github.com/shijuvar/go@v0.0.0-20141209052335-e8f13700b70c/src/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"time"
    20  )
    21  
    22  // A Conn represents a secured connection.
    23  // It implements the net.Conn interface.
    24  type Conn struct {
    25  	// constant
    26  	conn     net.Conn
    27  	isClient bool
    28  
    29  	// constant after handshake; protected by handshakeMutex
    30  	handshakeMutex    sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
    31  	handshakeErr      error      // error resulting from handshake
    32  	vers              uint16     // TLS version
    33  	haveVers          bool       // version has been negotiated
    34  	config            *Config    // configuration passed to constructor
    35  	handshakeComplete bool
    36  	didResume         bool // whether this connection was a session resumption
    37  	cipherSuite       uint16
    38  	ocspResponse      []byte // stapled OCSP response
    39  	peerCertificates  []*x509.Certificate
    40  	// verifiedChains contains the certificate chains that we built, as
    41  	// opposed to the ones presented by the server.
    42  	verifiedChains [][]*x509.Certificate
    43  	// serverName contains the server name indicated by the client, if any.
    44  	serverName string
    45  	// firstFinished contains the first Finished hash sent during the
    46  	// handshake. This is the "tls-unique" channel binding value.
    47  	firstFinished [12]byte
    48  
    49  	clientProtocol         string
    50  	clientProtocolFallback bool
    51  
    52  	// input/output
    53  	in, out  halfConn     // in.Mutex < out.Mutex
    54  	rawInput *block       // raw input, right off the wire
    55  	input    *block       // application data waiting to be read
    56  	hand     bytes.Buffer // handshake data waiting to be read
    57  
    58  	tmp [16]byte
    59  }
    60  
    61  // Access to net.Conn methods.
    62  // Cannot just embed net.Conn because that would
    63  // export the struct field too.
    64  
    65  // LocalAddr returns the local network address.
    66  func (c *Conn) LocalAddr() net.Addr {
    67  	return c.conn.LocalAddr()
    68  }
    69  
    70  // RemoteAddr returns the remote network address.
    71  func (c *Conn) RemoteAddr() net.Addr {
    72  	return c.conn.RemoteAddr()
    73  }
    74  
    75  // SetDeadline sets the read and write deadlines associated with the connection.
    76  // A zero value for t means Read and Write will not time out.
    77  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    78  func (c *Conn) SetDeadline(t time.Time) error {
    79  	return c.conn.SetDeadline(t)
    80  }
    81  
    82  // SetReadDeadline sets the read deadline on the underlying connection.
    83  // A zero value for t means Read will not time out.
    84  func (c *Conn) SetReadDeadline(t time.Time) error {
    85  	return c.conn.SetReadDeadline(t)
    86  }
    87  
    88  // SetWriteDeadline sets the write deadline on the underlying connection.
    89  // A zero value for t means Write will not time out.
    90  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    91  func (c *Conn) SetWriteDeadline(t time.Time) error {
    92  	return c.conn.SetWriteDeadline(t)
    93  }
    94  
    95  // A halfConn represents one direction of the record layer
    96  // connection, either sending or receiving.
    97  type halfConn struct {
    98  	sync.Mutex
    99  
   100  	err     error       // first permanent error
   101  	version uint16      // protocol version
   102  	cipher  interface{} // cipher algorithm
   103  	mac     macFunction
   104  	seq     [8]byte // 64-bit sequence number
   105  	bfree   *block  // list of free blocks
   106  
   107  	nextCipher interface{} // next encryption state
   108  	nextMac    macFunction // next MAC algorithm
   109  
   110  	// used to save allocating a new buffer for each MAC.
   111  	inDigestBuf, outDigestBuf []byte
   112  }
   113  
   114  func (hc *halfConn) setErrorLocked(err error) error {
   115  	hc.err = err
   116  	return err
   117  }
   118  
   119  func (hc *halfConn) error() error {
   120  	hc.Lock()
   121  	err := hc.err
   122  	hc.Unlock()
   123  	return err
   124  }
   125  
   126  // prepareCipherSpec sets the encryption and MAC states
   127  // that a subsequent changeCipherSpec will use.
   128  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   129  	hc.version = version
   130  	hc.nextCipher = cipher
   131  	hc.nextMac = mac
   132  }
   133  
   134  // changeCipherSpec changes the encryption and MAC states
   135  // to the ones previously passed to prepareCipherSpec.
   136  func (hc *halfConn) changeCipherSpec() error {
   137  	if hc.nextCipher == nil {
   138  		return alertInternalError
   139  	}
   140  	hc.cipher = hc.nextCipher
   141  	hc.mac = hc.nextMac
   142  	hc.nextCipher = nil
   143  	hc.nextMac = nil
   144  	for i := range hc.seq {
   145  		hc.seq[i] = 0
   146  	}
   147  	return nil
   148  }
   149  
   150  // incSeq increments the sequence number.
   151  func (hc *halfConn) incSeq() {
   152  	for i := 7; i >= 0; i-- {
   153  		hc.seq[i]++
   154  		if hc.seq[i] != 0 {
   155  			return
   156  		}
   157  	}
   158  
   159  	// Not allowed to let sequence number wrap.
   160  	// Instead, must renegotiate before it does.
   161  	// Not likely enough to bother.
   162  	panic("TLS: sequence number wraparound")
   163  }
   164  
   165  // resetSeq resets the sequence number to zero.
   166  func (hc *halfConn) resetSeq() {
   167  	for i := range hc.seq {
   168  		hc.seq[i] = 0
   169  	}
   170  }
   171  
   172  // removePadding returns an unpadded slice, in constant time, which is a prefix
   173  // of the input. It also returns a byte which is equal to 255 if the padding
   174  // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
   175  func removePadding(payload []byte) ([]byte, byte) {
   176  	if len(payload) < 1 {
   177  		return payload, 0
   178  	}
   179  
   180  	paddingLen := payload[len(payload)-1]
   181  	t := uint(len(payload)-1) - uint(paddingLen)
   182  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   183  	good := byte(int32(^t) >> 31)
   184  
   185  	toCheck := 255 // the maximum possible padding length
   186  	// The length of the padded data is public, so we can use an if here
   187  	if toCheck+1 > len(payload) {
   188  		toCheck = len(payload) - 1
   189  	}
   190  
   191  	for i := 0; i < toCheck; i++ {
   192  		t := uint(paddingLen) - uint(i)
   193  		// if i <= paddingLen then the MSB of t is zero
   194  		mask := byte(int32(^t) >> 31)
   195  		b := payload[len(payload)-1-i]
   196  		good &^= mask&paddingLen ^ mask&b
   197  	}
   198  
   199  	// We AND together the bits of good and replicate the result across
   200  	// all the bits.
   201  	good &= good << 4
   202  	good &= good << 2
   203  	good &= good << 1
   204  	good = uint8(int8(good) >> 7)
   205  
   206  	toRemove := good&paddingLen + 1
   207  	return payload[:len(payload)-int(toRemove)], good
   208  }
   209  
   210  // removePaddingSSL30 is a replacement for removePadding in the case that the
   211  // protocol version is SSLv3. In this version, the contents of the padding
   212  // are random and cannot be checked.
   213  func removePaddingSSL30(payload []byte) ([]byte, byte) {
   214  	if len(payload) < 1 {
   215  		return payload, 0
   216  	}
   217  
   218  	paddingLen := int(payload[len(payload)-1]) + 1
   219  	if paddingLen > len(payload) {
   220  		return payload, 0
   221  	}
   222  
   223  	return payload[:len(payload)-paddingLen], 255
   224  }
   225  
   226  func roundUp(a, b int) int {
   227  	return a + (b-a%b)%b
   228  }
   229  
   230  // cbcMode is an interface for block ciphers using cipher block chaining.
   231  type cbcMode interface {
   232  	cipher.BlockMode
   233  	SetIV([]byte)
   234  }
   235  
   236  // decrypt checks and strips the mac and decrypts the data in b. Returns a
   237  // success boolean, the number of bytes to skip from the start of the record in
   238  // order to get the application payload, and an optional alert value.
   239  func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
   240  	// pull out payload
   241  	payload := b.data[recordHeaderLen:]
   242  
   243  	macSize := 0
   244  	if hc.mac != nil {
   245  		macSize = hc.mac.Size()
   246  	}
   247  
   248  	paddingGood := byte(255)
   249  	explicitIVLen := 0
   250  
   251  	// decrypt
   252  	if hc.cipher != nil {
   253  		switch c := hc.cipher.(type) {
   254  		case cipher.Stream:
   255  			c.XORKeyStream(payload, payload)
   256  		case cipher.AEAD:
   257  			explicitIVLen = 8
   258  			if len(payload) < explicitIVLen {
   259  				return false, 0, alertBadRecordMAC
   260  			}
   261  			nonce := payload[:8]
   262  			payload = payload[8:]
   263  
   264  			var additionalData [13]byte
   265  			copy(additionalData[:], hc.seq[:])
   266  			copy(additionalData[8:], b.data[:3])
   267  			n := len(payload) - c.Overhead()
   268  			additionalData[11] = byte(n >> 8)
   269  			additionalData[12] = byte(n)
   270  			var err error
   271  			payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
   272  			if err != nil {
   273  				return false, 0, alertBadRecordMAC
   274  			}
   275  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   276  		case cbcMode:
   277  			blockSize := c.BlockSize()
   278  			if hc.version >= VersionTLS11 {
   279  				explicitIVLen = blockSize
   280  			}
   281  
   282  			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
   283  				return false, 0, alertBadRecordMAC
   284  			}
   285  
   286  			if explicitIVLen > 0 {
   287  				c.SetIV(payload[:explicitIVLen])
   288  				payload = payload[explicitIVLen:]
   289  			}
   290  			c.CryptBlocks(payload, payload)
   291  			if hc.version == VersionSSL30 {
   292  				payload, paddingGood = removePaddingSSL30(payload)
   293  			} else {
   294  				payload, paddingGood = removePadding(payload)
   295  			}
   296  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   297  
   298  			// note that we still have a timing side-channel in the
   299  			// MAC check, below. An attacker can align the record
   300  			// so that a correct padding will cause one less hash
   301  			// block to be calculated. Then they can iteratively
   302  			// decrypt a record by breaking each byte. See
   303  			// "Password Interception in a SSL/TLS Channel", Brice
   304  			// Canvel et al.
   305  			//
   306  			// However, our behavior matches OpenSSL, so we leak
   307  			// only as much as they do.
   308  		default:
   309  			panic("unknown cipher type")
   310  		}
   311  	}
   312  
   313  	// check, strip mac
   314  	if hc.mac != nil {
   315  		if len(payload) < macSize {
   316  			return false, 0, alertBadRecordMAC
   317  		}
   318  
   319  		// strip mac off payload, b.data
   320  		n := len(payload) - macSize
   321  		b.data[3] = byte(n >> 8)
   322  		b.data[4] = byte(n)
   323  		b.resize(recordHeaderLen + explicitIVLen + n)
   324  		remoteMAC := payload[n:]
   325  		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
   326  
   327  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   328  			return false, 0, alertBadRecordMAC
   329  		}
   330  		hc.inDigestBuf = localMAC
   331  	}
   332  	hc.incSeq()
   333  
   334  	return true, recordHeaderLen + explicitIVLen, 0
   335  }
   336  
   337  // padToBlockSize calculates the needed padding block, if any, for a payload.
   338  // On exit, prefix aliases payload and extends to the end of the last full
   339  // block of payload. finalBlock is a fresh slice which contains the contents of
   340  // any suffix of payload as well as the needed padding to make finalBlock a
   341  // full block.
   342  func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
   343  	overrun := len(payload) % blockSize
   344  	paddingLen := blockSize - overrun
   345  	prefix = payload[:len(payload)-overrun]
   346  	finalBlock = make([]byte, blockSize)
   347  	copy(finalBlock, payload[len(payload)-overrun:])
   348  	for i := overrun; i < blockSize; i++ {
   349  		finalBlock[i] = byte(paddingLen - 1)
   350  	}
   351  	return
   352  }
   353  
   354  // encrypt encrypts and macs the data in b.
   355  func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
   356  	// mac
   357  	if hc.mac != nil {
   358  		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
   359  
   360  		n := len(b.data)
   361  		b.resize(n + len(mac))
   362  		copy(b.data[n:], mac)
   363  		hc.outDigestBuf = mac
   364  	}
   365  
   366  	payload := b.data[recordHeaderLen:]
   367  
   368  	// encrypt
   369  	if hc.cipher != nil {
   370  		switch c := hc.cipher.(type) {
   371  		case cipher.Stream:
   372  			c.XORKeyStream(payload, payload)
   373  		case cipher.AEAD:
   374  			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
   375  			b.resize(len(b.data) + c.Overhead())
   376  			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   377  			payload := b.data[recordHeaderLen+explicitIVLen:]
   378  			payload = payload[:payloadLen]
   379  
   380  			var additionalData [13]byte
   381  			copy(additionalData[:], hc.seq[:])
   382  			copy(additionalData[8:], b.data[:3])
   383  			additionalData[11] = byte(payloadLen >> 8)
   384  			additionalData[12] = byte(payloadLen)
   385  
   386  			c.Seal(payload[:0], nonce, payload, additionalData[:])
   387  		case cbcMode:
   388  			blockSize := c.BlockSize()
   389  			if explicitIVLen > 0 {
   390  				c.SetIV(payload[:explicitIVLen])
   391  				payload = payload[explicitIVLen:]
   392  			}
   393  			prefix, finalBlock := padToBlockSize(payload, blockSize)
   394  			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
   395  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
   396  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
   397  		default:
   398  			panic("unknown cipher type")
   399  		}
   400  	}
   401  
   402  	// update length to include MAC and any block padding needed.
   403  	n := len(b.data) - recordHeaderLen
   404  	b.data[3] = byte(n >> 8)
   405  	b.data[4] = byte(n)
   406  	hc.incSeq()
   407  
   408  	return true, 0
   409  }
   410  
   411  // A block is a simple data buffer.
   412  type block struct {
   413  	data []byte
   414  	off  int // index for Read
   415  	link *block
   416  }
   417  
   418  // resize resizes block to be n bytes, growing if necessary.
   419  func (b *block) resize(n int) {
   420  	if n > cap(b.data) {
   421  		b.reserve(n)
   422  	}
   423  	b.data = b.data[0:n]
   424  }
   425  
   426  // reserve makes sure that block contains a capacity of at least n bytes.
   427  func (b *block) reserve(n int) {
   428  	if cap(b.data) >= n {
   429  		return
   430  	}
   431  	m := cap(b.data)
   432  	if m == 0 {
   433  		m = 1024
   434  	}
   435  	for m < n {
   436  		m *= 2
   437  	}
   438  	data := make([]byte, len(b.data), m)
   439  	copy(data, b.data)
   440  	b.data = data
   441  }
   442  
   443  // readFromUntil reads from r into b until b contains at least n bytes
   444  // or else returns an error.
   445  func (b *block) readFromUntil(r io.Reader, n int) error {
   446  	// quick case
   447  	if len(b.data) >= n {
   448  		return nil
   449  	}
   450  
   451  	// read until have enough.
   452  	b.reserve(n)
   453  	for {
   454  		m, err := r.Read(b.data[len(b.data):cap(b.data)])
   455  		b.data = b.data[0 : len(b.data)+m]
   456  		if len(b.data) >= n {
   457  			// TODO(bradfitz,agl): slightly suspicious
   458  			// that we're throwing away r.Read's err here.
   459  			break
   460  		}
   461  		if err != nil {
   462  			return err
   463  		}
   464  	}
   465  	return nil
   466  }
   467  
   468  func (b *block) Read(p []byte) (n int, err error) {
   469  	n = copy(p, b.data[b.off:])
   470  	b.off += n
   471  	return
   472  }
   473  
   474  // newBlock allocates a new block, from hc's free list if possible.
   475  func (hc *halfConn) newBlock() *block {
   476  	b := hc.bfree
   477  	if b == nil {
   478  		return new(block)
   479  	}
   480  	hc.bfree = b.link
   481  	b.link = nil
   482  	b.resize(0)
   483  	return b
   484  }
   485  
   486  // freeBlock returns a block to hc's free list.
   487  // The protocol is such that each side only has a block or two on
   488  // its free list at a time, so there's no need to worry about
   489  // trimming the list, etc.
   490  func (hc *halfConn) freeBlock(b *block) {
   491  	b.link = hc.bfree
   492  	hc.bfree = b
   493  }
   494  
   495  // splitBlock splits a block after the first n bytes,
   496  // returning a block with those n bytes and a
   497  // block with the remainder.  the latter may be nil.
   498  func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
   499  	if len(b.data) <= n {
   500  		return b, nil
   501  	}
   502  	bb := hc.newBlock()
   503  	bb.resize(len(b.data) - n)
   504  	copy(bb.data, b.data[n:])
   505  	b.data = b.data[0:n]
   506  	return b, bb
   507  }
   508  
   509  // readRecord reads the next TLS record from the connection
   510  // and updates the record layer state.
   511  // c.in.Mutex <= L; c.input == nil.
   512  func (c *Conn) readRecord(want recordType) error {
   513  	// Caller must be in sync with connection:
   514  	// handshake data if handshake not yet completed,
   515  	// else application data.  (We don't support renegotiation.)
   516  	switch want {
   517  	default:
   518  		c.sendAlert(alertInternalError)
   519  		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
   520  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   521  		if c.handshakeComplete {
   522  			c.sendAlert(alertInternalError)
   523  			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
   524  		}
   525  	case recordTypeApplicationData:
   526  		if !c.handshakeComplete {
   527  			c.sendAlert(alertInternalError)
   528  			return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
   529  		}
   530  	}
   531  
   532  Again:
   533  	if c.rawInput == nil {
   534  		c.rawInput = c.in.newBlock()
   535  	}
   536  	b := c.rawInput
   537  
   538  	// Read header, payload.
   539  	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
   540  		// RFC suggests that EOF without an alertCloseNotify is
   541  		// an error, but popular web sites seem to do this,
   542  		// so we can't make it an error.
   543  		// if err == io.EOF {
   544  		// 	err = io.ErrUnexpectedEOF
   545  		// }
   546  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   547  			c.in.setErrorLocked(err)
   548  		}
   549  		return err
   550  	}
   551  	typ := recordType(b.data[0])
   552  
   553  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   554  	// start with a uint16 length where the MSB is set and the first record
   555  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   556  	// an SSLv2 client.
   557  	if want == recordTypeHandshake && typ == 0x80 {
   558  		c.sendAlert(alertProtocolVersion)
   559  		return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
   560  	}
   561  
   562  	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
   563  	n := int(b.data[3])<<8 | int(b.data[4])
   564  	if c.haveVers && vers != c.vers {
   565  		c.sendAlert(alertProtocolVersion)
   566  		return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
   567  	}
   568  	if n > maxCiphertext {
   569  		c.sendAlert(alertRecordOverflow)
   570  		return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
   571  	}
   572  	if !c.haveVers {
   573  		// First message, be extra suspicious:
   574  		// this might not be a TLS client.
   575  		// Bail out before reading a full 'body', if possible.
   576  		// The current max version is 3.1.
   577  		// If the version is >= 16.0, it's probably not real.
   578  		// Similarly, a clientHello message encodes in
   579  		// well under a kilobyte.  If the length is >= 12 kB,
   580  		// it's probably not real.
   581  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
   582  			c.sendAlert(alertUnexpectedMessage)
   583  			return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
   584  		}
   585  	}
   586  	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   587  		if err == io.EOF {
   588  			err = io.ErrUnexpectedEOF
   589  		}
   590  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   591  			c.in.setErrorLocked(err)
   592  		}
   593  		return err
   594  	}
   595  
   596  	// Process message.
   597  	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
   598  	ok, off, err := c.in.decrypt(b)
   599  	if !ok {
   600  		c.in.setErrorLocked(c.sendAlert(err))
   601  	}
   602  	b.off = off
   603  	data := b.data[b.off:]
   604  	if len(data) > maxPlaintext {
   605  		err := c.sendAlert(alertRecordOverflow)
   606  		c.in.freeBlock(b)
   607  		return c.in.setErrorLocked(err)
   608  	}
   609  
   610  	switch typ {
   611  	default:
   612  		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   613  
   614  	case recordTypeAlert:
   615  		if len(data) != 2 {
   616  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   617  			break
   618  		}
   619  		if alert(data[1]) == alertCloseNotify {
   620  			c.in.setErrorLocked(io.EOF)
   621  			break
   622  		}
   623  		switch data[0] {
   624  		case alertLevelWarning:
   625  			// drop on the floor
   626  			c.in.freeBlock(b)
   627  			goto Again
   628  		case alertLevelError:
   629  			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   630  		default:
   631  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   632  		}
   633  
   634  	case recordTypeChangeCipherSpec:
   635  		if typ != want || len(data) != 1 || data[0] != 1 {
   636  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   637  			break
   638  		}
   639  		err := c.in.changeCipherSpec()
   640  		if err != nil {
   641  			c.in.setErrorLocked(c.sendAlert(err.(alert)))
   642  		}
   643  
   644  	case recordTypeApplicationData:
   645  		if typ != want {
   646  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   647  			break
   648  		}
   649  		c.input = b
   650  		b = nil
   651  
   652  	case recordTypeHandshake:
   653  		// TODO(rsc): Should at least pick off connection close.
   654  		if typ != want {
   655  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   656  		}
   657  		c.hand.Write(data)
   658  	}
   659  
   660  	if b != nil {
   661  		c.in.freeBlock(b)
   662  	}
   663  	return c.in.err
   664  }
   665  
   666  // sendAlert sends a TLS alert message.
   667  // c.out.Mutex <= L.
   668  func (c *Conn) sendAlertLocked(err alert) error {
   669  	switch err {
   670  	case alertNoRenegotiation, alertCloseNotify:
   671  		c.tmp[0] = alertLevelWarning
   672  	default:
   673  		c.tmp[0] = alertLevelError
   674  	}
   675  	c.tmp[1] = byte(err)
   676  	c.writeRecord(recordTypeAlert, c.tmp[0:2])
   677  	// closeNotify is a special case in that it isn't an error:
   678  	if err != alertCloseNotify {
   679  		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   680  	}
   681  	return nil
   682  }
   683  
   684  // sendAlert sends a TLS alert message.
   685  // L < c.out.Mutex.
   686  func (c *Conn) sendAlert(err alert) error {
   687  	c.out.Lock()
   688  	defer c.out.Unlock()
   689  	return c.sendAlertLocked(err)
   690  }
   691  
   692  // writeRecord writes a TLS record with the given type and payload
   693  // to the connection and updates the record layer state.
   694  // c.out.Mutex <= L.
   695  func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
   696  	b := c.out.newBlock()
   697  	for len(data) > 0 {
   698  		m := len(data)
   699  		if m > maxPlaintext {
   700  			m = maxPlaintext
   701  		}
   702  		explicitIVLen := 0
   703  		explicitIVIsSeq := false
   704  
   705  		var cbc cbcMode
   706  		if c.out.version >= VersionTLS11 {
   707  			var ok bool
   708  			if cbc, ok = c.out.cipher.(cbcMode); ok {
   709  				explicitIVLen = cbc.BlockSize()
   710  			}
   711  		}
   712  		if explicitIVLen == 0 {
   713  			if _, ok := c.out.cipher.(cipher.AEAD); ok {
   714  				explicitIVLen = 8
   715  				// The AES-GCM construction in TLS has an
   716  				// explicit nonce so that the nonce can be
   717  				// random. However, the nonce is only 8 bytes
   718  				// which is too small for a secure, random
   719  				// nonce. Therefore we use the sequence number
   720  				// as the nonce.
   721  				explicitIVIsSeq = true
   722  			}
   723  		}
   724  		b.resize(recordHeaderLen + explicitIVLen + m)
   725  		b.data[0] = byte(typ)
   726  		vers := c.vers
   727  		if vers == 0 {
   728  			// Some TLS servers fail if the record version is
   729  			// greater than TLS 1.0 for the initial ClientHello.
   730  			vers = VersionTLS10
   731  		}
   732  		b.data[1] = byte(vers >> 8)
   733  		b.data[2] = byte(vers)
   734  		b.data[3] = byte(m >> 8)
   735  		b.data[4] = byte(m)
   736  		if explicitIVLen > 0 {
   737  			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   738  			if explicitIVIsSeq {
   739  				copy(explicitIV, c.out.seq[:])
   740  			} else {
   741  				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
   742  					break
   743  				}
   744  			}
   745  		}
   746  		copy(b.data[recordHeaderLen+explicitIVLen:], data)
   747  		c.out.encrypt(b, explicitIVLen)
   748  		_, err = c.conn.Write(b.data)
   749  		if err != nil {
   750  			break
   751  		}
   752  		n += m
   753  		data = data[m:]
   754  	}
   755  	c.out.freeBlock(b)
   756  
   757  	if typ == recordTypeChangeCipherSpec {
   758  		err = c.out.changeCipherSpec()
   759  		if err != nil {
   760  			// Cannot call sendAlert directly,
   761  			// because we already hold c.out.Mutex.
   762  			c.tmp[0] = alertLevelError
   763  			c.tmp[1] = byte(err.(alert))
   764  			c.writeRecord(recordTypeAlert, c.tmp[0:2])
   765  			return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   766  		}
   767  	}
   768  	return
   769  }
   770  
   771  // readHandshake reads the next handshake message from
   772  // the record layer.
   773  // c.in.Mutex < L; c.out.Mutex < L.
   774  func (c *Conn) readHandshake() (interface{}, error) {
   775  	for c.hand.Len() < 4 {
   776  		if err := c.in.err; err != nil {
   777  			return nil, err
   778  		}
   779  		if err := c.readRecord(recordTypeHandshake); err != nil {
   780  			return nil, err
   781  		}
   782  	}
   783  
   784  	data := c.hand.Bytes()
   785  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   786  	if n > maxHandshake {
   787  		return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
   788  	}
   789  	for c.hand.Len() < 4+n {
   790  		if err := c.in.err; err != nil {
   791  			return nil, err
   792  		}
   793  		if err := c.readRecord(recordTypeHandshake); err != nil {
   794  			return nil, err
   795  		}
   796  	}
   797  	data = c.hand.Next(4 + n)
   798  	var m handshakeMessage
   799  	switch data[0] {
   800  	case typeClientHello:
   801  		m = new(clientHelloMsg)
   802  	case typeServerHello:
   803  		m = new(serverHelloMsg)
   804  	case typeNewSessionTicket:
   805  		m = new(newSessionTicketMsg)
   806  	case typeCertificate:
   807  		m = new(certificateMsg)
   808  	case typeCertificateRequest:
   809  		m = &certificateRequestMsg{
   810  			hasSignatureAndHash: c.vers >= VersionTLS12,
   811  		}
   812  	case typeCertificateStatus:
   813  		m = new(certificateStatusMsg)
   814  	case typeServerKeyExchange:
   815  		m = new(serverKeyExchangeMsg)
   816  	case typeServerHelloDone:
   817  		m = new(serverHelloDoneMsg)
   818  	case typeClientKeyExchange:
   819  		m = new(clientKeyExchangeMsg)
   820  	case typeCertificateVerify:
   821  		m = &certificateVerifyMsg{
   822  			hasSignatureAndHash: c.vers >= VersionTLS12,
   823  		}
   824  	case typeNextProtocol:
   825  		m = new(nextProtoMsg)
   826  	case typeFinished:
   827  		m = new(finishedMsg)
   828  	default:
   829  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   830  	}
   831  
   832  	// The handshake message unmarshallers
   833  	// expect to be able to keep references to data,
   834  	// so pass in a fresh copy that won't be overwritten.
   835  	data = append([]byte(nil), data...)
   836  
   837  	if !m.unmarshal(data) {
   838  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   839  	}
   840  	return m, nil
   841  }
   842  
   843  // Write writes data to the connection.
   844  func (c *Conn) Write(b []byte) (int, error) {
   845  	if err := c.Handshake(); err != nil {
   846  		return 0, err
   847  	}
   848  
   849  	c.out.Lock()
   850  	defer c.out.Unlock()
   851  
   852  	if err := c.out.err; err != nil {
   853  		return 0, err
   854  	}
   855  
   856  	if !c.handshakeComplete {
   857  		return 0, alertInternalError
   858  	}
   859  
   860  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
   861  	// attack when using block mode ciphers due to predictable IVs.
   862  	// This can be prevented by splitting each Application Data
   863  	// record into two records, effectively randomizing the IV.
   864  	//
   865  	// http://www.openssl.org/~bodo/tls-cbc.txt
   866  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
   867  	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
   868  
   869  	var m int
   870  	if len(b) > 1 && c.vers <= VersionTLS10 {
   871  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
   872  			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
   873  			if err != nil {
   874  				return n, c.out.setErrorLocked(err)
   875  			}
   876  			m, b = 1, b[1:]
   877  		}
   878  	}
   879  
   880  	n, err := c.writeRecord(recordTypeApplicationData, b)
   881  	return n + m, c.out.setErrorLocked(err)
   882  }
   883  
   884  // Read can be made to time out and return a net.Error with Timeout() == true
   885  // after a fixed time limit; see SetDeadline and SetReadDeadline.
   886  func (c *Conn) Read(b []byte) (n int, err error) {
   887  	if err = c.Handshake(); err != nil {
   888  		return
   889  	}
   890  	if len(b) == 0 {
   891  		// Put this after Handshake, in case people were calling
   892  		// Read(nil) for the side effect of the Handshake.
   893  		return
   894  	}
   895  
   896  	c.in.Lock()
   897  	defer c.in.Unlock()
   898  
   899  	// Some OpenSSL servers send empty records in order to randomize the
   900  	// CBC IV. So this loop ignores a limited number of empty records.
   901  	const maxConsecutiveEmptyRecords = 100
   902  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
   903  		for c.input == nil && c.in.err == nil {
   904  			if err := c.readRecord(recordTypeApplicationData); err != nil {
   905  				// Soft error, like EAGAIN
   906  				return 0, err
   907  			}
   908  		}
   909  		if err := c.in.err; err != nil {
   910  			return 0, err
   911  		}
   912  
   913  		n, err = c.input.Read(b)
   914  		if c.input.off >= len(c.input.data) {
   915  			c.in.freeBlock(c.input)
   916  			c.input = nil
   917  		}
   918  
   919  		// If a close-notify alert is waiting, read it so that
   920  		// we can return (n, EOF) instead of (n, nil), to signal
   921  		// to the HTTP response reading goroutine that the
   922  		// connection is now closed. This eliminates a race
   923  		// where the HTTP response reading goroutine would
   924  		// otherwise not observe the EOF until its next read,
   925  		// by which time a client goroutine might have already
   926  		// tried to reuse the HTTP connection for a new
   927  		// request.
   928  		// See https://codereview.appspot.com/76400046
   929  		// and http://golang.org/issue/3514
   930  		if ri := c.rawInput; ri != nil &&
   931  			n != 0 && err == nil &&
   932  			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
   933  			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
   934  				err = recErr // will be io.EOF on closeNotify
   935  			}
   936  		}
   937  
   938  		if n != 0 || err != nil {
   939  			return n, err
   940  		}
   941  	}
   942  
   943  	return 0, io.ErrNoProgress
   944  }
   945  
   946  // Close closes the connection.
   947  func (c *Conn) Close() error {
   948  	var alertErr error
   949  
   950  	c.handshakeMutex.Lock()
   951  	defer c.handshakeMutex.Unlock()
   952  	if c.handshakeComplete {
   953  		alertErr = c.sendAlert(alertCloseNotify)
   954  	}
   955  
   956  	if err := c.conn.Close(); err != nil {
   957  		return err
   958  	}
   959  	return alertErr
   960  }
   961  
   962  // Handshake runs the client or server handshake
   963  // protocol if it has not yet been run.
   964  // Most uses of this package need not call Handshake
   965  // explicitly: the first Read or Write will call it automatically.
   966  func (c *Conn) Handshake() error {
   967  	c.handshakeMutex.Lock()
   968  	defer c.handshakeMutex.Unlock()
   969  	if err := c.handshakeErr; err != nil {
   970  		return err
   971  	}
   972  	if c.handshakeComplete {
   973  		return nil
   974  	}
   975  
   976  	if c.isClient {
   977  		c.handshakeErr = c.clientHandshake()
   978  	} else {
   979  		c.handshakeErr = c.serverHandshake()
   980  	}
   981  	return c.handshakeErr
   982  }
   983  
   984  // ConnectionState returns basic TLS details about the connection.
   985  func (c *Conn) ConnectionState() ConnectionState {
   986  	c.handshakeMutex.Lock()
   987  	defer c.handshakeMutex.Unlock()
   988  
   989  	var state ConnectionState
   990  	state.HandshakeComplete = c.handshakeComplete
   991  	if c.handshakeComplete {
   992  		state.Version = c.vers
   993  		state.NegotiatedProtocol = c.clientProtocol
   994  		state.DidResume = c.didResume
   995  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
   996  		state.CipherSuite = c.cipherSuite
   997  		state.PeerCertificates = c.peerCertificates
   998  		state.VerifiedChains = c.verifiedChains
   999  		state.ServerName = c.serverName
  1000  		if !c.didResume {
  1001  			state.TLSUnique = c.firstFinished[:]
  1002  		}
  1003  	}
  1004  
  1005  	return state
  1006  }
  1007  
  1008  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1009  // any. (Only valid for client connections.)
  1010  func (c *Conn) OCSPResponse() []byte {
  1011  	c.handshakeMutex.Lock()
  1012  	defer c.handshakeMutex.Unlock()
  1013  
  1014  	return c.ocspResponse
  1015  }
  1016  
  1017  // VerifyHostname checks that the peer certificate chain is valid for
  1018  // connecting to host.  If so, it returns nil; if not, it returns an error
  1019  // describing the problem.
  1020  func (c *Conn) VerifyHostname(host string) error {
  1021  	c.handshakeMutex.Lock()
  1022  	defer c.handshakeMutex.Unlock()
  1023  	if !c.isClient {
  1024  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1025  	}
  1026  	if !c.handshakeComplete {
  1027  		return errors.New("tls: handshake has not yet been performed")
  1028  	}
  1029  	return c.peerCertificates[0].VerifyHostname(host)
  1030  }