code>x</code> of type <code>interface{}</code>,
  4674  the following type switch:
  4675  </p>
  4676  
  4677  <pre>
  4678  switch i := x.(type) {
  4679  case nil:
  4680  	printString("x is nil")                // type of i is type of x (interface{})
  4681  case int:
  4682  	printInt(i)                            // type of i is int
  4683  case float64:
  4684  	printFloat64(i)                        // type of i is float64
  4685  case func(int) float64:
  4686  	printFunction(i)                       // type of i is func(int) float64
  4687  case bool, string:
  4688  	printString("type is bool or string")  // type of i is type of x (interface{})
  4689  default:
  4690  	printString("don't know the type")     // type of i is type of x (interface{})
  4691  }
  4692  </pre>
  4693  
  4694  <p>
  4695  could be rewritten:
  4696  </p>
  4697  
  4698  <pre>
  4699  v := x  // x is evaluated exactly once
  4700  if v == nil {
  4701  	i := v                                 // type of i is type of x (interface{})
  4702  	printString("x is nil")
  4703  } else if i, isInt := v.(int); isInt {
  4704  	printInt(i)                            // type of i is int
  4705  } else if i, isFloat64 := v.(float64); isFloat64 {
  4706  	printFloat64(i)                        // type of i is float64
  4707  } else if i, isFunc := v.(func(int) float64); isFunc {
  4708  	printFunction(i)                       // type of i is func(int) float64
  4709  } else {
  4710  	_, isBool := v.(bool)
  4711  	_, isString := v.(string)
  4712  	if isBool || isString {
  4713  		i := v                         // type of i is type of x (interface{})
  4714  		printString("type is bool or string")
  4715  	} else {
  4716  		i := v                         // type of i is type of x (interface{})
  4717  		printString("don't know the type")
  4718  	}
  4719  }
  4720  </pre>
  4721  
  4722  <p>
  4723  The type switch guard may be preceded by a simple statement, which
  4724  executes before the guard is evaluated.
  4725  </p>
  4726  
  4727  <p>
  4728  The "fallthrough" statement is not permitted in a type switch.
  4729  </p>
  4730  
  4731  <h3 id="For_statements">For statements</h3>
  4732  
  4733  <p>
  4734  A "for" statement specifies repeated execution of a block. The iteration is
  4735  controlled by a condition, a "for" clause, or a "range" clause.
  4736  </p>
  4737  
  4738  <pre class="ebnf">
  4739  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4740  Condition = Expression .
  4741  </pre>
  4742  
  4743  <p>
  4744  In its simplest form, a "for" statement specifies the repeated execution of
  4745  a block as long as a boolean condition evaluates to true.
  4746  The condition is evaluated before each iteration.
  4747  If the condition is absent, it is equivalent to the boolean value
  4748  <code>true</code>.
  4749  </p>
  4750  
  4751  <pre>
  4752  for a &lt; b {
  4753  	a *= 2
  4754  }
  4755  </pre>
  4756  
  4757  <p>
  4758  A "for" statement with a ForClause is also controlled by its condition, but
  4759  additionally it may specify an <i>init</i>
  4760  and a <i>post</i> statement, such as an assignment,
  4761  an increment or decrement statement. The init statement may be a
  4762  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4763  Variables declared by the init statement are re-used in each iteration.
  4764  </p>
  4765  
  4766  <pre class="ebnf">
  4767  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4768  InitStmt = SimpleStmt .
  4769  PostStmt = SimpleStmt .
  4770  </pre>
  4771  
  4772  <pre>
  4773  for i := 0; i &lt; 10; i++ {
  4774  	f(i)
  4775  }
  4776  </pre>
  4777  
  4778  <p>
  4779  If non-empty, the init statement is executed once before evaluating the
  4780  condition for the first iteration;
  4781  the post statement is executed after each execution of the block (and
  4782  only if the block was executed).
  4783  Any element of the ForClause may be empty but the
  4784  <a href="#Semicolons">semicolons</a> are
  4785  required unless there is only a condition.
  4786  If the condition is absent, it is equivalent to the boolean value
  4787  <code>true</code>.
  4788  </p>
  4789  
  4790  <pre>
  4791  for cond { S() }    is the same as    for ; cond ; { S() }
  4792  for      { S() }    is the same as    for true     { S() }
  4793  </pre>
  4794  
  4795  <p>
  4796  A "for" statement with a "range" clause
  4797  iterates through all entries of an array, slice, string or map,
  4798  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4799  to corresponding <i>iteration variables</i> if present and then executes the block.
  4800  </p>
  4801  
  4802  <pre class="ebnf">
  4803  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4804  </pre>
  4805  
  4806  <p>
  4807  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4808  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4809  <a href="#Receive_operator">receive operations</a>.
  4810  As with an assignment, if present the operands on the left must be
  4811  <a href="#Address_operators">addressable</a> or map index expressions; they
  4812  denote the iteration variables. If the range expression is a channel, at most
  4813  one iteration variable is permitted, otherwise there may be up to two.
  4814  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4815  the range clause is equivalent to the same clause without that identifier.
  4816  </p>
  4817  
  4818  <p>
  4819  The range expression is evaluated once before beginning the loop,
  4820  with one exception: if the range expression is an array or a pointer to an array
  4821  and at most one iteration variable is present, only the range expression's
  4822  length is evaluated; if that length is constant,
  4823  <a href="#Length_and_capacity">by definition</a>
  4824  the range expression itself will not be evaluated.
  4825  </p>
  4826  
  4827  <p>
  4828  Function calls on the left are evaluated once per iteration.
  4829  For each iteration, iteration values are produced as follows
  4830  if the respective iteration variables are present:
  4831  </p>
  4832  
  4833  <pre class="grammar">
  4834  Range expression                          1st value          2nd value
  4835  
  4836  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4837  string          s  string type            index    i  int    see below  rune
  4838  map             m  map[K]V                key      k  K      m[k]       V
  4839  channel         c  chan E, &lt;-chan E       element  e  E
  4840  </pre>
  4841  
  4842  <ol>
  4843  <li>
  4844  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4845  values are produced in increasing order, starting at element index 0.
  4846  If at most one iteration variable is present, the range loop produces
  4847  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4848  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4849  </li>
  4850  
  4851  <li>
  4852  For a string value, the "range" clause iterates over the Unicode code points
  4853  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4854  index of the first byte of successive UTF-8-encoded code points in the string,
  4855  and the second value, of type <code>rune</code>, will be the value of
  4856  the corresponding code point.  If the iteration encounters an invalid
  4857  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4858  the Unicode replacement character, and the next iteration will advance
  4859  a single byte in the string.
  4860  </li>
  4861  
  4862  <li>
  4863  The iteration order over maps is not specified
  4864  and is not guaranteed to be the same from one iteration to the next.
  4865  If map entries that have not yet been reached are removed during iteration,
  4866  the corresponding iteration values will not be produced. If map entries are
  4867  created during iteration, that entry may be produced during the iteration or
  4868  may be skipped. The choice may vary for each entry created and from one
  4869  iteration to the next.
  4870  If the map is <code>nil</code>, the number of iterations is 0.
  4871  </li>
  4872  
  4873  <li>
  4874  For channels, the iteration values produced are the successive values sent on
  4875  the channel until the channel is <a href="#Close">closed</a>. If the channel
  4876  is <code>nil</code>, the range expression blocks forever.
  4877  </li>
  4878  </ol>
  4879  
  4880  <p>
  4881  The iteration values are assigned to the respective
  4882  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  4883  </p>
  4884  
  4885  <p>
  4886  The iteration variables may be declared by the "range" clause using a form of
  4887  <a href="#Short_variable_declarations">short variable declaration</a>
  4888  (<code>:=</code>).
  4889  In this case their types are set to the types of the respective iteration values
  4890  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  4891  statement; they are re-used in each iteration.
  4892  If the iteration variables are declared outside the "for" statement,
  4893  after execution their values will be those of the last iteration.
  4894  </p>
  4895  
  4896  <pre>
  4897  var testdata *struct {
  4898  	a *[7]int
  4899  }
  4900  for i, _ := range testdata.a {
  4901  	// testdata.a is never evaluated; len(testdata.a) is constant
  4902  	// i ranges from 0 to 6
  4903  	f(i)
  4904  }
  4905  
  4906  var a [10]string
  4907  for i, s := range a {
  4908  	// type of i is int
  4909  	// type of s is string
  4910  	// s == a[i]
  4911  	g(i, s)
  4912  }
  4913  
  4914  var key string
  4915  var val interface {}  // value type of m is assignable to val
  4916  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  4917  for key, val = range m {
  4918  	h(key, val)
  4919  }
  4920  // key == last map key encountered in iteration
  4921  // val == map[key]
  4922  
  4923  var ch chan Work = producer()
  4924  for w := range ch {
  4925  	doWork(w)
  4926  }
  4927  
  4928  // empty a channel
  4929  for range ch {}
  4930  </pre>
  4931  
  4932  
  4933  <h3 id="Go_statements">Go statements</h3>
  4934  
  4935  <p>
  4936  A "go" statement starts the execution of a function call
  4937  as an independent concurrent thread of control, or <i>goroutine</i>,
  4938  within the same address space.
  4939  </p>
  4940  
  4941  <pre class="ebnf">
  4942  GoStmt = "go" Expression .
  4943  </pre>
  4944  
  4945  <p>
  4946  The expression must be a function or method call; it cannot be parenthesized.
  4947  Calls of built-in functions are restricted as for
  4948  <a href="#Expression_statements">expression statements</a>.
  4949  </p>
  4950  
  4951  <p>
  4952  The function value and parameters are
  4953  <a href="#Calls">evaluated as usual</a>
  4954  in the calling goroutine, but
  4955  unlike with a regular call, program execution does not wait
  4956  for the invoked function to complete.
  4957  Instead, the function begins executing independently
  4958  in a new goroutine.
  4959  When the function terminates, its goroutine also terminates.
  4960  If the function has any return values, they are discarded when the
  4961  function completes.
  4962  </p>
  4963  
  4964  <pre>
  4965  go Server()
  4966  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  4967  </pre>
  4968  
  4969  
  4970  <h3 id="Select_statements">Select statements</h3>
  4971  
  4972  <p>
  4973  A "select" statement chooses which of a set of possible
  4974  <a href="#Send_statements">send</a> or
  4975  <a href="#Receive_operator">receive</a>
  4976  operations will proceed.
  4977  It looks similar to a
  4978  <a href="#Switch_statements">"switch"</a> statement but with the
  4979  cases all referring to communication operations.
  4980  </p>
  4981  
  4982  <pre class="ebnf">
  4983  SelectStmt = "select" "{" { CommClause } "}" .
  4984  CommClause = CommCase ":" StatementList .
  4985  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  4986  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  4987  RecvExpr   = Expression .
  4988  </pre>
  4989  
  4990  <p>
  4991  A case with a RecvStmt may assign the result of a RecvExpr to one or
  4992  two variables, which may be declared using a
  4993  <a href="#Short_variable_declarations">short variable declaration</a>.
  4994  The RecvExpr must be a (possibly parenthesized) receive operation.
  4995  There can be at most one default case and it may appear anywhere
  4996  in the list of cases.
  4997  </p>
  4998  
  4999  <p>
  5000  Execution of a "select" statement proceeds in several steps:
  5001  </p>
  5002  
  5003  <ol>
  5004  <li>
  5005  For all the cases in the statement, the channel operands of receive operations
  5006  and the channel and right-hand-side expressions of send statements are
  5007  evaluated exactly once, in source order, upon entering the "select" statement.
  5008  The result is a set of channels to receive from or send to,
  5009  and the corresponding values to send.
  5010  Any side effects in that evaluation will occur irrespective of which (if any)
  5011  communication operation is selected to proceed.
  5012  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5013  or assignment are not yet evaluated.
  5014  </li>
  5015  
  5016  <li>
  5017  If one or more of the communications can proceed,
  5018  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5019  Otherwise, if there is a default case, that case is chosen.
  5020  If there is no default case, the "select" statement blocks until
  5021  at least one of the communications can proceed.
  5022  </li>
  5023  
  5024  <li>
  5025  Unless the selected case is the default case, the respective communication
  5026  operation is executed.
  5027  </li>
  5028  
  5029  <li>
  5030  If the selected case is a RecvStmt with a short variable declaration or
  5031  an assignment, the left-hand side expressions are evaluated and the
  5032  received value (or values) are assigned.
  5033  </li>
  5034  
  5035  <li>
  5036  The statement list of the selected case is executed.
  5037  </li>
  5038  </ol>
  5039  
  5040  <p>
  5041  Since communication on <code>nil</code> channels can never proceed,
  5042  a select with only <code>nil</code> channels and no default case blocks forever.
  5043  </p>
  5044  
  5045  <pre>
  5046  var a []int
  5047  var c, c1, c2, c3, c4 chan int
  5048  var i1, i2 int
  5049  select {
  5050  case i1 = &lt;-c1:
  5051  	print("received ", i1, " from c1\n")
  5052  case c2 &lt;- i2:
  5053  	print("sent ", i2, " to c2\n")
  5054  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5055  	if ok {
  5056  		print("received ", i3, " from c3\n")
  5057  	} else {
  5058  		print("c3 is closed\n")
  5059  	}
  5060  case a[f()] = &lt;-c4:
  5061  	// same as:
  5062  	// case t := &lt;-c4
  5063  	//	a[f()] = t
  5064  default:
  5065  	print("no communication\n")
  5066  }
  5067  
  5068  for {  // send random sequence of bits to c
  5069  	select {
  5070  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5071  	case c &lt;- 1:
  5072  	}
  5073  }
  5074  
  5075  select {}  // block forever
  5076  </pre>
  5077  
  5078  
  5079  <h3 id="Return_statements">Return statements</h3>
  5080  
  5081  <p>
  5082  A "return" statement in a function <code>F</code> terminates the execution
  5083  of <code>F</code>, and optionally provides one or more result values.
  5084  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5085  are executed before <code>F</code> returns to its caller.
  5086  </p>
  5087  
  5088  <pre class="ebnf">
  5089  ReturnStmt = "return" [ ExpressionList ] .
  5090  </pre>
  5091  
  5092  <p>
  5093  In a function without a result type, a "return" statement must not
  5094  specify any result values.
  5095  </p>
  5096  <pre>
  5097  func noResult() {
  5098  	return
  5099  }
  5100  </pre>
  5101  
  5102  <p>
  5103  There are three ways to return values from a function with a result
  5104  type:
  5105  </p>
  5106  
  5107  <ol>
  5108  	<li>The return value or values may be explicitly listed
  5109  		in the "return" statement. Each expression must be single-valued
  5110  		and <a href="#Assignability">assignable</a>
  5111  		to the corresponding element of the function's result type.
  5112  <pre>
  5113  func simpleF() int {
  5114  	return 2
  5115  }
  5116  
  5117  func complexF1() (re float64, im float64) {
  5118  	return -7.0, -4.0
  5119  }
  5120  </pre>
  5121  	</li>
  5122  	<li>The expression list in the "return" statement may be a single
  5123  		call to a multi-valued function. The effect is as if each value
  5124  		returned from that function were assigned to a temporary
  5125  		variable with the type of the respective value, followed by a
  5126  		"return" statement listing these variables, at which point the
  5127  		rules of the previous case apply.
  5128  <pre>
  5129  func complexF2() (re float64, im float64) {
  5130  	return complexF1()
  5131  }
  5132  </pre>
  5133  	</li>
  5134  	<li>The expression list may be empty if the function's result
  5135  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5136  		The result parameters act as ordinary local variables
  5137  		and the function may assign values to them as necessary.
  5138  		The "return" statement returns the values of these variables.
  5139  <pre>
  5140  func complexF3() (re float64, im float64) {
  5141  	re = 7.0
  5142  	im = 4.0
  5143  	return
  5144  }
  5145  
  5146  func (devnull) Write(p []byte) (n int, _ error) {
  5147  	n = len(p)
  5148  	return
  5149  }
  5150  </pre>
  5151  	</li>
  5152  </ol>
  5153  
  5154  <p>
  5155  Regardless of how they are declared, all the result values are initialized to
  5156  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5157  function. A "return" statement that specifies results sets the result parameters before
  5158  any deferred functions are executed.
  5159  </p>
  5160  
  5161  <p>
  5162  Implementation restriction: A compiler may disallow an empty expression list
  5163  in a "return" statement if a different entity (constant, type, or variable)
  5164  with the same name as a result parameter is in
  5165  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5166  </p>
  5167  
  5168  <pre>
  5169  func f(n int) (res int, err error) {
  5170  	if _, err := f(n-1); err != nil {
  5171  		return  // invalid return statement: err is shadowed
  5172  	}
  5173  	return
  5174  }
  5175  </pre>
  5176  
  5177  <h3 id="Break_statements">Break statements</h3>
  5178  
  5179  <p>
  5180  A "break" statement terminates execution of the innermost
  5181  <a href="#For_statements">"for"</a>,
  5182  <a href="#Switch_statements">"switch"</a>, or
  5183  <a href="#Select_statements">"select"</a> statement
  5184  within the same function.
  5185  </p>
  5186  
  5187  <pre class="ebnf">
  5188  BreakStmt = "break" [ Label ] .
  5189  </pre>
  5190  
  5191  <p>
  5192  If there is a label, it must be that of an enclosing
  5193  "for", "switch", or "select" statement,
  5194  and that is the one whose execution terminates.
  5195  </p>
  5196  
  5197  <pre>
  5198  OuterLoop:
  5199  	for i = 0; i &lt; n; i++ {
  5200  		for j = 0; j &lt; m; j++ {
  5201  			switch a[i][j] {
  5202  			case nil:
  5203  				state = Error
  5204  				break OuterLoop
  5205  			case item:
  5206  				state = Found
  5207  				break OuterLoop
  5208  			}
  5209  		}
  5210  	}
  5211  </pre>
  5212  
  5213  <h3 id="Continue_statements">Continue statements</h3>
  5214  
  5215  <p>
  5216  A "continue" statement begins the next iteration of the
  5217  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5218  The "for" loop must be within the same function.
  5219  </p>
  5220  
  5221  <pre class="ebnf">
  5222  ContinueStmt = "continue" [ Label ] .
  5223  </pre>
  5224  
  5225  <p>
  5226  If there is a label, it must be that of an enclosing
  5227  "for" statement, and that is the one whose execution
  5228  advances.
  5229  </p>
  5230  
  5231  <pre>
  5232  RowLoop:
  5233  	for y, row := range rows {
  5234  		for x, data := range row {
  5235  			if data == endOfRow {
  5236  				continue RowLoop
  5237  			}
  5238  			row[x] = data + bias(x, y)
  5239  		}
  5240  	}
  5241  </pre>
  5242  
  5243  <h3 id="Goto_statements">Goto statements</h3>
  5244  
  5245  <p>
  5246  A "goto" statement transfers control to the statement with the corresponding label
  5247  within the same function.
  5248  </p>
  5249  
  5250  <pre class="ebnf">
  5251  GotoStmt = "goto" Label .
  5252  </pre>
  5253  
  5254  <pre>
  5255  goto Error
  5256  </pre>
  5257  
  5258  <p>
  5259  Executing the "goto" statement must not cause any variables to come into
  5260  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5261  For instance, this example:
  5262  </p>
  5263  
  5264  <pre>
  5265  	goto L  // BAD
  5266  	v := 3
  5267  L:
  5268  </pre>
  5269  
  5270  <p>
  5271  is erroneous because the jump to label <code>L</code> skips
  5272  the creation of <code>v</code>.
  5273  </p>
  5274  
  5275  <p>
  5276  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5277  For instance, this example:
  5278  </p>
  5279  
  5280  <pre>
  5281  if n%2 == 1 {
  5282  	goto L1
  5283  }
  5284  for n &gt; 0 {
  5285  	f()
  5286  	n--
  5287  L1:
  5288  	f()
  5289  	n--
  5290  }
  5291  </pre>
  5292  
  5293  <p>
  5294  is erroneous because the label <code>L1</code> is inside
  5295  the "for" statement's block but the <code>goto</code> is not.
  5296  </p>
  5297  
  5298  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5299  
  5300  <p>
  5301  A "fallthrough" statement transfers control to the first statement of the
  5302  next case clause in a <a href="#Expression_switches">expression "switch" statement</a>.
  5303  It may be used only as the final non-empty statement in such a clause.
  5304  </p>
  5305  
  5306  <pre class="ebnf">
  5307  FallthroughStmt = "fallthrough" .
  5308  </pre>
  5309  
  5310  
  5311  <h3 id="Defer_statements">Defer statements</h3>
  5312  
  5313  <p>
  5314  A "defer" statement invokes a function whose execution is deferred
  5315  to the moment the surrounding function returns, either because the
  5316  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5317  reached the end of its <a href="#Function_declarations">function body</a>,
  5318  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5319  </p>
  5320  
  5321  <pre class="ebnf">
  5322  DeferStmt = "defer" Expression .
  5323  </pre>
  5324  
  5325  <p>
  5326  The expression must be a function or method call; it cannot be parenthesized.
  5327  Calls of built-in functions are restricted as for
  5328  <a href="#Expression_statements">expression statements</a>.
  5329  </p>
  5330  
  5331  <p>
  5332  Each time a "defer" statement
  5333  executes, the function value and parameters to the call are
  5334  <a href="#Calls">evaluated as usual</a>
  5335  and saved anew but the actual function is not invoked.
  5336  Instead, deferred functions are invoked immediately before
  5337  the surrounding function returns, in the reverse order
  5338  they were deferred.
  5339  If a deferred function value evaluates
  5340  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5341  when the function is invoked, not when the "defer" statement is executed.
  5342  </p>
  5343  
  5344  <p>
  5345  For instance, if the deferred function is
  5346  a <a href="#Function_literals">function literal</a> and the surrounding
  5347  function has <a href="#Function_types">named result parameters</a> that
  5348  are in scope within the literal, the deferred function may access and modify
  5349  the result parameters before they are returned.
  5350  If the deferred function has any return values, they are discarded when
  5351  the function completes.
  5352  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5353  </p>
  5354  
  5355  <pre>
  5356  lock(l)
  5357  defer unlock(l)  // unlocking happens before surrounding function returns
  5358  
  5359  // prints 3 2 1 0 before surrounding function returns
  5360  for i := 0; i &lt;= 3; i++ {
  5361  	defer fmt.Print(i)
  5362  }
  5363  
  5364  // f returns 1
  5365  func f() (result int) {
  5366  	defer func() {
  5367  		result++
  5368  	}()
  5369  	return 0
  5370  }
  5371  </pre>
  5372  
  5373  <h2 id="Built-in_functions">Built-in functions</h2>
  5374  
  5375  <p>
  5376  Built-in functions are
  5377  <a href="#Predeclared_identifiers">predeclared</a>.
  5378  They are called like any other function but some of them
  5379  accept a type instead of an expression as the first argument.
  5380  </p>
  5381  
  5382  <p>
  5383  The built-in functions do not have standard Go types,
  5384  so they can only appear in <a href="#Calls">call expressions</a>;
  5385  they cannot be used as function values.
  5386  </p>
  5387  
  5388  <h3 id="Close">Close</h3>
  5389  
  5390  <p>
  5391  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5392  records that no more values will be sent on the channel.
  5393  It is an error if <code>c</code> is a receive-only channel.
  5394  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5395  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5396  After calling <code>close</code>, and after any previously
  5397  sent values have been received, receive operations will return
  5398  the zero value for the channel's type without blocking.
  5399  The multi-valued <a href="#Receive_operator">receive operation</a>
  5400  returns a received value along with an indication of whether the channel is closed.
  5401  </p>
  5402  
  5403  
  5404  <h3 id="Length_and_capacity">Length and capacity</h3>
  5405  
  5406  <p>
  5407  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5408  of various types and return a result of type <code>int</code>.
  5409  The implementation guarantees that the result always fits into an <code>int</code>.
  5410  </p>
  5411  
  5412  <pre class="grammar">
  5413  Call      Argument type    Result
  5414  
  5415  len(s)    string type      string length in bytes
  5416            [n]T, *[n]T      array length (== n)
  5417            []T              slice length
  5418            map[K]T          map length (number of defined keys)
  5419            chan T           number of elements queued in channel buffer
  5420  
  5421  cap(s)    [n]T, *[n]T      array length (== n)
  5422            []T              slice capacity
  5423            chan T           channel buffer capacity
  5424  </pre>
  5425  
  5426  <p>
  5427  The capacity of a slice is the number of elements for which there is
  5428  space allocated in the underlying array.
  5429  At any time the following relationship holds:
  5430  </p>
  5431  
  5432  <pre>
  5433  0 &lt;= len(s) &lt;= cap(s)
  5434  </pre>
  5435  
  5436  <p>
  5437  The length of a <code>nil</code> slice, map or channel is 0.
  5438  The capacity of a <code>nil</code> slice or channel is 0.
  5439  </p>
  5440  
  5441  <p>
  5442  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5443  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5444  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5445  or pointer to an array and the expression <code>s</code> does not contain
  5446  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5447  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5448  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5449  constant and <code>s</code> is evaluated.
  5450  </p>
  5451  
  5452  <pre>
  5453  const (
  5454  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5455  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5456  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5457  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5458  	c5 = len([10]float64{imag(z)})   // invalid: imag(x) is a (non-constant) function call
  5459  )
  5460  var z complex128
  5461  </pre>
  5462  
  5463  <h3 id="Allocation">Allocation</h3>
  5464  
  5465  <p>
  5466  The built-in function <code>new</code> takes a type <code>T</code>,
  5467  allocates storage for a <a href="#Variables">variable</a> of that type
  5468  at run time, and returns a value of type <code>*T</code>
  5469  <a href="#Pointer_types">pointing</a> to it.
  5470  The variable is initialized as described in the section on
  5471  <a href="#The_zero_value">initial values</a>.
  5472  </p>
  5473  
  5474  <pre class="grammar">
  5475  new(T)
  5476  </pre>
  5477  
  5478  <p>
  5479  For instance
  5480  </p>
  5481  
  5482  <pre>
  5483  type S struct { a int; b float64 }
  5484  new(S)
  5485  </pre>
  5486  
  5487  <p>
  5488  allocates storage for a variable of type <code>S</code>,
  5489  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5490  and returns a value of type <code>*S</code> containing the address
  5491  of the location.
  5492  </p>
  5493  
  5494  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5495  
  5496  <p>
  5497  The built-in function <code>make</code> takes a type <code>T</code>,
  5498  which must be a slice, map or channel type,
  5499  optionally followed by a type-specific list of expressions.
  5500  It returns a value of type <code>T</code> (not <code>*T</code>).
  5501  The memory is initialized as described in the section on
  5502  <a href="#The_zero_value">initial values</a>.
  5503  </p>
  5504  
  5505  <pre class="grammar">
  5506  Call             Type T     Result
  5507  
  5508  make(T, n)       slice      slice of type T with length n and capacity n
  5509  make(T, n, m)    slice      slice of type T with length n and capacity m
  5510  
  5511  make(T)          map        map of type T
  5512  make(T, n)       map        map of type T with initial space for n elements
  5513  
  5514  make(T)          channel    unbuffered channel of type T
  5515  make(T, n)       channel    buffered channel of type T, buffer size n
  5516  </pre>
  5517  
  5518  
  5519  <p>
  5520  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5521  A <a href="#Constants">constant</a> size argument must be non-negative and
  5522  representable by a value of type <code>int</code>.
  5523  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5524  <code>n</code> must be no larger than <code>m</code>.
  5525  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5526  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5527  </p>
  5528  
  5529  <pre>
  5530  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5531  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5532  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5533  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5534  c := make(chan int, 10)         // channel with a buffer size of 10
  5535  m := make(map[string]int, 100)  // map with initial space for 100 elements
  5536  </pre>
  5537  
  5538  
  5539  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5540  
  5541  <p>
  5542  The built-in functions <code>append</code> and <code>copy</code> assist in
  5543  common slice operations.
  5544  For both functions, the result is independent of whether the memory referenced
  5545  by the arguments overlaps.
  5546  </p>
  5547  
  5548  <p>
  5549  The <a href="#Function_types">variadic</a> function <code>append</code>
  5550  appends zero or more values <code>x</code>
  5551  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5552  returns the resulting slice, also of type <code>S</code>.
  5553  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5554  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5555  <code>S</code> and the respective
  5556  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5557  As a special case, <code>append</code> also accepts a first argument
  5558  assignable to type <code>[]byte</code> with a second argument of
  5559  string type followed by <code>...</code>. This form appends the
  5560  bytes of the string.
  5561  </p>
  5562  
  5563  <pre class="grammar">
  5564  append(s S, x ...T) S  // T is the element type of S
  5565  </pre>
  5566  
  5567  <p>
  5568  If the capacity of <code>s</code> is not large enough to fit the additional
  5569  values, <code>append</code> allocates a new, sufficiently large underlying
  5570  array that fits both the existing slice elements and the additional values.
  5571  Otherwise, <code>append</code> re-uses the underlying array.
  5572  </p>
  5573  
  5574  <pre>
  5575  s0 := []int{0, 0}
  5576  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5577  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5578  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5579  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5580  
  5581  var t []interface{}
  5582  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5583  
  5584  var b []byte
  5585  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5586  </pre>
  5587  
  5588  <p>
  5589  The function <code>copy</code> copies slice elements from
  5590  a source <code>src</code> to a destination <code>dst</code> and returns the
  5591  number of elements copied.
  5592  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5593  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5594  The number of elements copied is the minimum of
  5595  <code>len(src)</code> and <code>len(dst)</code>.
  5596  As a special case, <code>copy</code> also accepts a destination argument assignable
  5597  to type <code>[]byte</code> with a source argument of a string type.
  5598  This form copies the bytes from the string into the byte slice.
  5599  </p>
  5600  
  5601  <pre class="grammar">
  5602  copy(dst, src []T) int
  5603  copy(dst []byte, src string) int
  5604  </pre>
  5605  
  5606  <p>
  5607  Examples:
  5608  </p>
  5609  
  5610  <pre>
  5611  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5612  var s = make([]int, 6)
  5613  var b = make([]byte, 5)
  5614  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5615  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5616  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5617  </pre>
  5618  
  5619  
  5620  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5621  
  5622  <p>
  5623  The built-in function <code>delete</code> removes the element with key
  5624  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5625  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5626  to the key type of <code>m</code>.
  5627  </p>
  5628  
  5629  <pre class="grammar">
  5630  delete(m, k)  // remove element m[k] from map m
  5631  </pre>
  5632  
  5633  <p>
  5634  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5635  does not exist, <code>delete</code> is a no-op.
  5636  </p>
  5637  
  5638  
  5639  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5640  
  5641  <p>
  5642  Three functions assemble and disassemble complex numbers.
  5643  The built-in function <code>complex</code> constructs a complex
  5644  value from a floating-point real and imaginary part, while
  5645  <code>real</code> and <code>imag</code>
  5646  extract the real and imaginary parts of a complex value.
  5647  </p>
  5648  
  5649  <pre class="grammar">
  5650  complex(realPart, imaginaryPart floatT) complexT
  5651  real(complexT) floatT
  5652  imag(complexT) floatT
  5653  </pre>
  5654  
  5655  <p>
  5656  The type of the arguments and return value correspond.
  5657  For <code>complex</code>, the two arguments must be of the same
  5658  floating-point type and the return type is the complex type
  5659  with the corresponding floating-point constituents:
  5660  <code>complex64</code> for <code>float32</code>,
  5661  <code>complex128</code> for <code>float64</code>.
  5662  The <code>real</code> and <code>imag</code> functions
  5663  together form the inverse, so for a complex value <code>z</code>,
  5664  <code>z</code> <code>==</code> <code>complex(real(z),</code> <code>imag(z))</code>.
  5665  </p>
  5666  
  5667  <p>
  5668  If the operands of these functions are all constants, the return
  5669  value is a constant.
  5670  </p>
  5671  
  5672  <pre>
  5673  var a = complex(2, -2)             // complex128
  5674  var b = complex(1.0, -1.4)         // complex128
  5675  x := float32(math.Cos(math.Pi/2))  // float32
  5676  var c64 = complex(5, -x)           // complex64
  5677  var im = imag(b)                   // float64
  5678  var rl = real(c64)                 // float32
  5679  </pre>
  5680  
  5681  <h3 id="Handling_panics">Handling panics</h3>
  5682  
  5683  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5684  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5685  and program-defined error conditions.
  5686  </p>
  5687  
  5688  <pre class="grammar">
  5689  func panic(interface{})
  5690  func recover() interface{}
  5691  </pre>
  5692  
  5693  <p>
  5694  While executing a function <code>F</code>,
  5695  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5696  terminates the execution of <code>F</code>.
  5697  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5698  are then executed as usual.
  5699  Next, any deferred functions run by <code>F's</code> caller are run,
  5700  and so on up to any deferred by the top-level function in the executing goroutine.
  5701  At that point, the program is terminated and the error
  5702  condition is reported, including the value of the argument to <code>panic</code>.
  5703  This termination sequence is called <i>panicking</i>.
  5704  </p>
  5705  
  5706  <pre>
  5707  panic(42)
  5708  panic("unreachable")
  5709  panic(Error("cannot parse"))
  5710  </pre>
  5711  
  5712  <p>
  5713  The <code>recover</code> function allows a program to manage behavior
  5714  of a panicking goroutine.
  5715  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5716  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5717  is executing.
  5718  When the running of deferred functions reaches <code>D</code>,
  5719  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5720  If <code>D</code> returns normally, without starting a new
  5721  <code>panic</code>, the panicking sequence stops. In that case,
  5722  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5723  is discarded, and normal execution resumes.
  5724  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5725  execution terminates by returning to its caller.
  5726  </p>
  5727  
  5728  <p>
  5729  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5730  </p>
  5731  <ul>
  5732  <li>
  5733  <code>panic</code>'s argument was <code>nil</code>;
  5734  </li>
  5735  <li>
  5736  the goroutine is not panicking;
  5737  </li>
  5738  <li>
  5739  <code>recover</code> was not called directly by a deferred function.
  5740  </li>
  5741  </ul>
  5742  
  5743  <p>
  5744  The <code>protect</code> function in the example below invokes
  5745  the function argument <code>g</code> and protects callers from
  5746  run-time panics raised by <code>g</code>.
  5747  </p>
  5748  
  5749  <pre>
  5750  func protect(g func()) {
  5751  	defer func() {
  5752  		log.Println("done")  // Println executes normally even if there is a panic
  5753  		if x := recover(); x != nil {
  5754  			log.Printf("run time panic: %v", x)
  5755  		}
  5756  	}()
  5757  	log.Println("start")
  5758  	g()
  5759  }
  5760  </pre>
  5761  
  5762  
  5763  <h3 id="Bootstrapping">Bootstrapping</h3>
  5764  
  5765  <p>
  5766  Current implementations provide several built-in functions useful during
  5767  bootstrapping. These functions are documented for completeness but are not
  5768  guaranteed to stay in the language. They do not return a result.
  5769  </p>
  5770  
  5771  <pre class="grammar">
  5772  Function   Behavior
  5773  
  5774  print      prints all arguments; formatting of arguments is implementation-specific
  5775  println    like print but prints spaces between arguments and a newline at the end
  5776  </pre>
  5777  
  5778  
  5779  <h2 id="Packages">Packages</h2>
  5780  
  5781  <p>
  5782  Go programs are constructed by linking together <i>packages</i>.
  5783  A package in turn is constructed from one or more source files
  5784  that together declare constants, types, variables and functions
  5785  belonging to the package and which are accessible in all files
  5786  of the same package. Those elements may be
  5787  <a href="#Exported_identifiers">exported</a> and used in another package.
  5788  </p>
  5789  
  5790  <h3 id="Source_file_organization">Source file organization</h3>
  5791  
  5792  <p>
  5793  Each source file consists of a package clause defining the package
  5794  to which it belongs, followed by a possibly empty set of import
  5795  declarations that declare packages whose contents it wishes to use,
  5796  followed by a possibly empty set of declarations of functions,
  5797  types, variables, and constants.
  5798  </p>
  5799  
  5800  <pre class="ebnf">
  5801  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5802  </pre>
  5803  
  5804  <h3 id="Package_clause">Package clause</h3>
  5805  
  5806  <p>
  5807  A package clause begins each source file and defines the package
  5808  to which the file belongs.
  5809  </p>
  5810  
  5811  <pre class="ebnf">
  5812  PackageClause  = "package" PackageName .
  5813  PackageName    = identifier .
  5814  </pre>
  5815  
  5816  <p>
  5817  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5818  </p>
  5819  
  5820  <pre>
  5821  package math
  5822  </pre>
  5823  
  5824  <p>
  5825  A set of files sharing the same PackageName form the implementation of a package.
  5826  An implementation may require that all source files for a package inhabit the same directory.
  5827  </p>
  5828  
  5829  <h3 id="Import_declarations">Import declarations</h3>
  5830  
  5831  <p>
  5832  An import declaration states that the source file containing the declaration
  5833  depends on functionality of the <i>imported</i> package
  5834  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5835  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5836  of that package.
  5837  The import names an identifier (PackageName) to be used for access and an ImportPath
  5838  that specifies the package to be imported.
  5839  </p>
  5840  
  5841  <pre class="ebnf">
  5842  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  5843  ImportSpec       = [ "." | PackageName ] ImportPath .
  5844  ImportPath       = string_lit .
  5845  </pre>
  5846  
  5847  <p>
  5848  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  5849  to access exported identifiers of the package within the importing source file.
  5850  It is declared in the <a href="#Blocks">file block</a>.
  5851  If the PackageName is omitted, it defaults to the identifier specified in the
  5852  <a href="#Package_clause">package clause</a> of the imported package.
  5853  If an explicit period (<code>.</code>) appears instead of a name, all the
  5854  package's exported identifiers declared in that package's
  5855  <a href="#Blocks">package block</a> will be declared in the importing source
  5856  file's file block and must be accessed without a qualifier.
  5857  </p>
  5858  
  5859  <p>
  5860  The interpretation of the ImportPath is implementation-dependent but
  5861  it is typically a substring of the full file name of the compiled
  5862  package and may be relative to a repository of installed packages.
  5863  </p>
  5864  
  5865  <p>
  5866  Implementation restriction: A compiler may restrict ImportPaths to
  5867  non-empty strings using only characters belonging to
  5868  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  5869  L, M, N, P, and S general categories (the Graphic characters without
  5870  spaces) and may also exclude the characters
  5871  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  5872  and the Unicode replacement character U+FFFD.
  5873  </p>
  5874  
  5875  <p>
  5876  Assume we have compiled a package containing the package clause
  5877  <code>package math</code>, which exports function <code>Sin</code>, and
  5878  installed the compiled package in the file identified by
  5879  <code>"lib/math"</code>.
  5880  This table illustrates how <code>Sin</code> is accessed in files
  5881  that import the package after the
  5882  various types of import declaration.
  5883  </p>
  5884  
  5885  <pre class="grammar">
  5886  Import declaration          Local name of Sin
  5887  
  5888  import   "lib/math"         math.Sin
  5889  import m "lib/math"         m.Sin
  5890  import . "lib/math"         Sin
  5891  </pre>
  5892  
  5893  <p>
  5894  An import declaration declares a dependency relation between
  5895  the importing and imported package.
  5896  It is illegal for a package to import itself, directly or indirectly,
  5897  or to directly import a package without
  5898  referring to any of its exported identifiers. To import a package solely for
  5899  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  5900  identifier as explicit package name:
  5901  </p>
  5902  
  5903  <pre>
  5904  import _ "lib/math"
  5905  </pre>
  5906  
  5907  
  5908  <h3 id="An_example_package">An example package</h3>
  5909  
  5910  <p>
  5911  Here is a complete Go package that implements a concurrent prime sieve.
  5912  </p>
  5913  
  5914  <pre>
  5915  package main
  5916  
  5917  import "fmt"
  5918  
  5919  // Send the sequence 2, 3, 4, … to channel 'ch'.
  5920  func generate(ch chan&lt;- int) {
  5921  	for i := 2; ; i++ {
  5922  		ch &lt;- i  // Send 'i' to channel 'ch'.
  5923  	}
  5924  }
  5925  
  5926  // Copy the values from channel 'src' to channel 'dst',
  5927  // removing those divisible by 'prime'.
  5928  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  5929  	for i := range src {  // Loop over values received from 'src'.
  5930  		if i%prime != 0 {
  5931  			dst &lt;- i  // Send 'i' to channel 'dst'.
  5932  		}
  5933  	}
  5934  }
  5935  
  5936  // The prime sieve: Daisy-chain filter processes together.
  5937  func sieve() {
  5938  	ch := make(chan int)  // Create a new channel.
  5939  	go generate(ch)       // Start generate() as a subprocess.
  5940  	for {
  5941  		prime := &lt;-ch
  5942  		fmt.Print(prime, "\n")
  5943  		ch1 := make(chan int)
  5944  		go filter(ch, ch1, prime)
  5945  		ch = ch1
  5946  	}
  5947  }
  5948  
  5949  func main() {
  5950  	sieve()
  5951  }
  5952  </pre>
  5953  
  5954  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  5955  
  5956  <h3 id="The_zero_value">The zero value</h3>
  5957  <p>
  5958  When storage is allocated for a <a href="#Variables">variable</a>,
  5959  either through a declaration or a call of <code>new</code>, or when
  5960  a new value is created, either through a composite literal or a call
  5961  of <code>make</code>,
  5962  and no explicit initialization is provided, the variable or value is
  5963  given a default value.  Each element of such a variable or value is
  5964  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  5965  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  5966  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  5967  This initialization is done recursively, so for instance each element of an
  5968  array of structs will have its fields zeroed if no value is specified.
  5969  </p>
  5970  <p>
  5971  These two simple declarations are equivalent:
  5972  </p>
  5973  
  5974  <pre>
  5975  var i int
  5976  var i int = 0
  5977  </pre>
  5978  
  5979  <p>
  5980  After
  5981  </p>
  5982  
  5983  <pre>
  5984  type T struct { i int; f float64; next *T }
  5985  t := new(T)
  5986  </pre>
  5987  
  5988  <p>
  5989  the following holds:
  5990  </p>
  5991  
  5992  <pre>
  5993  t.i == 0
  5994  t.f == 0.0
  5995  t.next == nil
  5996  </pre>
  5997  
  5998  <p>
  5999  The same would also be true after
  6000  </p>
  6001  
  6002  <pre>
  6003  var t T
  6004  </pre>
  6005  
  6006  <h3 id="Package_initialization">Package initialization</h3>
  6007  
  6008  <p>
  6009  Within a package, package-level variables are initialized in
  6010  <i>declaration order</i> but after any of the variables
  6011  they <i>depend</i> on.
  6012  </p>
  6013  
  6014  <p>
  6015  More precisely, a package-level variable is considered <i>ready for
  6016  initialization</i> if it is not yet initialized and either has
  6017  no <a href="#Variable_declarations">initialization expression</a> or
  6018  its initialization expression has no dependencies on uninitialized variables.
  6019  Initialization proceeds by repeatedly initializing the next package-level
  6020  variable that is earliest in declaration order and ready for initialization,
  6021  until there are no variables ready for initialization.
  6022  </p>
  6023  
  6024  <p>
  6025  If any variables are still uninitialized when this
  6026  process ends, those variables are part of one or more initialization cycles,
  6027  and the program is not valid.
  6028  </p>
  6029  
  6030  <p>
  6031  The declaration order of variables declared in multiple files is determined
  6032  by the order in which the files are presented to the compiler: Variables
  6033  declared in the first file are declared before any of the variables declared
  6034  in the second file, and so on.
  6035  </p>
  6036  
  6037  <p>
  6038  Dependency analysis does not rely on the actual values of the
  6039  variables, only on lexical <i>references</i> to them in the source,
  6040  analyzed transitively. For instance, if a variable <code>x</code>'s
  6041  initialization expression refers to a function whose body refers to
  6042  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6043  Specifically:
  6044  </p>
  6045  
  6046  <ul>
  6047  <li>
  6048  A reference to a variable or function is an identifier denoting that
  6049  variable or function.
  6050  </li>
  6051  
  6052  <li>
  6053  A reference to a method <code>m</code> is a
  6054  <a href="#Method_values">method value</a> or
  6055  <a href="#Method_expressions">method expression</a> of the form
  6056  <code>t.m</code>, where the (static) type of <code>t</code> is
  6057  not an interface type, and the method <code>m</code> is in the
  6058  <a href="#Method_sets">method set</a> of <code>t</code>.
  6059  It is immaterial whether the resulting function value
  6060  <code>t.m</code> is invoked.
  6061  </li>
  6062  
  6063  <li>
  6064  A variable, function, or method <code>x</code> depends on a variable
  6065  <code>y</code> if <code>x</code>'s initialization expression or body
  6066  (for functions and methods) contains a reference to <code>y</code>
  6067  or to a function or method that depends on <code>y</code>.
  6068  </li>
  6069  </ul>
  6070  
  6071  <p>
  6072  Dependency analysis is performed per package; only references referring
  6073  to variables, functions, and methods declared in the current package
  6074  are considered.
  6075  </p>
  6076  
  6077  <p>
  6078  For example, given the declarations
  6079  </p>
  6080  
  6081  <pre>
  6082  var (
  6083  	a = c + b
  6084  	b = f()
  6085  	c = f()
  6086  	d = 3
  6087  )
  6088  
  6089  func f() int {
  6090  	d++
  6091  	return d
  6092  }
  6093  </pre>
  6094  
  6095  <p>
  6096  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6097  </p>
  6098  
  6099  <p>
  6100  Variables may also be initialized using functions named <code>init</code>
  6101  declared in the package block, with no arguments and no result parameters.
  6102  </p>
  6103  
  6104  <pre>
  6105  func init() { … }
  6106  </pre>
  6107  
  6108  <p>
  6109  Multiple such functions may be defined, even within a single
  6110  source file. The <code>init</code> identifier is not
  6111  <a href="#Declarations_and_scope">declared</a> and thus
  6112  <code>init</code> functions cannot be referred to from anywhere
  6113  in a program.
  6114  </p>
  6115  
  6116  <p>
  6117  A package with no imports is initialized by assigning initial values
  6118  to all its package-level variables followed by calling all <code>init</code>
  6119  functions in the order they appear in the source, possibly in multiple files,
  6120  as presented to the compiler.
  6121  If a package has imports, the imported packages are initialized
  6122  before initializing the package itself. If multiple packages import
  6123  a package, the imported package will be initialized only once.
  6124  The importing of packages, by construction, guarantees that there
  6125  can be no cyclic initialization dependencies.
  6126  </p>
  6127  
  6128  <p>
  6129  Package initialization&mdash;variable initialization and the invocation of
  6130  <code>init</code> functions&mdash;happens in a single goroutine,
  6131  sequentially, one package at a time.
  6132  An <code>init</code> function may launch other goroutines, which can run
  6133  concurrently with the initialization code. However, initialization
  6134  always sequences
  6135  the <code>init</code> functions: it will not invoke the next one
  6136  until the previous one has returned.
  6137  </p>
  6138  
  6139  <p>
  6140  To ensure reproducible initialization behavior, build systems are encouraged
  6141  to present multiple files belonging to the same package in lexical file name
  6142  order to a compiler.
  6143  </p>
  6144  
  6145  
  6146  <h3 id="Program_execution">Program execution</h3>
  6147  <p>
  6148  A complete program is created by linking a single, unimported package
  6149  called the <i>main package</i> with all the packages it imports, transitively.
  6150  The main package must
  6151  have package name <code>main</code> and
  6152  declare a function <code>main</code> that takes no
  6153  arguments and returns no value.
  6154  </p>
  6155  
  6156  <pre>
  6157  func main() { … }
  6158  </pre>
  6159  
  6160  <p>
  6161  Program execution begins by initializing the main package and then
  6162  invoking the function <code>main</code>.
  6163  When that function invocation returns, the program exits.
  6164  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6165  </p>
  6166  
  6167  <h2 id="Errors">Errors</h2>
  6168  
  6169  <p>
  6170  The predeclared type <code>error</code> is defined as
  6171  </p>
  6172  
  6173  <pre>
  6174  type error interface {
  6175  	Error() string
  6176  }
  6177  </pre>
  6178  
  6179  <p>
  6180  It is the conventional interface for representing an error condition,
  6181  with the nil value representing no error.
  6182  For instance, a function to read data from a file might be defined:
  6183  </p>
  6184  
  6185  <pre>
  6186  func Read(f *File, b []byte) (n int, err error)
  6187  </pre>
  6188  
  6189  <h2 id="Run_time_panics">Run-time panics</h2>
  6190  
  6191  <p>
  6192  Execution errors such as attempting to index an array out
  6193  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6194  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6195  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6196  That type satisfies the predeclared interface type
  6197  <a href="#Errors"><code>error</code></a>.
  6198  The exact error values that
  6199  represent distinct run-time error conditions are unspecified.
  6200  </p>
  6201  
  6202  <pre>
  6203  package runtime
  6204  
  6205  type Error interface {
  6206  	error
  6207  	// and perhaps other methods
  6208  }
  6209  </pre>
  6210  
  6211  <h2 id="System_considerations">System considerations</h2>
  6212  
  6213  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6214  
  6215  <p>
  6216  The built-in package <code>unsafe</code>, known to the compiler,
  6217  provides facilities for low-level programming including operations
  6218  that violate the type system. A package using <code>unsafe</code>
  6219  must be vetted manually for type safety and may not be portable.
  6220  The package provides the following interface:
  6221  </p>
  6222  
  6223  <pre class="grammar">
  6224  package unsafe
  6225  
  6226  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6227  type Pointer *ArbitraryType
  6228  
  6229  func Alignof(variable ArbitraryType) uintptr
  6230  func Offsetof(selector ArbitraryType) uintptr
  6231  func Sizeof(variable ArbitraryType) uintptr
  6232  </pre>
  6233  
  6234  <p>
  6235  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6236  value may not be <a href="#Address_operators">dereferenced</a>.
  6237  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6238  a <code>Pointer</code> type and vice versa.
  6239  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6240  </p>
  6241  
  6242  <pre>
  6243  var f float64
  6244  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6245  
  6246  type ptr unsafe.Pointer
  6247  bits = *(*uint64)(ptr(&amp;f))
  6248  
  6249  var p ptr = nil
  6250  </pre>
  6251  
  6252  <p>
  6253  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6254  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6255  as if <code>v</code> was declared via <code>var v = x</code>.
  6256  </p>
  6257  <p>
  6258  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6259  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6260  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6261  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6262  without pointer indirections through fields of the struct.
  6263  For a struct <code>s</code> with field <code>f</code>:
  6264  </p>
  6265  
  6266  <pre>
  6267  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6268  </pre>
  6269  
  6270  <p>
  6271  Computer architectures may require memory addresses to be <i>aligned</i>;
  6272  that is, for addresses of a variable to be a multiple of a factor,
  6273  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6274  takes an expression denoting a variable of any type and returns the
  6275  alignment of the (type of the) variable in bytes.  For a variable
  6276  <code>x</code>:
  6277  </p>
  6278  
  6279  <pre>
  6280  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6281  </pre>
  6282  
  6283  <p>
  6284  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6285  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6286  </p>
  6287  
  6288  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6289  
  6290  <p>
  6291  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6292  </p>
  6293  
  6294  <pre class="grammar">
  6295  type                                 size in bytes
  6296  
  6297  byte, uint8, int8                     1
  6298  uint16, int16                         2
  6299  uint32, int32, float32                4
  6300  uint64, int64, float64, complex64     8
  6301  complex128                           16
  6302  </pre>
  6303  
  6304  <p>
  6305  The following minimal alignment properties are guaranteed:
  6306  </p>
  6307  <ol>
  6308  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6309  </li>
  6310  
  6311  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6312     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6313  </li>
  6314  
  6315  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6316     <code>unsafe.Alignof(x[0])</code>, but at least 1.
  6317  </li>
  6318  </ol>
  6319  
  6320  <p>
  6321  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6322  </p>