github.com/shijuvar/go@v0.0.0-20141209052335-e8f13700b70c/src/cmd/6g/ggen.c (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  #undef	EXTERN
     6  #define	EXTERN
     7  #include <u.h>
     8  #include <libc.h>
     9  #include "gg.h"
    10  #include "opt.h"
    11  
    12  static Prog *appendpp(Prog*, int, int, vlong, int, vlong);
    13  static Prog *zerorange(Prog *p, vlong frame, vlong lo, vlong hi, uint32 *ax);
    14  
    15  void
    16  defframe(Prog *ptxt)
    17  {
    18  	uint32 frame, ax;
    19  	Prog *p;
    20  	vlong hi, lo;
    21  	NodeList *l;
    22  	Node *n;
    23  
    24  	// fill in argument size
    25  	ptxt->to.offset = rnd(curfn->type->argwid, widthptr);
    26  
    27  	// fill in final stack size
    28  	ptxt->to.offset <<= 32;
    29  	frame = rnd(stksize+maxarg, widthreg);
    30  	ptxt->to.offset |= frame;
    31  	
    32  	// insert code to zero ambiguously live variables
    33  	// so that the garbage collector only sees initialized values
    34  	// when it looks for pointers.
    35  	p = ptxt;
    36  	lo = hi = 0;
    37  	ax = 0;
    38  	// iterate through declarations - they are sorted in decreasing xoffset order.
    39  	for(l=curfn->dcl; l != nil; l = l->next) {
    40  		n = l->n;
    41  		if(!n->needzero)
    42  			continue;
    43  		if(n->class != PAUTO)
    44  			fatal("needzero class %d", n->class);
    45  		if(n->type->width % widthptr != 0 || n->xoffset % widthptr != 0 || n->type->width == 0)
    46  			fatal("var %lN has size %d offset %d", n, (int)n->type->width, (int)n->xoffset);
    47  
    48  		if(lo != hi && n->xoffset + n->type->width >= lo - 2*widthreg) {
    49  			// merge with range we already have
    50  			lo = n->xoffset;
    51  			continue;
    52  		}
    53  		// zero old range
    54  		p = zerorange(p, frame, lo, hi, &ax);
    55  
    56  		// set new range
    57  		hi = n->xoffset + n->type->width;
    58  		lo = n->xoffset;
    59  	}
    60  	// zero final range
    61  	zerorange(p, frame, lo, hi, &ax);
    62  }
    63  
    64  static Prog*
    65  zerorange(Prog *p, vlong frame, vlong lo, vlong hi, uint32 *ax)
    66  {
    67  	vlong cnt, i;
    68  
    69  	cnt = hi - lo;
    70  	if(cnt == 0)
    71  		return p;
    72  	if(*ax == 0) {
    73  		p = appendpp(p, AMOVQ, D_CONST, 0, D_AX, 0);
    74  		*ax = 1;
    75  	}
    76  	if(cnt % widthreg != 0) {
    77  		// should only happen with nacl
    78  		if(cnt % widthptr != 0)
    79  			fatal("zerorange count not a multiple of widthptr %d", cnt);
    80  		p = appendpp(p, AMOVL, D_AX, 0, D_SP+D_INDIR, frame+lo);
    81  		lo += widthptr;
    82  		cnt -= widthptr;
    83  	}
    84  	if(cnt <= 4*widthreg) {
    85  		for(i = 0; i < cnt; i += widthreg) {
    86  			p = appendpp(p, AMOVQ, D_AX, 0, D_SP+D_INDIR, frame+lo+i);
    87  		}
    88  	} else if(!nacl && (cnt <= 128*widthreg)) {
    89  		p = appendpp(p, leaptr, D_SP+D_INDIR, frame+lo, D_DI, 0);
    90  		p = appendpp(p, ADUFFZERO, D_NONE, 0, D_ADDR, 2*(128-cnt/widthreg));
    91  		p->to.sym = linksym(pkglookup("duffzero", runtimepkg));
    92  	} else {
    93  		p = appendpp(p, AMOVQ, D_CONST, cnt/widthreg, D_CX, 0);
    94  		p = appendpp(p, leaptr, D_SP+D_INDIR, frame+lo, D_DI, 0);
    95  		p = appendpp(p, AREP, D_NONE, 0, D_NONE, 0);
    96  		p = appendpp(p, ASTOSQ, D_NONE, 0, D_NONE, 0);
    97  	}
    98  	return p;
    99  }
   100  
   101  static Prog*	
   102  appendpp(Prog *p, int as, int ftype, vlong foffset, int ttype, vlong toffset)	
   103  {
   104  	Prog *q;
   105  	q = mal(sizeof(*q));	
   106  	clearp(q);	
   107  	q->as = as;	
   108  	q->lineno = p->lineno;	
   109  	q->from.type = ftype;	
   110  	q->from.offset = foffset;	
   111  	q->to.type = ttype;	
   112  	q->to.offset = toffset;	
   113  	q->link = p->link;	
   114  	p->link = q;	
   115  	return q;	
   116  }
   117  
   118  // Sweep the prog list to mark any used nodes.
   119  void
   120  markautoused(Prog* p)
   121  {
   122  	for (; p; p = p->link) {
   123  		if (p->as == ATYPE || p->as == AVARDEF || p->as == AVARKILL)
   124  			continue;
   125  
   126  		if (p->from.node)
   127  			p->from.node->used = 1;
   128  
   129  		if (p->to.node)
   130  			p->to.node->used = 1;
   131  	}
   132  }
   133  
   134  // Fixup instructions after allocauto (formerly compactframe) has moved all autos around.
   135  void
   136  fixautoused(Prog *p)
   137  {
   138  	Prog **lp;
   139  
   140  	for (lp=&p; (p=*lp) != P; ) {
   141  		if (p->as == ATYPE && p->from.node && p->from.type == D_AUTO && !p->from.node->used) {
   142  			*lp = p->link;
   143  			continue;
   144  		}
   145  		if ((p->as == AVARDEF || p->as == AVARKILL) && p->to.node && !p->to.node->used) {
   146  			// Cannot remove VARDEF instruction, because - unlike TYPE handled above -
   147  			// VARDEFs are interspersed with other code, and a jump might be using the
   148  			// VARDEF as a target. Replace with a no-op instead. A later pass will remove
   149  			// the no-ops.
   150  			p->to.type = D_NONE;
   151  			p->to.node = N;
   152  			p->as = ANOP;
   153  			continue;
   154  		}
   155  		if (p->from.type == D_AUTO && p->from.node)
   156  			p->from.offset += p->from.node->stkdelta;
   157  
   158  		if (p->to.type == D_AUTO && p->to.node)
   159  			p->to.offset += p->to.node->stkdelta;
   160  
   161  		lp = &p->link;
   162  	}
   163  }
   164  
   165  
   166  /*
   167   * generate:
   168   *	call f
   169   *	proc=-1	normal call but no return
   170   *	proc=0	normal call
   171   *	proc=1	goroutine run in new proc
   172   *	proc=2	defer call save away stack
   173    *	proc=3	normal call to C pointer (not Go func value)
   174   */
   175  void
   176  ginscall(Node *f, int proc)
   177  {
   178  	Prog *p;
   179  	Node reg, con;
   180  	Node r1;
   181  
   182  	if(f->type != T)
   183  		setmaxarg(f->type);
   184  
   185  	switch(proc) {
   186  	default:
   187  		fatal("ginscall: bad proc %d", proc);
   188  		break;
   189  
   190  	case 0:	// normal call
   191  	case -1:	// normal call but no return
   192  		if(f->op == ONAME && f->class == PFUNC) {
   193  			if(f == deferreturn) {
   194  				// Deferred calls will appear to be returning to
   195  				// the CALL deferreturn(SB) that we are about to emit.
   196  				// However, the stack trace code will show the line
   197  				// of the instruction byte before the return PC. 
   198  				// To avoid that being an unrelated instruction,
   199  				// insert an x86 NOP that we will have the right line number.
   200  				// x86 NOP 0x90 is really XCHG AX, AX; use that description
   201  				// because the NOP pseudo-instruction would be removed by
   202  				// the linker.
   203  				nodreg(&reg, types[TINT], D_AX);
   204  				gins(AXCHGL, &reg, &reg);
   205  			}
   206  			p = gins(ACALL, N, f);
   207  			afunclit(&p->to, f);
   208  			if(proc == -1 || noreturn(p))
   209  				gins(AUNDEF, N, N);
   210  			break;
   211  		}
   212  		nodreg(&reg, types[tptr], D_DX);
   213  		nodreg(&r1, types[tptr], D_BX);
   214  		gmove(f, &reg);
   215  		reg.op = OINDREG;
   216  		gmove(&reg, &r1);
   217  		reg.op = OREGISTER;
   218  		gins(ACALL, &reg, &r1);
   219  		break;
   220  	
   221  	case 3:	// normal call of c function pointer
   222  		gins(ACALL, N, f);
   223  		break;
   224  
   225  	case 1:	// call in new proc (go)
   226  	case 2:	// deferred call (defer)
   227  		nodconst(&con, types[TINT64], argsize(f->type));
   228  		if(widthptr == 4) {
   229  			nodreg(&r1, types[TINT32], D_CX);
   230  			gmove(f, &r1);
   231  			nodreg(&reg, types[TINT64], D_CX);
   232  			nodconst(&r1, types[TINT64], 32);
   233  			gins(ASHLQ, &r1, &reg);
   234  			gins(AORQ, &con, &reg);
   235  			gins(APUSHQ, &reg, N);
   236  		} else {
   237  			nodreg(&reg, types[TINT64], D_CX);
   238  			gmove(f, &reg);
   239  			gins(APUSHQ, &reg, N);
   240  			gins(APUSHQ, &con, N);
   241  		}
   242  		if(proc == 1)
   243  			ginscall(newproc, 0);
   244  		else {
   245  			if(!hasdefer)
   246  				fatal("hasdefer=0 but has defer");
   247  			ginscall(deferproc, 0);
   248  		}
   249  		nodreg(&reg, types[TINT64], D_CX);
   250  		gins(APOPQ, N, &reg);
   251  		if(widthptr == 8)
   252  			gins(APOPQ, N, &reg);
   253  		if(proc == 2) {
   254  			nodreg(&reg, types[TINT64], D_AX);
   255  			gins(ATESTQ, &reg, &reg);
   256  			p = gbranch(AJEQ, T, +1);
   257  			cgen_ret(N);
   258  			patch(p, pc);
   259  		}
   260  		break;
   261  	}
   262  }
   263  
   264  /*
   265   * n is call to interface method.
   266   * generate res = n.
   267   */
   268  void
   269  cgen_callinter(Node *n, Node *res, int proc)
   270  {
   271  	Node *i, *f;
   272  	Node tmpi, nodi, nodo, nodr, nodsp;
   273  
   274  	i = n->left;
   275  	if(i->op != ODOTINTER)
   276  		fatal("cgen_callinter: not ODOTINTER %O", i->op);
   277  
   278  	f = i->right;		// field
   279  	if(f->op != ONAME)
   280  		fatal("cgen_callinter: not ONAME %O", f->op);
   281  
   282  	i = i->left;		// interface
   283  
   284  	if(!i->addable) {
   285  		tempname(&tmpi, i->type);
   286  		cgen(i, &tmpi);
   287  		i = &tmpi;
   288  	}
   289  
   290  	genlist(n->list);		// assign the args
   291  
   292  	// i is now addable, prepare an indirected
   293  	// register to hold its address.
   294  	igen(i, &nodi, res);		// REG = &inter
   295  
   296  	nodindreg(&nodsp, types[tptr], D_SP);
   297  	nodi.type = types[tptr];
   298  	nodi.xoffset += widthptr;
   299  	cgen(&nodi, &nodsp);	// 0(SP) = 8(REG) -- i.data
   300  
   301  	regalloc(&nodo, types[tptr], res);
   302  	nodi.type = types[tptr];
   303  	nodi.xoffset -= widthptr;
   304  	cgen(&nodi, &nodo);	// REG = 0(REG) -- i.tab
   305  	regfree(&nodi);
   306  
   307  	regalloc(&nodr, types[tptr], &nodo);
   308  	if(n->left->xoffset == BADWIDTH)
   309  		fatal("cgen_callinter: badwidth");
   310  	cgen_checknil(&nodo); // in case offset is huge
   311  	nodo.op = OINDREG;
   312  	nodo.xoffset = n->left->xoffset + 3*widthptr + 8;
   313  	if(proc == 0) {
   314  		// plain call: use direct c function pointer - more efficient
   315  		cgen(&nodo, &nodr);	// REG = 32+offset(REG) -- i.tab->fun[f]
   316  		proc = 3;
   317  	} else {
   318  		// go/defer. generate go func value.
   319  		gins(ALEAQ, &nodo, &nodr);	// REG = &(32+offset(REG)) -- i.tab->fun[f]
   320  	}
   321  
   322  	nodr.type = n->left->type;
   323  	ginscall(&nodr, proc);
   324  
   325  	regfree(&nodr);
   326  	regfree(&nodo);
   327  }
   328  
   329  /*
   330   * generate function call;
   331   *	proc=0	normal call
   332   *	proc=1	goroutine run in new proc
   333   *	proc=2	defer call save away stack
   334   */
   335  void
   336  cgen_call(Node *n, int proc)
   337  {
   338  	Type *t;
   339  	Node nod, afun;
   340  
   341  	if(n == N)
   342  		return;
   343  
   344  	if(n->left->ullman >= UINF) {
   345  		// if name involves a fn call
   346  		// precompute the address of the fn
   347  		tempname(&afun, types[tptr]);
   348  		cgen(n->left, &afun);
   349  	}
   350  
   351  	genlist(n->list);		// assign the args
   352  	t = n->left->type;
   353  
   354  	// call tempname pointer
   355  	if(n->left->ullman >= UINF) {
   356  		regalloc(&nod, types[tptr], N);
   357  		cgen_as(&nod, &afun);
   358  		nod.type = t;
   359  		ginscall(&nod, proc);
   360  		regfree(&nod);
   361  		return;
   362  	}
   363  
   364  	// call pointer
   365  	if(n->left->op != ONAME || n->left->class != PFUNC) {
   366  		regalloc(&nod, types[tptr], N);
   367  		cgen_as(&nod, n->left);
   368  		nod.type = t;
   369  		ginscall(&nod, proc);
   370  		regfree(&nod);
   371  		return;
   372  	}
   373  
   374  	// call direct
   375  	n->left->method = 1;
   376  	ginscall(n->left, proc);
   377  }
   378  
   379  /*
   380   * call to n has already been generated.
   381   * generate:
   382   *	res = return value from call.
   383   */
   384  void
   385  cgen_callret(Node *n, Node *res)
   386  {
   387  	Node nod;
   388  	Type *fp, *t;
   389  	Iter flist;
   390  
   391  	t = n->left->type;
   392  	if(t->etype == TPTR32 || t->etype == TPTR64)
   393  		t = t->type;
   394  
   395  	fp = structfirst(&flist, getoutarg(t));
   396  	if(fp == T)
   397  		fatal("cgen_callret: nil");
   398  
   399  	memset(&nod, 0, sizeof(nod));
   400  	nod.op = OINDREG;
   401  	nod.val.u.reg = D_SP;
   402  	nod.addable = 1;
   403  
   404  	nod.xoffset = fp->width;
   405  	nod.type = fp->type;
   406  	cgen_as(res, &nod);
   407  }
   408  
   409  /*
   410   * call to n has already been generated.
   411   * generate:
   412   *	res = &return value from call.
   413   */
   414  void
   415  cgen_aret(Node *n, Node *res)
   416  {
   417  	Node nod1, nod2;
   418  	Type *fp, *t;
   419  	Iter flist;
   420  
   421  	t = n->left->type;
   422  	if(isptr[t->etype])
   423  		t = t->type;
   424  
   425  	fp = structfirst(&flist, getoutarg(t));
   426  	if(fp == T)
   427  		fatal("cgen_aret: nil");
   428  
   429  	memset(&nod1, 0, sizeof(nod1));
   430  	nod1.op = OINDREG;
   431  	nod1.val.u.reg = D_SP;
   432  	nod1.addable = 1;
   433  
   434  	nod1.xoffset = fp->width;
   435  	nod1.type = fp->type;
   436  
   437  	if(res->op != OREGISTER) {
   438  		regalloc(&nod2, types[tptr], res);
   439  		gins(leaptr, &nod1, &nod2);
   440  		gins(movptr, &nod2, res);
   441  		regfree(&nod2);
   442  	} else
   443  		gins(leaptr, &nod1, res);
   444  }
   445  
   446  /*
   447   * generate return.
   448   * n->left is assignments to return values.
   449   */
   450  void
   451  cgen_ret(Node *n)
   452  {
   453  	Prog *p;
   454  
   455  	if(n != N)
   456  		genlist(n->list);		// copy out args
   457  	if(hasdefer)
   458  		ginscall(deferreturn, 0);
   459  	genlist(curfn->exit);
   460  	p = gins(ARET, N, N);
   461  	if(n != N && n->op == ORETJMP) {
   462  		p->to.type = D_EXTERN;
   463  		p->to.sym = linksym(n->left->sym);
   464  	}
   465  }
   466  
   467  /*
   468   * generate += *= etc.
   469   */
   470  void
   471  cgen_asop(Node *n)
   472  {
   473  	Node n1, n2, n3, n4;
   474  	Node *nl, *nr;
   475  	Prog *p1;
   476  	Addr addr;
   477  	int a;
   478  
   479  	nl = n->left;
   480  	nr = n->right;
   481  
   482  	if(nr->ullman >= UINF && nl->ullman >= UINF) {
   483  		tempname(&n1, nr->type);
   484  		cgen(nr, &n1);
   485  		n2 = *n;
   486  		n2.right = &n1;
   487  		cgen_asop(&n2);
   488  		goto ret;
   489  	}
   490  
   491  	if(!isint[nl->type->etype])
   492  		goto hard;
   493  	if(!isint[nr->type->etype])
   494  		goto hard;
   495  
   496  	switch(n->etype) {
   497  	case OADD:
   498  		if(smallintconst(nr))
   499  		if(mpgetfix(nr->val.u.xval) == 1) {
   500  			a = optoas(OINC, nl->type);
   501  			if(nl->addable) {
   502  				gins(a, N, nl);
   503  				goto ret;
   504  			}
   505  			if(sudoaddable(a, nl, &addr)) {
   506  				p1 = gins(a, N, N);
   507  				p1->to = addr;
   508  				sudoclean();
   509  				goto ret;
   510  			}
   511  		}
   512  		break;
   513  
   514  	case OSUB:
   515  		if(smallintconst(nr))
   516  		if(mpgetfix(nr->val.u.xval) == 1) {
   517  			a = optoas(ODEC, nl->type);
   518  			if(nl->addable) {
   519  				gins(a, N, nl);
   520  				goto ret;
   521  			}
   522  			if(sudoaddable(a, nl, &addr)) {
   523  				p1 = gins(a, N, N);
   524  				p1->to = addr;
   525  				sudoclean();
   526  				goto ret;
   527  			}
   528  		}
   529  		break;
   530  	}
   531  
   532  	switch(n->etype) {
   533  	case OADD:
   534  	case OSUB:
   535  	case OXOR:
   536  	case OAND:
   537  	case OOR:
   538  		a = optoas(n->etype, nl->type);
   539  		if(nl->addable) {
   540  			if(smallintconst(nr)) {
   541  				gins(a, nr, nl);
   542  				goto ret;
   543  			}
   544  			regalloc(&n2, nr->type, N);
   545  			cgen(nr, &n2);
   546  			gins(a, &n2, nl);
   547  			regfree(&n2);
   548  			goto ret;
   549  		}
   550  		if(nr->ullman < UINF)
   551  		if(sudoaddable(a, nl, &addr)) {
   552  			if(smallintconst(nr)) {
   553  				p1 = gins(a, nr, N);
   554  				p1->to = addr;
   555  				sudoclean();
   556  				goto ret;
   557  			}
   558  			regalloc(&n2, nr->type, N);
   559  			cgen(nr, &n2);
   560  			p1 = gins(a, &n2, N);
   561  			p1->to = addr;
   562  			regfree(&n2);
   563  			sudoclean();
   564  			goto ret;
   565  		}
   566  	}
   567  
   568  hard:
   569  	n2.op = 0;
   570  	n1.op = 0;
   571  	if(nr->op == OLITERAL) {
   572  		// don't allocate a register for literals.
   573  	} else if(nr->ullman >= nl->ullman || nl->addable) {
   574  		regalloc(&n2, nr->type, N);
   575  		cgen(nr, &n2);
   576  		nr = &n2;
   577  	} else {
   578  		tempname(&n2, nr->type);
   579  		cgen(nr, &n2);
   580  		nr = &n2;
   581  	}
   582  	if(!nl->addable) {
   583  		igen(nl, &n1, N);
   584  		nl = &n1;
   585  	}
   586  
   587  	n3 = *n;
   588  	n3.left = nl;
   589  	n3.right = nr;
   590  	n3.op = n->etype;
   591  
   592  	regalloc(&n4, nl->type, N);
   593  	cgen(&n3, &n4);
   594  	gmove(&n4, nl);
   595  
   596  	if(n1.op)
   597  		regfree(&n1);
   598  	if(n2.op == OREGISTER)
   599  		regfree(&n2);
   600  	regfree(&n4);
   601  
   602  ret:
   603  	;
   604  }
   605  
   606  int
   607  samereg(Node *a, Node *b)
   608  {
   609  	if(a == N || b == N)
   610  		return 0;
   611  	if(a->op != OREGISTER)
   612  		return 0;
   613  	if(b->op != OREGISTER)
   614  		return 0;
   615  	if(a->val.u.reg != b->val.u.reg)
   616  		return 0;
   617  	return 1;
   618  }
   619  
   620  /*
   621   * generate division.
   622   * generates one of:
   623   *	res = nl / nr
   624   *	res = nl % nr
   625   * according to op.
   626   */
   627  void
   628  dodiv(int op, Node *nl, Node *nr, Node *res)
   629  {
   630  	int a, check;
   631  	Node n3, n4;
   632  	Type *t, *t0;
   633  	Node ax, dx, ax1, n31, oldax, olddx;
   634  	Prog *p1, *p2;
   635  
   636  	// Have to be careful about handling
   637  	// most negative int divided by -1 correctly.
   638  	// The hardware will trap.
   639  	// Also the byte divide instruction needs AH,
   640  	// which we otherwise don't have to deal with.
   641  	// Easiest way to avoid for int8, int16: use int32.
   642  	// For int32 and int64, use explicit test.
   643  	// Could use int64 hw for int32.
   644  	t = nl->type;
   645  	t0 = t;
   646  	check = 0;
   647  	if(issigned[t->etype]) {
   648  		check = 1;
   649  		if(isconst(nl, CTINT) && mpgetfix(nl->val.u.xval) != -(1ULL<<(t->width*8-1)))
   650  			check = 0;
   651  		else if(isconst(nr, CTINT) && mpgetfix(nr->val.u.xval) != -1)
   652  			check = 0;
   653  	}
   654  	if(t->width < 4) {
   655  		if(issigned[t->etype])
   656  			t = types[TINT32];
   657  		else
   658  			t = types[TUINT32];
   659  		check = 0;
   660  	}
   661  	a = optoas(op, t);
   662  
   663  	regalloc(&n3, t0, N);
   664  	if(nl->ullman >= nr->ullman) {
   665  		savex(D_AX, &ax, &oldax, res, t0);
   666  		cgen(nl, &ax);
   667  		regalloc(&ax, t0, &ax);	// mark ax live during cgen
   668  		cgen(nr, &n3);
   669  		regfree(&ax);
   670  	} else {
   671  		cgen(nr, &n3);
   672  		savex(D_AX, &ax, &oldax, res, t0);
   673  		cgen(nl, &ax);
   674  	}
   675  	if(t != t0) {
   676  		// Convert
   677  		ax1 = ax;
   678  		n31 = n3;
   679  		ax.type = t;
   680  		n3.type = t;
   681  		gmove(&ax1, &ax);
   682  		gmove(&n31, &n3);
   683  	}
   684  
   685  	p2 = P;
   686  	if(nacl) {
   687  		// Native Client does not relay the divide-by-zero trap
   688  		// to the executing program, so we must insert a check
   689  		// for ourselves.
   690  		nodconst(&n4, t, 0);
   691  		gins(optoas(OCMP, t), &n3, &n4);
   692  		p1 = gbranch(optoas(ONE, t), T, +1);
   693  		if(panicdiv == N)
   694  			panicdiv = sysfunc("panicdivide");
   695  		ginscall(panicdiv, -1);
   696  		patch(p1, pc);
   697  	}
   698  	if(check) {
   699  		nodconst(&n4, t, -1);
   700  		gins(optoas(OCMP, t), &n3, &n4);
   701  		p1 = gbranch(optoas(ONE, t), T, +1);
   702  		if(op == ODIV) {
   703  			// a / (-1) is -a.
   704  			gins(optoas(OMINUS, t), N, &ax);
   705  			gmove(&ax, res);
   706  		} else {
   707  			// a % (-1) is 0.
   708  			nodconst(&n4, t, 0);
   709  			gmove(&n4, res);
   710  		}
   711  		p2 = gbranch(AJMP, T, 0);
   712  		patch(p1, pc);
   713  	}
   714  	savex(D_DX, &dx, &olddx, res, t);
   715  	if(!issigned[t->etype]) {
   716  		nodconst(&n4, t, 0);
   717  		gmove(&n4, &dx);
   718  	} else
   719  		gins(optoas(OEXTEND, t), N, N);
   720  	gins(a, &n3, N);
   721  	regfree(&n3);
   722  	if(op == ODIV)
   723  		gmove(&ax, res);
   724  	else
   725  		gmove(&dx, res);
   726  	restx(&dx, &olddx);
   727  	if(check)
   728  		patch(p2, pc);
   729  	restx(&ax, &oldax);
   730  }
   731  
   732  /*
   733   * register dr is one of the special ones (AX, CX, DI, SI, etc.).
   734   * we need to use it.  if it is already allocated as a temporary
   735   * (r > 1; can only happen if a routine like sgen passed a
   736   * special as cgen's res and then cgen used regalloc to reuse
   737   * it as its own temporary), then move it for now to another
   738   * register.  caller must call restx to move it back.
   739   * the move is not necessary if dr == res, because res is
   740   * known to be dead.
   741   */
   742  void
   743  savex(int dr, Node *x, Node *oldx, Node *res, Type *t)
   744  {
   745  	int r;
   746  
   747  	r = reg[dr];
   748  
   749  	// save current ax and dx if they are live
   750  	// and not the destination
   751  	memset(oldx, 0, sizeof *oldx);
   752  	nodreg(x, t, dr);
   753  	if(r > 1 && !samereg(x, res)) {
   754  		regalloc(oldx, types[TINT64], N);
   755  		x->type = types[TINT64];
   756  		gmove(x, oldx);
   757  		x->type = t;
   758  		oldx->ostk = r;	// squirrel away old r value
   759  		reg[dr] = 1;
   760  	}
   761  }
   762  
   763  void
   764  restx(Node *x, Node *oldx)
   765  {
   766  	if(oldx->op != 0) {
   767  		x->type = types[TINT64];
   768  		reg[x->val.u.reg] = oldx->ostk;
   769  		gmove(oldx, x);
   770  		regfree(oldx);
   771  	}
   772  }
   773  
   774  /*
   775   * generate division according to op, one of:
   776   *	res = nl / nr
   777   *	res = nl % nr
   778   */
   779  void
   780  cgen_div(int op, Node *nl, Node *nr, Node *res)
   781  {
   782  	Node n1, n2, n3;
   783  	int w, a;
   784  	Magic m;
   785  
   786  	if(nr->op != OLITERAL)
   787  		goto longdiv;
   788  	w = nl->type->width*8;
   789  
   790  	// Front end handled 32-bit division. We only need to handle 64-bit.
   791  	// try to do division by multiply by (2^w)/d
   792  	// see hacker's delight chapter 10
   793  	switch(simtype[nl->type->etype]) {
   794  	default:
   795  		goto longdiv;
   796  
   797  	case TUINT64:
   798  		m.w = w;
   799  		m.ud = mpgetfix(nr->val.u.xval);
   800  		umagic(&m);
   801  		if(m.bad)
   802  			break;
   803  		if(op == OMOD)
   804  			goto longmod;
   805  
   806  		cgenr(nl, &n1, N);
   807  		nodconst(&n2, nl->type, m.um);
   808  		regalloc(&n3, nl->type, res);
   809  		cgen_hmul(&n1, &n2, &n3);
   810  
   811  		if(m.ua) {
   812  			// need to add numerator accounting for overflow
   813  			gins(optoas(OADD, nl->type), &n1, &n3);
   814  			nodconst(&n2, nl->type, 1);
   815  			gins(optoas(ORROTC, nl->type), &n2, &n3);
   816  			nodconst(&n2, nl->type, m.s-1);
   817  			gins(optoas(ORSH, nl->type), &n2, &n3);
   818  		} else {
   819  			nodconst(&n2, nl->type, m.s);
   820  			gins(optoas(ORSH, nl->type), &n2, &n3);	// shift dx
   821  		}
   822  
   823  		gmove(&n3, res);
   824  		regfree(&n1);
   825  		regfree(&n3);
   826  		return;
   827  
   828  	case TINT64:
   829  		m.w = w;
   830  		m.sd = mpgetfix(nr->val.u.xval);
   831  		smagic(&m);
   832  		if(m.bad)
   833  			break;
   834  		if(op == OMOD)
   835  			goto longmod;
   836  
   837  		cgenr(nl, &n1, res);
   838  		nodconst(&n2, nl->type, m.sm);
   839  		regalloc(&n3, nl->type, N);
   840  		cgen_hmul(&n1, &n2, &n3);
   841  
   842  		if(m.sm < 0) {
   843  			// need to add numerator
   844  			gins(optoas(OADD, nl->type), &n1, &n3);
   845  		}
   846  
   847  		nodconst(&n2, nl->type, m.s);
   848  		gins(optoas(ORSH, nl->type), &n2, &n3);	// shift n3
   849  
   850  		nodconst(&n2, nl->type, w-1);
   851  		gins(optoas(ORSH, nl->type), &n2, &n1);	// -1 iff num is neg
   852  		gins(optoas(OSUB, nl->type), &n1, &n3);	// added
   853  
   854  		if(m.sd < 0) {
   855  			// this could probably be removed
   856  			// by factoring it into the multiplier
   857  			gins(optoas(OMINUS, nl->type), N, &n3);
   858  		}
   859  
   860  		gmove(&n3, res);
   861  		regfree(&n1);
   862  		regfree(&n3);
   863  		return;
   864  	}
   865  	goto longdiv;
   866  
   867  longdiv:
   868  	// division and mod using (slow) hardware instruction
   869  	dodiv(op, nl, nr, res);
   870  	return;
   871  
   872  longmod:
   873  	// mod using formula A%B = A-(A/B*B) but
   874  	// we know that there is a fast algorithm for A/B
   875  	regalloc(&n1, nl->type, res);
   876  	cgen(nl, &n1);
   877  	regalloc(&n2, nl->type, N);
   878  	cgen_div(ODIV, &n1, nr, &n2);
   879  	a = optoas(OMUL, nl->type);
   880  	if(w == 8) {
   881  		// use 2-operand 16-bit multiply
   882  		// because there is no 2-operand 8-bit multiply
   883  		a = AIMULW;
   884  	}
   885  	if(!smallintconst(nr)) {
   886  		regalloc(&n3, nl->type, N);
   887  		cgen(nr, &n3);
   888  		gins(a, &n3, &n2);
   889  		regfree(&n3);
   890  	} else
   891  		gins(a, nr, &n2);
   892  	gins(optoas(OSUB, nl->type), &n2, &n1);
   893  	gmove(&n1, res);
   894  	regfree(&n1);
   895  	regfree(&n2);
   896  }
   897  
   898  /*
   899   * generate high multiply:
   900   *   res = (nl*nr) >> width
   901   */
   902  void
   903  cgen_hmul(Node *nl, Node *nr, Node *res)
   904  {
   905  	Type *t;
   906  	int a;
   907  	Node n1, n2, ax, dx, *tmp;
   908  
   909  	t = nl->type;
   910  	a = optoas(OHMUL, t);
   911  	if(nl->ullman < nr->ullman) {
   912  		tmp = nl;
   913  		nl = nr;
   914  		nr = tmp;
   915  	}
   916  	cgenr(nl, &n1, res);
   917  	cgenr(nr, &n2, N);
   918  	nodreg(&ax, t, D_AX);
   919  	gmove(&n1, &ax);
   920  	gins(a, &n2, N);
   921  	regfree(&n2);
   922  	regfree(&n1);
   923  
   924  	if(t->width == 1) {
   925  		// byte multiply behaves differently.
   926  		nodreg(&ax, t, D_AH);
   927  		nodreg(&dx, t, D_DX);
   928  		gmove(&ax, &dx);
   929  	}
   930  	nodreg(&dx, t, D_DX);
   931  	gmove(&dx, res);
   932  }
   933  
   934  /*
   935   * generate shift according to op, one of:
   936   *	res = nl << nr
   937   *	res = nl >> nr
   938   */
   939  void
   940  cgen_shift(int op, int bounded, Node *nl, Node *nr, Node *res)
   941  {
   942  	Node n1, n2, n3, n4, n5, cx, oldcx;
   943  	int a, rcx;
   944  	Prog *p1;
   945  	uvlong sc;
   946  	Type *tcount;
   947  
   948  	a = optoas(op, nl->type);
   949  
   950  	if(nr->op == OLITERAL) {
   951  		regalloc(&n1, nl->type, res);
   952  		cgen(nl, &n1);
   953  		sc = mpgetfix(nr->val.u.xval);
   954  		if(sc >= nl->type->width*8) {
   955  			// large shift gets 2 shifts by width-1
   956  			nodconst(&n3, types[TUINT32], nl->type->width*8-1);
   957  			gins(a, &n3, &n1);
   958  			gins(a, &n3, &n1);
   959  		} else
   960  			gins(a, nr, &n1);
   961  		gmove(&n1, res);
   962  		regfree(&n1);
   963  		goto ret;
   964  	}
   965  
   966  	if(nl->ullman >= UINF) {
   967  		tempname(&n4, nl->type);
   968  		cgen(nl, &n4);
   969  		nl = &n4;
   970  	}
   971  	if(nr->ullman >= UINF) {
   972  		tempname(&n5, nr->type);
   973  		cgen(nr, &n5);
   974  		nr = &n5;
   975  	}
   976  
   977  	rcx = reg[D_CX];
   978  	nodreg(&n1, types[TUINT32], D_CX);
   979  	
   980  	// Allow either uint32 or uint64 as shift type,
   981  	// to avoid unnecessary conversion from uint32 to uint64
   982  	// just to do the comparison.
   983  	tcount = types[simtype[nr->type->etype]];
   984  	if(tcount->etype < TUINT32)
   985  		tcount = types[TUINT32];
   986  
   987  	regalloc(&n1, nr->type, &n1);		// to hold the shift type in CX
   988  	regalloc(&n3, tcount, &n1);	// to clear high bits of CX
   989  
   990  	nodreg(&cx, types[TUINT64], D_CX);
   991  	memset(&oldcx, 0, sizeof oldcx);
   992  	if(rcx > 0 && !samereg(&cx, res)) {
   993  		regalloc(&oldcx, types[TUINT64], N);
   994  		gmove(&cx, &oldcx);
   995  	}
   996  	cx.type = tcount;
   997  
   998  	if(samereg(&cx, res))
   999  		regalloc(&n2, nl->type, N);
  1000  	else
  1001  		regalloc(&n2, nl->type, res);
  1002  	if(nl->ullman >= nr->ullman) {
  1003  		cgen(nl, &n2);
  1004  		cgen(nr, &n1);
  1005  		gmove(&n1, &n3);
  1006  	} else {
  1007  		cgen(nr, &n1);
  1008  		gmove(&n1, &n3);
  1009  		cgen(nl, &n2);
  1010  	}
  1011  	regfree(&n3);
  1012  
  1013  	// test and fix up large shifts
  1014  	if(!bounded) {
  1015  		nodconst(&n3, tcount, nl->type->width*8);
  1016  		gins(optoas(OCMP, tcount), &n1, &n3);
  1017  		p1 = gbranch(optoas(OLT, tcount), T, +1);
  1018  		if(op == ORSH && issigned[nl->type->etype]) {
  1019  			nodconst(&n3, types[TUINT32], nl->type->width*8-1);
  1020  			gins(a, &n3, &n2);
  1021  		} else {
  1022  			nodconst(&n3, nl->type, 0);
  1023  			gmove(&n3, &n2);
  1024  		}
  1025  		patch(p1, pc);
  1026  	}
  1027  
  1028  	gins(a, &n1, &n2);
  1029  
  1030  	if(oldcx.op != 0) {
  1031  		cx.type = types[TUINT64];
  1032  		gmove(&oldcx, &cx);
  1033  		regfree(&oldcx);
  1034  	}
  1035  
  1036  	gmove(&n2, res);
  1037  
  1038  	regfree(&n1);
  1039  	regfree(&n2);
  1040  
  1041  ret:
  1042  	;
  1043  }
  1044  
  1045  /*
  1046   * generate byte multiply:
  1047   *	res = nl * nr
  1048   * there is no 2-operand byte multiply instruction so
  1049   * we do a full-width multiplication and truncate afterwards.
  1050   */
  1051  void
  1052  cgen_bmul(int op, Node *nl, Node *nr, Node *res)
  1053  {
  1054  	Node n1, n2, n1b, n2b, *tmp;
  1055  	Type *t;
  1056  	int a;
  1057  
  1058  	// largest ullman on left.
  1059  	if(nl->ullman < nr->ullman) {
  1060  		tmp = nl;
  1061  		nl = nr;
  1062  		nr = tmp;
  1063  	}
  1064  
  1065  	// generate operands in "8-bit" registers.
  1066  	regalloc(&n1b, nl->type, res);
  1067  	cgen(nl, &n1b);
  1068  	regalloc(&n2b, nr->type, N);
  1069  	cgen(nr, &n2b);
  1070  
  1071  	// perform full-width multiplication.
  1072  	t = types[TUINT64];
  1073  	if(issigned[nl->type->etype])
  1074  		t = types[TINT64];
  1075  	nodreg(&n1, t, n1b.val.u.reg);
  1076  	nodreg(&n2, t, n2b.val.u.reg);
  1077  	a = optoas(op, t);
  1078  	gins(a, &n2, &n1);
  1079  
  1080  	// truncate.
  1081  	gmove(&n1, res);
  1082  	regfree(&n1b);
  1083  	regfree(&n2b);
  1084  }
  1085  
  1086  void
  1087  clearfat(Node *nl)
  1088  {
  1089  	int64 w, c, q;
  1090  	Node n1, oldn1, ax, oldax, di, z;
  1091  	Prog *p;
  1092  
  1093  	/* clear a fat object */
  1094  	if(debug['g'])
  1095  		dump("\nclearfat", nl);
  1096  
  1097  	w = nl->type->width;
  1098  	// Avoid taking the address for simple enough types.
  1099  	if(componentgen(N, nl))
  1100  		return;
  1101  
  1102  	c = w % 8;	// bytes
  1103  	q = w / 8;	// quads
  1104  
  1105  	if(q < 4) {
  1106  		// Write sequence of MOV 0, off(base) instead of using STOSQ.
  1107  		// The hope is that although the code will be slightly longer,
  1108  		// the MOVs will have no dependencies and pipeline better
  1109  		// than the unrolled STOSQ loop.
  1110  		// NOTE: Must use agen, not igen, so that optimizer sees address
  1111  		// being taken. We are not writing on field boundaries.
  1112  		agenr(nl, &n1, N);
  1113  		n1.op = OINDREG;
  1114  		nodconst(&z, types[TUINT64], 0);
  1115  		while(q-- > 0) {
  1116  			n1.type = z.type;
  1117  			gins(AMOVQ, &z, &n1);
  1118  			n1.xoffset += 8;
  1119  		}
  1120  		if(c >= 4) {
  1121  			nodconst(&z, types[TUINT32], 0);
  1122  			n1.type = z.type;
  1123  			gins(AMOVL, &z, &n1);
  1124  			n1.xoffset += 4;
  1125  			c -= 4;
  1126  		}
  1127  		nodconst(&z, types[TUINT8], 0);
  1128  		while(c-- > 0) {
  1129  			n1.type = z.type;
  1130  			gins(AMOVB, &z, &n1);
  1131  			n1.xoffset++;
  1132  		}
  1133  		regfree(&n1);
  1134  		return;
  1135  	}
  1136  
  1137  	savex(D_DI, &n1, &oldn1, N, types[tptr]);
  1138  	agen(nl, &n1);
  1139  
  1140  	savex(D_AX, &ax, &oldax, N, types[tptr]);
  1141  	gconreg(AMOVL, 0, D_AX);
  1142  
  1143  	if(q > 128 || nacl) {
  1144  		gconreg(movptr, q, D_CX);
  1145  		gins(AREP, N, N);	// repeat
  1146  		gins(ASTOSQ, N, N);	// STOQ AL,*(DI)+
  1147  	} else {
  1148  		p = gins(ADUFFZERO, N, N);
  1149  		p->to.type = D_ADDR;
  1150  		p->to.sym = linksym(pkglookup("duffzero", runtimepkg));
  1151  		// 2 and 128 = magic constants: see ../../runtime/asm_amd64.s
  1152  		p->to.offset = 2*(128-q);
  1153  	}
  1154  
  1155  	z = ax;
  1156  	di = n1;
  1157  	if(w >= 8 && c >= 4) {
  1158  		di.op = OINDREG;
  1159  		di.type = z.type = types[TINT64];
  1160  		p = gins(AMOVQ, &z, &di);
  1161  		p->to.scale = 1;
  1162  		p->to.offset = c-8;
  1163  	} else if(c >= 4) {
  1164  		di.op = OINDREG;
  1165  		di.type = z.type = types[TINT32];
  1166  		p = gins(AMOVL, &z, &di);
  1167  		if(c > 4) {
  1168  			p = gins(AMOVL, &z, &di);
  1169  			p->to.scale = 1;
  1170  			p->to.offset = c-4;
  1171  		}
  1172  	} else
  1173  	while(c > 0) {
  1174  		gins(ASTOSB, N, N);	// STOB AL,*(DI)+
  1175  		c--;
  1176  	}
  1177  
  1178  	restx(&n1, &oldn1);
  1179  	restx(&ax, &oldax);
  1180  }
  1181  
  1182  // Called after regopt and peep have run.
  1183  // Expand CHECKNIL pseudo-op into actual nil pointer check.
  1184  void
  1185  expandchecks(Prog *firstp)
  1186  {
  1187  	Prog *p, *p1, *p2;
  1188  
  1189  	for(p = firstp; p != P; p = p->link) {
  1190  		if(p->as != ACHECKNIL)
  1191  			continue;
  1192  		if(debug_checknil && p->lineno > 1) // p->lineno==1 in generated wrappers
  1193  			warnl(p->lineno, "generated nil check");
  1194  		// check is
  1195  		//	CMP arg, $0
  1196  		//	JNE 2(PC) (likely)
  1197  		//	MOV AX, 0
  1198  		p1 = mal(sizeof *p1);
  1199  		p2 = mal(sizeof *p2);
  1200  		clearp(p1);
  1201  		clearp(p2);
  1202  		p1->link = p2;
  1203  		p2->link = p->link;
  1204  		p->link = p1;
  1205  		p1->lineno = p->lineno;
  1206  		p2->lineno = p->lineno;
  1207  		p1->pc = 9999;
  1208  		p2->pc = 9999;
  1209  		p->as = cmpptr;
  1210  		p->to.type = D_CONST;
  1211  		p->to.offset = 0;
  1212  		p1->as = AJNE;
  1213  		p1->from.type = D_CONST;
  1214  		p1->from.offset = 1; // likely
  1215  		p1->to.type = D_BRANCH;
  1216  		p1->to.u.branch = p2->link;
  1217  		// crash by write to memory address 0.
  1218  		// if possible, since we know arg is 0, use 0(arg),
  1219  		// which will be shorter to encode than plain 0.
  1220  		p2->as = AMOVL;
  1221  		p2->from.type = D_AX;
  1222  		if(regtyp(&p->from))
  1223  			p2->to.type = p->from.type + D_INDIR;
  1224  		else
  1225  			p2->to.type = D_INDIR+D_NONE;
  1226  		p2->to.offset = 0;
  1227  	}
  1228  }