github.com/shijuvar/go@v0.0.0-20141209052335-e8f13700b70c/src/go/printer/nodes.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements printing of AST nodes; specifically 6 // expressions, statements, declarations, and files. It uses 7 // the print functionality implemented in printer.go. 8 9 package printer 10 11 import ( 12 "bytes" 13 "go/ast" 14 "go/token" 15 "unicode/utf8" 16 ) 17 18 // Formatting issues: 19 // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) 20 // when the comment spans multiple lines; if such a comment is just two lines, formatting is 21 // not idempotent 22 // - formatting of expression lists 23 // - should use blank instead of tab to separate one-line function bodies from 24 // the function header unless there is a group of consecutive one-liners 25 26 // ---------------------------------------------------------------------------- 27 // Common AST nodes. 28 29 // Print as many newlines as necessary (but at least min newlines) to get to 30 // the current line. ws is printed before the first line break. If newSection 31 // is set, the first line break is printed as formfeed. Returns true if any 32 // line break was printed; returns false otherwise. 33 // 34 // TODO(gri): linebreak may add too many lines if the next statement at "line" 35 // is preceded by comments because the computation of n assumes 36 // the current position before the comment and the target position 37 // after the comment. Thus, after interspersing such comments, the 38 // space taken up by them is not considered to reduce the number of 39 // linebreaks. At the moment there is no easy way to know about 40 // future (not yet interspersed) comments in this function. 41 // 42 func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (printedBreak bool) { 43 n := nlimit(line - p.pos.Line) 44 if n < min { 45 n = min 46 } 47 if n > 0 { 48 p.print(ws) 49 if newSection { 50 p.print(formfeed) 51 n-- 52 } 53 for ; n > 0; n-- { 54 p.print(newline) 55 } 56 printedBreak = true 57 } 58 return 59 } 60 61 // setComment sets g as the next comment if g != nil and if node comments 62 // are enabled - this mode is used when printing source code fragments such 63 // as exports only. It assumes that there is no pending comment in p.comments 64 // and at most one pending comment in the p.comment cache. 65 func (p *printer) setComment(g *ast.CommentGroup) { 66 if g == nil || !p.useNodeComments { 67 return 68 } 69 if p.comments == nil { 70 // initialize p.comments lazily 71 p.comments = make([]*ast.CommentGroup, 1) 72 } else if p.cindex < len(p.comments) { 73 // for some reason there are pending comments; this 74 // should never happen - handle gracefully and flush 75 // all comments up to g, ignore anything after that 76 p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL) 77 p.comments = p.comments[0:1] 78 // in debug mode, report error 79 p.internalError("setComment found pending comments") 80 } 81 p.comments[0] = g 82 p.cindex = 0 83 // don't overwrite any pending comment in the p.comment cache 84 // (there may be a pending comment when a line comment is 85 // immediately followed by a lead comment with no other 86 // tokens between) 87 if p.commentOffset == infinity { 88 p.nextComment() // get comment ready for use 89 } 90 } 91 92 type exprListMode uint 93 94 const ( 95 commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma 96 noIndent // no extra indentation in multi-line lists 97 ) 98 99 // If indent is set, a multi-line identifier list is indented after the 100 // first linebreak encountered. 101 func (p *printer) identList(list []*ast.Ident, indent bool) { 102 // convert into an expression list so we can re-use exprList formatting 103 xlist := make([]ast.Expr, len(list)) 104 for i, x := range list { 105 xlist[i] = x 106 } 107 var mode exprListMode 108 if !indent { 109 mode = noIndent 110 } 111 p.exprList(token.NoPos, xlist, 1, mode, token.NoPos) 112 } 113 114 // Print a list of expressions. If the list spans multiple 115 // source lines, the original line breaks are respected between 116 // expressions. 117 // 118 // TODO(gri) Consider rewriting this to be independent of []ast.Expr 119 // so that we can use the algorithm for any kind of list 120 // (e.g., pass list via a channel over which to range). 121 func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos) { 122 if len(list) == 0 { 123 return 124 } 125 126 prev := p.posFor(prev0) 127 next := p.posFor(next0) 128 line := p.lineFor(list[0].Pos()) 129 endLine := p.lineFor(list[len(list)-1].End()) 130 131 if prev.IsValid() && prev.Line == line && line == endLine { 132 // all list entries on a single line 133 for i, x := range list { 134 if i > 0 { 135 // use position of expression following the comma as 136 // comma position for correct comment placement 137 p.print(x.Pos(), token.COMMA, blank) 138 } 139 p.expr0(x, depth) 140 } 141 return 142 } 143 144 // list entries span multiple lines; 145 // use source code positions to guide line breaks 146 147 // don't add extra indentation if noIndent is set; 148 // i.e., pretend that the first line is already indented 149 ws := ignore 150 if mode&noIndent == 0 { 151 ws = indent 152 } 153 154 // the first linebreak is always a formfeed since this section must not 155 // depend on any previous formatting 156 prevBreak := -1 // index of last expression that was followed by a linebreak 157 if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) { 158 ws = ignore 159 prevBreak = 0 160 } 161 162 // initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line 163 size := 0 164 165 // print all list elements 166 prevLine := prev.Line 167 for i, x := range list { 168 line = p.lineFor(x.Pos()) 169 170 // determine if the next linebreak, if any, needs to use formfeed: 171 // in general, use the entire node size to make the decision; for 172 // key:value expressions, use the key size 173 // TODO(gri) for a better result, should probably incorporate both 174 // the key and the node size into the decision process 175 useFF := true 176 177 // determine element size: all bets are off if we don't have 178 // position information for the previous and next token (likely 179 // generated code - simply ignore the size in this case by setting 180 // it to 0) 181 prevSize := size 182 const infinity = 1e6 // larger than any source line 183 size = p.nodeSize(x, infinity) 184 pair, isPair := x.(*ast.KeyValueExpr) 185 if size <= infinity && prev.IsValid() && next.IsValid() { 186 // x fits on a single line 187 if isPair { 188 size = p.nodeSize(pair.Key, infinity) // size <= infinity 189 } 190 } else { 191 // size too large or we don't have good layout information 192 size = 0 193 } 194 195 // if the previous line and the current line had single- 196 // line-expressions and the key sizes are small or the 197 // the ratio between the key sizes does not exceed a 198 // threshold, align columns and do not use formfeed 199 if prevSize > 0 && size > 0 { 200 const smallSize = 20 201 if prevSize <= smallSize && size <= smallSize { 202 useFF = false 203 } else { 204 const r = 4 // threshold 205 ratio := float64(size) / float64(prevSize) 206 useFF = ratio <= 1.0/r || r <= ratio 207 } 208 } 209 210 needsLinebreak := 0 < prevLine && prevLine < line 211 if i > 0 { 212 // use position of expression following the comma as 213 // comma position for correct comment placement, but 214 // only if the expression is on the same line 215 if !needsLinebreak { 216 p.print(x.Pos()) 217 } 218 p.print(token.COMMA) 219 needsBlank := true 220 if needsLinebreak { 221 // lines are broken using newlines so comments remain aligned 222 // unless forceFF is set or there are multiple expressions on 223 // the same line in which case formfeed is used 224 if p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) { 225 ws = ignore 226 prevBreak = i 227 needsBlank = false // we got a line break instead 228 } 229 } 230 if needsBlank { 231 p.print(blank) 232 } 233 } 234 235 if len(list) > 1 && isPair && size > 0 && needsLinebreak { 236 // we have a key:value expression that fits onto one line 237 // and it's not on the same line as the prior expression: 238 // use a column for the key such that consecutive entries 239 // can align if possible 240 // (needsLinebreak is set if we started a new line before) 241 p.expr(pair.Key) 242 p.print(pair.Colon, token.COLON, vtab) 243 p.expr(pair.Value) 244 } else { 245 p.expr0(x, depth) 246 } 247 248 prevLine = line 249 } 250 251 if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line { 252 // print a terminating comma if the next token is on a new line 253 p.print(token.COMMA) 254 if ws == ignore && mode&noIndent == 0 { 255 // unindent if we indented 256 p.print(unindent) 257 } 258 p.print(formfeed) // terminating comma needs a line break to look good 259 return 260 } 261 262 if ws == ignore && mode&noIndent == 0 { 263 // unindent if we indented 264 p.print(unindent) 265 } 266 } 267 268 func (p *printer) parameters(fields *ast.FieldList) { 269 p.print(fields.Opening, token.LPAREN) 270 if len(fields.List) > 0 { 271 prevLine := p.lineFor(fields.Opening) 272 ws := indent 273 for i, par := range fields.List { 274 // determine par begin and end line (may be different 275 // if there are multiple parameter names for this par 276 // or the type is on a separate line) 277 var parLineBeg int 278 if len(par.Names) > 0 { 279 parLineBeg = p.lineFor(par.Names[0].Pos()) 280 } else { 281 parLineBeg = p.lineFor(par.Type.Pos()) 282 } 283 var parLineEnd = p.lineFor(par.Type.End()) 284 // separating "," if needed 285 needsLinebreak := 0 < prevLine && prevLine < parLineBeg 286 if i > 0 { 287 // use position of parameter following the comma as 288 // comma position for correct comma placement, but 289 // only if the next parameter is on the same line 290 if !needsLinebreak { 291 p.print(par.Pos()) 292 } 293 p.print(token.COMMA) 294 } 295 // separator if needed (linebreak or blank) 296 if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) { 297 // break line if the opening "(" or previous parameter ended on a different line 298 ws = ignore 299 } else if i > 0 { 300 p.print(blank) 301 } 302 // parameter names 303 if len(par.Names) > 0 { 304 // Very subtle: If we indented before (ws == ignore), identList 305 // won't indent again. If we didn't (ws == indent), identList will 306 // indent if the identList spans multiple lines, and it will outdent 307 // again at the end (and still ws == indent). Thus, a subsequent indent 308 // by a linebreak call after a type, or in the next multi-line identList 309 // will do the right thing. 310 p.identList(par.Names, ws == indent) 311 p.print(blank) 312 } 313 // parameter type 314 p.expr(stripParensAlways(par.Type)) 315 prevLine = parLineEnd 316 } 317 // if the closing ")" is on a separate line from the last parameter, 318 // print an additional "," and line break 319 if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing { 320 p.print(token.COMMA) 321 p.linebreak(closing, 0, ignore, true) 322 } 323 // unindent if we indented 324 if ws == ignore { 325 p.print(unindent) 326 } 327 } 328 p.print(fields.Closing, token.RPAREN) 329 } 330 331 func (p *printer) signature(params, result *ast.FieldList) { 332 if params != nil { 333 p.parameters(params) 334 } else { 335 p.print(token.LPAREN, token.RPAREN) 336 } 337 n := result.NumFields() 338 if n > 0 { 339 // result != nil 340 p.print(blank) 341 if n == 1 && result.List[0].Names == nil { 342 // single anonymous result; no ()'s 343 p.expr(stripParensAlways(result.List[0].Type)) 344 return 345 } 346 p.parameters(result) 347 } 348 } 349 350 func identListSize(list []*ast.Ident, maxSize int) (size int) { 351 for i, x := range list { 352 if i > 0 { 353 size += len(", ") 354 } 355 size += utf8.RuneCountInString(x.Name) 356 if size >= maxSize { 357 break 358 } 359 } 360 return 361 } 362 363 func (p *printer) isOneLineFieldList(list []*ast.Field) bool { 364 if len(list) != 1 { 365 return false // allow only one field 366 } 367 f := list[0] 368 if f.Tag != nil || f.Comment != nil { 369 return false // don't allow tags or comments 370 } 371 // only name(s) and type 372 const maxSize = 30 // adjust as appropriate, this is an approximate value 373 namesSize := identListSize(f.Names, maxSize) 374 if namesSize > 0 { 375 namesSize = 1 // blank between names and types 376 } 377 typeSize := p.nodeSize(f.Type, maxSize) 378 return namesSize+typeSize <= maxSize 379 } 380 381 func (p *printer) setLineComment(text string) { 382 p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}}) 383 } 384 385 func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) { 386 lbrace := fields.Opening 387 list := fields.List 388 rbrace := fields.Closing 389 hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace)) 390 srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace) 391 392 if !hasComments && srcIsOneLine { 393 // possibly a one-line struct/interface 394 if len(list) == 0 { 395 // no blank between keyword and {} in this case 396 p.print(lbrace, token.LBRACE, rbrace, token.RBRACE) 397 return 398 } else if isStruct && p.isOneLineFieldList(list) { // for now ignore interfaces 399 // small enough - print on one line 400 // (don't use identList and ignore source line breaks) 401 p.print(lbrace, token.LBRACE, blank) 402 f := list[0] 403 for i, x := range f.Names { 404 if i > 0 { 405 // no comments so no need for comma position 406 p.print(token.COMMA, blank) 407 } 408 p.expr(x) 409 } 410 if len(f.Names) > 0 { 411 p.print(blank) 412 } 413 p.expr(f.Type) 414 p.print(blank, rbrace, token.RBRACE) 415 return 416 } 417 } 418 // hasComments || !srcIsOneLine 419 420 p.print(blank, lbrace, token.LBRACE, indent) 421 if hasComments || len(list) > 0 { 422 p.print(formfeed) 423 } 424 425 if isStruct { 426 427 sep := vtab 428 if len(list) == 1 { 429 sep = blank 430 } 431 var line int 432 for i, f := range list { 433 if i > 0 { 434 p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0) 435 } 436 extraTabs := 0 437 p.setComment(f.Doc) 438 p.recordLine(&line) 439 if len(f.Names) > 0 { 440 // named fields 441 p.identList(f.Names, false) 442 p.print(sep) 443 p.expr(f.Type) 444 extraTabs = 1 445 } else { 446 // anonymous field 447 p.expr(f.Type) 448 extraTabs = 2 449 } 450 if f.Tag != nil { 451 if len(f.Names) > 0 && sep == vtab { 452 p.print(sep) 453 } 454 p.print(sep) 455 p.expr(f.Tag) 456 extraTabs = 0 457 } 458 if f.Comment != nil { 459 for ; extraTabs > 0; extraTabs-- { 460 p.print(sep) 461 } 462 p.setComment(f.Comment) 463 } 464 } 465 if isIncomplete { 466 if len(list) > 0 { 467 p.print(formfeed) 468 } 469 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 470 p.setLineComment("// contains filtered or unexported fields") 471 } 472 473 } else { // interface 474 475 var line int 476 for i, f := range list { 477 if i > 0 { 478 p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0) 479 } 480 p.setComment(f.Doc) 481 p.recordLine(&line) 482 if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp { 483 // method 484 p.expr(f.Names[0]) 485 p.signature(ftyp.Params, ftyp.Results) 486 } else { 487 // embedded interface 488 p.expr(f.Type) 489 } 490 p.setComment(f.Comment) 491 } 492 if isIncomplete { 493 if len(list) > 0 { 494 p.print(formfeed) 495 } 496 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 497 p.setLineComment("// contains filtered or unexported methods") 498 } 499 500 } 501 p.print(unindent, formfeed, rbrace, token.RBRACE) 502 } 503 504 // ---------------------------------------------------------------------------- 505 // Expressions 506 507 func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) { 508 switch e.Op.Precedence() { 509 case 4: 510 has4 = true 511 case 5: 512 has5 = true 513 } 514 515 switch l := e.X.(type) { 516 case *ast.BinaryExpr: 517 if l.Op.Precedence() < e.Op.Precedence() { 518 // parens will be inserted. 519 // pretend this is an *ast.ParenExpr and do nothing. 520 break 521 } 522 h4, h5, mp := walkBinary(l) 523 has4 = has4 || h4 524 has5 = has5 || h5 525 if maxProblem < mp { 526 maxProblem = mp 527 } 528 } 529 530 switch r := e.Y.(type) { 531 case *ast.BinaryExpr: 532 if r.Op.Precedence() <= e.Op.Precedence() { 533 // parens will be inserted. 534 // pretend this is an *ast.ParenExpr and do nothing. 535 break 536 } 537 h4, h5, mp := walkBinary(r) 538 has4 = has4 || h4 539 has5 = has5 || h5 540 if maxProblem < mp { 541 maxProblem = mp 542 } 543 544 case *ast.StarExpr: 545 if e.Op == token.QUO { // `*/` 546 maxProblem = 5 547 } 548 549 case *ast.UnaryExpr: 550 switch e.Op.String() + r.Op.String() { 551 case "/*", "&&", "&^": 552 maxProblem = 5 553 case "++", "--": 554 if maxProblem < 4 { 555 maxProblem = 4 556 } 557 } 558 } 559 return 560 } 561 562 func cutoff(e *ast.BinaryExpr, depth int) int { 563 has4, has5, maxProblem := walkBinary(e) 564 if maxProblem > 0 { 565 return maxProblem + 1 566 } 567 if has4 && has5 { 568 if depth == 1 { 569 return 5 570 } 571 return 4 572 } 573 if depth == 1 { 574 return 6 575 } 576 return 4 577 } 578 579 func diffPrec(expr ast.Expr, prec int) int { 580 x, ok := expr.(*ast.BinaryExpr) 581 if !ok || prec != x.Op.Precedence() { 582 return 1 583 } 584 return 0 585 } 586 587 func reduceDepth(depth int) int { 588 depth-- 589 if depth < 1 { 590 depth = 1 591 } 592 return depth 593 } 594 595 // Format the binary expression: decide the cutoff and then format. 596 // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. 597 // (Algorithm suggestion by Russ Cox.) 598 // 599 // The precedences are: 600 // 5 * / % << >> & &^ 601 // 4 + - | ^ 602 // 3 == != < <= > >= 603 // 2 && 604 // 1 || 605 // 606 // The only decision is whether there will be spaces around levels 4 and 5. 607 // There are never spaces at level 6 (unary), and always spaces at levels 3 and below. 608 // 609 // To choose the cutoff, look at the whole expression but excluding primary 610 // expressions (function calls, parenthesized exprs), and apply these rules: 611 // 612 // 1) If there is a binary operator with a right side unary operand 613 // that would clash without a space, the cutoff must be (in order): 614 // 615 // /* 6 616 // && 6 617 // &^ 6 618 // ++ 5 619 // -- 5 620 // 621 // (Comparison operators always have spaces around them.) 622 // 623 // 2) If there is a mix of level 5 and level 4 operators, then the cutoff 624 // is 5 (use spaces to distinguish precedence) in Normal mode 625 // and 4 (never use spaces) in Compact mode. 626 // 627 // 3) If there are no level 4 operators or no level 5 operators, then the 628 // cutoff is 6 (always use spaces) in Normal mode 629 // and 4 (never use spaces) in Compact mode. 630 // 631 func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) { 632 prec := x.Op.Precedence() 633 if prec < prec1 { 634 // parenthesis needed 635 // Note: The parser inserts an ast.ParenExpr node; thus this case 636 // can only occur if the AST is created in a different way. 637 p.print(token.LPAREN) 638 p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth 639 p.print(token.RPAREN) 640 return 641 } 642 643 printBlank := prec < cutoff 644 645 ws := indent 646 p.expr1(x.X, prec, depth+diffPrec(x.X, prec)) 647 if printBlank { 648 p.print(blank) 649 } 650 xline := p.pos.Line // before the operator (it may be on the next line!) 651 yline := p.lineFor(x.Y.Pos()) 652 p.print(x.OpPos, x.Op) 653 if xline != yline && xline > 0 && yline > 0 { 654 // at least one line break, but respect an extra empty line 655 // in the source 656 if p.linebreak(yline, 1, ws, true) { 657 ws = ignore 658 printBlank = false // no blank after line break 659 } 660 } 661 if printBlank { 662 p.print(blank) 663 } 664 p.expr1(x.Y, prec+1, depth+1) 665 if ws == ignore { 666 p.print(unindent) 667 } 668 } 669 670 func isBinary(expr ast.Expr) bool { 671 _, ok := expr.(*ast.BinaryExpr) 672 return ok 673 } 674 675 func (p *printer) expr1(expr ast.Expr, prec1, depth int) { 676 p.print(expr.Pos()) 677 678 switch x := expr.(type) { 679 case *ast.BadExpr: 680 p.print("BadExpr") 681 682 case *ast.Ident: 683 p.print(x) 684 685 case *ast.BinaryExpr: 686 if depth < 1 { 687 p.internalError("depth < 1:", depth) 688 depth = 1 689 } 690 p.binaryExpr(x, prec1, cutoff(x, depth), depth) 691 692 case *ast.KeyValueExpr: 693 p.expr(x.Key) 694 p.print(x.Colon, token.COLON, blank) 695 p.expr(x.Value) 696 697 case *ast.StarExpr: 698 const prec = token.UnaryPrec 699 if prec < prec1 { 700 // parenthesis needed 701 p.print(token.LPAREN) 702 p.print(token.MUL) 703 p.expr(x.X) 704 p.print(token.RPAREN) 705 } else { 706 // no parenthesis needed 707 p.print(token.MUL) 708 p.expr(x.X) 709 } 710 711 case *ast.UnaryExpr: 712 const prec = token.UnaryPrec 713 if prec < prec1 { 714 // parenthesis needed 715 p.print(token.LPAREN) 716 p.expr(x) 717 p.print(token.RPAREN) 718 } else { 719 // no parenthesis needed 720 p.print(x.Op) 721 if x.Op == token.RANGE { 722 // TODO(gri) Remove this code if it cannot be reached. 723 p.print(blank) 724 } 725 p.expr1(x.X, prec, depth) 726 } 727 728 case *ast.BasicLit: 729 p.print(x) 730 731 case *ast.FuncLit: 732 p.expr(x.Type) 733 p.adjBlock(p.distanceFrom(x.Type.Pos()), blank, x.Body) 734 735 case *ast.ParenExpr: 736 if _, hasParens := x.X.(*ast.ParenExpr); hasParens { 737 // don't print parentheses around an already parenthesized expression 738 // TODO(gri) consider making this more general and incorporate precedence levels 739 p.expr0(x.X, depth) 740 } else { 741 p.print(token.LPAREN) 742 p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth 743 p.print(x.Rparen, token.RPAREN) 744 } 745 746 case *ast.SelectorExpr: 747 p.expr1(x.X, token.HighestPrec, depth) 748 p.print(token.PERIOD) 749 if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line { 750 p.print(indent, newline, x.Sel.Pos(), x.Sel, unindent) 751 } else { 752 p.print(x.Sel.Pos(), x.Sel) 753 } 754 755 case *ast.TypeAssertExpr: 756 p.expr1(x.X, token.HighestPrec, depth) 757 p.print(token.PERIOD, x.Lparen, token.LPAREN) 758 if x.Type != nil { 759 p.expr(x.Type) 760 } else { 761 p.print(token.TYPE) 762 } 763 p.print(x.Rparen, token.RPAREN) 764 765 case *ast.IndexExpr: 766 // TODO(gri): should treat[] like parentheses and undo one level of depth 767 p.expr1(x.X, token.HighestPrec, 1) 768 p.print(x.Lbrack, token.LBRACK) 769 p.expr0(x.Index, depth+1) 770 p.print(x.Rbrack, token.RBRACK) 771 772 case *ast.SliceExpr: 773 // TODO(gri): should treat[] like parentheses and undo one level of depth 774 p.expr1(x.X, token.HighestPrec, 1) 775 p.print(x.Lbrack, token.LBRACK) 776 indices := []ast.Expr{x.Low, x.High} 777 if x.Max != nil { 778 indices = append(indices, x.Max) 779 } 780 for i, y := range indices { 781 if i > 0 { 782 // blanks around ":" if both sides exist and either side is a binary expression 783 // TODO(gri) once we have committed a variant of a[i:j:k] we may want to fine- 784 // tune the formatting here 785 x := indices[i-1] 786 if depth <= 1 && x != nil && y != nil && (isBinary(x) || isBinary(y)) { 787 p.print(blank, token.COLON, blank) 788 } else { 789 p.print(token.COLON) 790 } 791 } 792 if y != nil { 793 p.expr0(y, depth+1) 794 } 795 } 796 p.print(x.Rbrack, token.RBRACK) 797 798 case *ast.CallExpr: 799 if len(x.Args) > 1 { 800 depth++ 801 } 802 if _, ok := x.Fun.(*ast.FuncType); ok { 803 // conversions to literal function types require parentheses around the type 804 p.print(token.LPAREN) 805 p.expr1(x.Fun, token.HighestPrec, depth) 806 p.print(token.RPAREN) 807 } else { 808 p.expr1(x.Fun, token.HighestPrec, depth) 809 } 810 p.print(x.Lparen, token.LPAREN) 811 if x.Ellipsis.IsValid() { 812 p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis) 813 p.print(x.Ellipsis, token.ELLIPSIS) 814 if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) { 815 p.print(token.COMMA, formfeed) 816 } 817 } else { 818 p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen) 819 } 820 p.print(x.Rparen, token.RPAREN) 821 822 case *ast.CompositeLit: 823 // composite literal elements that are composite literals themselves may have the type omitted 824 if x.Type != nil { 825 p.expr1(x.Type, token.HighestPrec, depth) 826 } 827 p.print(x.Lbrace, token.LBRACE) 828 p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace) 829 // do not insert extra line break following a /*-style comment 830 // before the closing '}' as it might break the code if there 831 // is no trailing ',' 832 mode := noExtraLinebreak 833 // do not insert extra blank following a /*-style comment 834 // before the closing '}' unless the literal is empty 835 if len(x.Elts) > 0 { 836 mode |= noExtraBlank 837 } 838 p.print(mode, x.Rbrace, token.RBRACE, mode) 839 840 case *ast.Ellipsis: 841 p.print(token.ELLIPSIS) 842 if x.Elt != nil { 843 p.expr(x.Elt) 844 } 845 846 case *ast.ArrayType: 847 p.print(token.LBRACK) 848 if x.Len != nil { 849 p.expr(x.Len) 850 } 851 p.print(token.RBRACK) 852 p.expr(x.Elt) 853 854 case *ast.StructType: 855 p.print(token.STRUCT) 856 p.fieldList(x.Fields, true, x.Incomplete) 857 858 case *ast.FuncType: 859 p.print(token.FUNC) 860 p.signature(x.Params, x.Results) 861 862 case *ast.InterfaceType: 863 p.print(token.INTERFACE) 864 p.fieldList(x.Methods, false, x.Incomplete) 865 866 case *ast.MapType: 867 p.print(token.MAP, token.LBRACK) 868 p.expr(x.Key) 869 p.print(token.RBRACK) 870 p.expr(x.Value) 871 872 case *ast.ChanType: 873 switch x.Dir { 874 case ast.SEND | ast.RECV: 875 p.print(token.CHAN) 876 case ast.RECV: 877 p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same 878 case ast.SEND: 879 p.print(token.CHAN, x.Arrow, token.ARROW) 880 } 881 p.print(blank) 882 p.expr(x.Value) 883 884 default: 885 panic("unreachable") 886 } 887 888 return 889 } 890 891 func (p *printer) expr0(x ast.Expr, depth int) { 892 p.expr1(x, token.LowestPrec, depth) 893 } 894 895 func (p *printer) expr(x ast.Expr) { 896 const depth = 1 897 p.expr1(x, token.LowestPrec, depth) 898 } 899 900 // ---------------------------------------------------------------------------- 901 // Statements 902 903 // Print the statement list indented, but without a newline after the last statement. 904 // Extra line breaks between statements in the source are respected but at most one 905 // empty line is printed between statements. 906 func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) { 907 if nindent > 0 { 908 p.print(indent) 909 } 910 var line int 911 i := 0 912 for _, s := range list { 913 // ignore empty statements (was issue 3466) 914 if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty { 915 // nindent == 0 only for lists of switch/select case clauses; 916 // in those cases each clause is a new section 917 if len(p.output) > 0 { 918 // only print line break if we are not at the beginning of the output 919 // (i.e., we are not printing only a partial program) 920 p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0) 921 } 922 p.recordLine(&line) 923 p.stmt(s, nextIsRBrace && i == len(list)-1) 924 // labeled statements put labels on a separate line, but here 925 // we only care about the start line of the actual statement 926 // without label - correct line for each label 927 for t := s; ; { 928 lt, _ := t.(*ast.LabeledStmt) 929 if lt == nil { 930 break 931 } 932 line++ 933 t = lt.Stmt 934 } 935 i++ 936 } 937 } 938 if nindent > 0 { 939 p.print(unindent) 940 } 941 } 942 943 // block prints an *ast.BlockStmt; it always spans at least two lines. 944 func (p *printer) block(b *ast.BlockStmt, nindent int) { 945 p.print(b.Lbrace, token.LBRACE) 946 p.stmtList(b.List, nindent, true) 947 p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true) 948 p.print(b.Rbrace, token.RBRACE) 949 } 950 951 func isTypeName(x ast.Expr) bool { 952 switch t := x.(type) { 953 case *ast.Ident: 954 return true 955 case *ast.SelectorExpr: 956 return isTypeName(t.X) 957 } 958 return false 959 } 960 961 func stripParens(x ast.Expr) ast.Expr { 962 if px, strip := x.(*ast.ParenExpr); strip { 963 // parentheses must not be stripped if there are any 964 // unparenthesized composite literals starting with 965 // a type name 966 ast.Inspect(px.X, func(node ast.Node) bool { 967 switch x := node.(type) { 968 case *ast.ParenExpr: 969 // parentheses protect enclosed composite literals 970 return false 971 case *ast.CompositeLit: 972 if isTypeName(x.Type) { 973 strip = false // do not strip parentheses 974 } 975 return false 976 } 977 // in all other cases, keep inspecting 978 return true 979 }) 980 if strip { 981 return stripParens(px.X) 982 } 983 } 984 return x 985 } 986 987 func stripParensAlways(x ast.Expr) ast.Expr { 988 if x, ok := x.(*ast.ParenExpr); ok { 989 return stripParensAlways(x.X) 990 } 991 return x 992 } 993 994 func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { 995 p.print(blank) 996 needsBlank := false 997 if init == nil && post == nil { 998 // no semicolons required 999 if expr != nil { 1000 p.expr(stripParens(expr)) 1001 needsBlank = true 1002 } 1003 } else { 1004 // all semicolons required 1005 // (they are not separators, print them explicitly) 1006 if init != nil { 1007 p.stmt(init, false) 1008 } 1009 p.print(token.SEMICOLON, blank) 1010 if expr != nil { 1011 p.expr(stripParens(expr)) 1012 needsBlank = true 1013 } 1014 if isForStmt { 1015 p.print(token.SEMICOLON, blank) 1016 needsBlank = false 1017 if post != nil { 1018 p.stmt(post, false) 1019 needsBlank = true 1020 } 1021 } 1022 } 1023 if needsBlank { 1024 p.print(blank) 1025 } 1026 } 1027 1028 // indentList reports whether an expression list would look better if it 1029 // were indented wholesale (starting with the very first element, rather 1030 // than starting at the first line break). 1031 // 1032 func (p *printer) indentList(list []ast.Expr) bool { 1033 // Heuristic: indentList returns true if there are more than one multi- 1034 // line element in the list, or if there is any element that is not 1035 // starting on the same line as the previous one ends. 1036 if len(list) >= 2 { 1037 var b = p.lineFor(list[0].Pos()) 1038 var e = p.lineFor(list[len(list)-1].End()) 1039 if 0 < b && b < e { 1040 // list spans multiple lines 1041 n := 0 // multi-line element count 1042 line := b 1043 for _, x := range list { 1044 xb := p.lineFor(x.Pos()) 1045 xe := p.lineFor(x.End()) 1046 if line < xb { 1047 // x is not starting on the same 1048 // line as the previous one ended 1049 return true 1050 } 1051 if xb < xe { 1052 // x is a multi-line element 1053 n++ 1054 } 1055 line = xe 1056 } 1057 return n > 1 1058 } 1059 } 1060 return false 1061 } 1062 1063 func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) { 1064 p.print(stmt.Pos()) 1065 1066 switch s := stmt.(type) { 1067 case *ast.BadStmt: 1068 p.print("BadStmt") 1069 1070 case *ast.DeclStmt: 1071 p.decl(s.Decl) 1072 1073 case *ast.EmptyStmt: 1074 // nothing to do 1075 1076 case *ast.LabeledStmt: 1077 // a "correcting" unindent immediately following a line break 1078 // is applied before the line break if there is no comment 1079 // between (see writeWhitespace) 1080 p.print(unindent) 1081 p.expr(s.Label) 1082 p.print(s.Colon, token.COLON, indent) 1083 if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty { 1084 if !nextIsRBrace { 1085 p.print(newline, e.Pos(), token.SEMICOLON) 1086 break 1087 } 1088 } else { 1089 p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true) 1090 } 1091 p.stmt(s.Stmt, nextIsRBrace) 1092 1093 case *ast.ExprStmt: 1094 const depth = 1 1095 p.expr0(s.X, depth) 1096 1097 case *ast.SendStmt: 1098 const depth = 1 1099 p.expr0(s.Chan, depth) 1100 p.print(blank, s.Arrow, token.ARROW, blank) 1101 p.expr0(s.Value, depth) 1102 1103 case *ast.IncDecStmt: 1104 const depth = 1 1105 p.expr0(s.X, depth+1) 1106 p.print(s.TokPos, s.Tok) 1107 1108 case *ast.AssignStmt: 1109 var depth = 1 1110 if len(s.Lhs) > 1 && len(s.Rhs) > 1 { 1111 depth++ 1112 } 1113 p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos) 1114 p.print(blank, s.TokPos, s.Tok, blank) 1115 p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos) 1116 1117 case *ast.GoStmt: 1118 p.print(token.GO, blank) 1119 p.expr(s.Call) 1120 1121 case *ast.DeferStmt: 1122 p.print(token.DEFER, blank) 1123 p.expr(s.Call) 1124 1125 case *ast.ReturnStmt: 1126 p.print(token.RETURN) 1127 if s.Results != nil { 1128 p.print(blank) 1129 // Use indentList heuristic to make corner cases look 1130 // better (issue 1207). A more systematic approach would 1131 // always indent, but this would cause significant 1132 // reformatting of the code base and not necessarily 1133 // lead to more nicely formatted code in general. 1134 if p.indentList(s.Results) { 1135 p.print(indent) 1136 p.exprList(s.Pos(), s.Results, 1, noIndent, token.NoPos) 1137 p.print(unindent) 1138 } else { 1139 p.exprList(s.Pos(), s.Results, 1, 0, token.NoPos) 1140 } 1141 } 1142 1143 case *ast.BranchStmt: 1144 p.print(s.Tok) 1145 if s.Label != nil { 1146 p.print(blank) 1147 p.expr(s.Label) 1148 } 1149 1150 case *ast.BlockStmt: 1151 p.block(s, 1) 1152 1153 case *ast.IfStmt: 1154 p.print(token.IF) 1155 p.controlClause(false, s.Init, s.Cond, nil) 1156 p.block(s.Body, 1) 1157 if s.Else != nil { 1158 p.print(blank, token.ELSE, blank) 1159 switch s.Else.(type) { 1160 case *ast.BlockStmt, *ast.IfStmt: 1161 p.stmt(s.Else, nextIsRBrace) 1162 default: 1163 p.print(token.LBRACE, indent, formfeed) 1164 p.stmt(s.Else, true) 1165 p.print(unindent, formfeed, token.RBRACE) 1166 } 1167 } 1168 1169 case *ast.CaseClause: 1170 if s.List != nil { 1171 p.print(token.CASE, blank) 1172 p.exprList(s.Pos(), s.List, 1, 0, s.Colon) 1173 } else { 1174 p.print(token.DEFAULT) 1175 } 1176 p.print(s.Colon, token.COLON) 1177 p.stmtList(s.Body, 1, nextIsRBrace) 1178 1179 case *ast.SwitchStmt: 1180 p.print(token.SWITCH) 1181 p.controlClause(false, s.Init, s.Tag, nil) 1182 p.block(s.Body, 0) 1183 1184 case *ast.TypeSwitchStmt: 1185 p.print(token.SWITCH) 1186 if s.Init != nil { 1187 p.print(blank) 1188 p.stmt(s.Init, false) 1189 p.print(token.SEMICOLON) 1190 } 1191 p.print(blank) 1192 p.stmt(s.Assign, false) 1193 p.print(blank) 1194 p.block(s.Body, 0) 1195 1196 case *ast.CommClause: 1197 if s.Comm != nil { 1198 p.print(token.CASE, blank) 1199 p.stmt(s.Comm, false) 1200 } else { 1201 p.print(token.DEFAULT) 1202 } 1203 p.print(s.Colon, token.COLON) 1204 p.stmtList(s.Body, 1, nextIsRBrace) 1205 1206 case *ast.SelectStmt: 1207 p.print(token.SELECT, blank) 1208 body := s.Body 1209 if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) { 1210 // print empty select statement w/o comments on one line 1211 p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE) 1212 } else { 1213 p.block(body, 0) 1214 } 1215 1216 case *ast.ForStmt: 1217 p.print(token.FOR) 1218 p.controlClause(true, s.Init, s.Cond, s.Post) 1219 p.block(s.Body, 1) 1220 1221 case *ast.RangeStmt: 1222 p.print(token.FOR, blank) 1223 if s.Key != nil { 1224 p.expr(s.Key) 1225 if s.Value != nil { 1226 // use position of value following the comma as 1227 // comma position for correct comment placement 1228 p.print(s.Value.Pos(), token.COMMA, blank) 1229 p.expr(s.Value) 1230 } 1231 p.print(blank, s.TokPos, s.Tok, blank) 1232 } 1233 p.print(token.RANGE, blank) 1234 p.expr(stripParens(s.X)) 1235 p.print(blank) 1236 p.block(s.Body, 1) 1237 1238 default: 1239 panic("unreachable") 1240 } 1241 1242 return 1243 } 1244 1245 // ---------------------------------------------------------------------------- 1246 // Declarations 1247 1248 // The keepTypeColumn function determines if the type column of a series of 1249 // consecutive const or var declarations must be kept, or if initialization 1250 // values (V) can be placed in the type column (T) instead. The i'th entry 1251 // in the result slice is true if the type column in spec[i] must be kept. 1252 // 1253 // For example, the declaration: 1254 // 1255 // const ( 1256 // foobar int = 42 // comment 1257 // x = 7 // comment 1258 // foo 1259 // bar = 991 1260 // ) 1261 // 1262 // leads to the type/values matrix below. A run of value columns (V) can 1263 // be moved into the type column if there is no type for any of the values 1264 // in that column (we only move entire columns so that they align properly). 1265 // 1266 // matrix formatted result 1267 // matrix 1268 // T V -> T V -> true there is a T and so the type 1269 // - V - V true column must be kept 1270 // - - - - false 1271 // - V V - false V is moved into T column 1272 // 1273 func keepTypeColumn(specs []ast.Spec) []bool { 1274 m := make([]bool, len(specs)) 1275 1276 populate := func(i, j int, keepType bool) { 1277 if keepType { 1278 for ; i < j; i++ { 1279 m[i] = true 1280 } 1281 } 1282 } 1283 1284 i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run 1285 var keepType bool 1286 for i, s := range specs { 1287 t := s.(*ast.ValueSpec) 1288 if t.Values != nil { 1289 if i0 < 0 { 1290 // start of a run of ValueSpecs with non-nil Values 1291 i0 = i 1292 keepType = false 1293 } 1294 } else { 1295 if i0 >= 0 { 1296 // end of a run 1297 populate(i0, i, keepType) 1298 i0 = -1 1299 } 1300 } 1301 if t.Type != nil { 1302 keepType = true 1303 } 1304 } 1305 if i0 >= 0 { 1306 // end of a run 1307 populate(i0, len(specs), keepType) 1308 } 1309 1310 return m 1311 } 1312 1313 func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) { 1314 p.setComment(s.Doc) 1315 p.identList(s.Names, false) // always present 1316 extraTabs := 3 1317 if s.Type != nil || keepType { 1318 p.print(vtab) 1319 extraTabs-- 1320 } 1321 if s.Type != nil { 1322 p.expr(s.Type) 1323 } 1324 if s.Values != nil { 1325 p.print(vtab, token.ASSIGN, blank) 1326 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos) 1327 extraTabs-- 1328 } 1329 if s.Comment != nil { 1330 for ; extraTabs > 0; extraTabs-- { 1331 p.print(vtab) 1332 } 1333 p.setComment(s.Comment) 1334 } 1335 } 1336 1337 // The parameter n is the number of specs in the group. If doIndent is set, 1338 // multi-line identifier lists in the spec are indented when the first 1339 // linebreak is encountered. 1340 // 1341 func (p *printer) spec(spec ast.Spec, n int, doIndent bool) { 1342 switch s := spec.(type) { 1343 case *ast.ImportSpec: 1344 p.setComment(s.Doc) 1345 if s.Name != nil { 1346 p.expr(s.Name) 1347 p.print(blank) 1348 } 1349 p.expr(s.Path) 1350 p.setComment(s.Comment) 1351 p.print(s.EndPos) 1352 1353 case *ast.ValueSpec: 1354 if n != 1 { 1355 p.internalError("expected n = 1; got", n) 1356 } 1357 p.setComment(s.Doc) 1358 p.identList(s.Names, doIndent) // always present 1359 if s.Type != nil { 1360 p.print(blank) 1361 p.expr(s.Type) 1362 } 1363 if s.Values != nil { 1364 p.print(blank, token.ASSIGN, blank) 1365 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos) 1366 } 1367 p.setComment(s.Comment) 1368 1369 case *ast.TypeSpec: 1370 p.setComment(s.Doc) 1371 p.expr(s.Name) 1372 if n == 1 { 1373 p.print(blank) 1374 } else { 1375 p.print(vtab) 1376 } 1377 p.expr(s.Type) 1378 p.setComment(s.Comment) 1379 1380 default: 1381 panic("unreachable") 1382 } 1383 } 1384 1385 func (p *printer) genDecl(d *ast.GenDecl) { 1386 p.setComment(d.Doc) 1387 p.print(d.Pos(), d.Tok, blank) 1388 1389 if d.Lparen.IsValid() { 1390 // group of parenthesized declarations 1391 p.print(d.Lparen, token.LPAREN) 1392 if n := len(d.Specs); n > 0 { 1393 p.print(indent, formfeed) 1394 if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) { 1395 // two or more grouped const/var declarations: 1396 // determine if the type column must be kept 1397 keepType := keepTypeColumn(d.Specs) 1398 var line int 1399 for i, s := range d.Specs { 1400 if i > 0 { 1401 p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) 1402 } 1403 p.recordLine(&line) 1404 p.valueSpec(s.(*ast.ValueSpec), keepType[i]) 1405 } 1406 } else { 1407 var line int 1408 for i, s := range d.Specs { 1409 if i > 0 { 1410 p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) 1411 } 1412 p.recordLine(&line) 1413 p.spec(s, n, false) 1414 } 1415 } 1416 p.print(unindent, formfeed) 1417 } 1418 p.print(d.Rparen, token.RPAREN) 1419 1420 } else { 1421 // single declaration 1422 p.spec(d.Specs[0], 1, true) 1423 } 1424 } 1425 1426 // nodeSize determines the size of n in chars after formatting. 1427 // The result is <= maxSize if the node fits on one line with at 1428 // most maxSize chars and the formatted output doesn't contain 1429 // any control chars. Otherwise, the result is > maxSize. 1430 // 1431 func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { 1432 // nodeSize invokes the printer, which may invoke nodeSize 1433 // recursively. For deep composite literal nests, this can 1434 // lead to an exponential algorithm. Remember previous 1435 // results to prune the recursion (was issue 1628). 1436 if size, found := p.nodeSizes[n]; found { 1437 return size 1438 } 1439 1440 size = maxSize + 1 // assume n doesn't fit 1441 p.nodeSizes[n] = size 1442 1443 // nodeSize computation must be independent of particular 1444 // style so that we always get the same decision; print 1445 // in RawFormat 1446 cfg := Config{Mode: RawFormat} 1447 var buf bytes.Buffer 1448 if err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil { 1449 return 1450 } 1451 if buf.Len() <= maxSize { 1452 for _, ch := range buf.Bytes() { 1453 if ch < ' ' { 1454 return 1455 } 1456 } 1457 size = buf.Len() // n fits 1458 p.nodeSizes[n] = size 1459 } 1460 return 1461 } 1462 1463 // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's. 1464 func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int { 1465 pos1 := b.Pos() 1466 pos2 := b.Rbrace 1467 if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) { 1468 // opening and closing brace are on different lines - don't make it a one-liner 1469 return maxSize + 1 1470 } 1471 if len(b.List) > 5 { 1472 // too many statements - don't make it a one-liner 1473 return maxSize + 1 1474 } 1475 // otherwise, estimate body size 1476 bodySize := p.commentSizeBefore(p.posFor(pos2)) 1477 for i, s := range b.List { 1478 if bodySize > maxSize { 1479 break // no need to continue 1480 } 1481 if i > 0 { 1482 bodySize += 2 // space for a semicolon and blank 1483 } 1484 bodySize += p.nodeSize(s, maxSize) 1485 } 1486 return bodySize 1487 } 1488 1489 // adjBlock prints an "adjacent" block (e.g., a for-loop or function body) following 1490 // a header (e.g., a for-loop control clause or function signature) of given headerSize. 1491 // If the header's and block's size are "small enough" and the block is "simple enough", 1492 // the block is printed on the current line, without line breaks, spaced from the header 1493 // by sep. Otherwise the block's opening "{" is printed on the current line, followed by 1494 // lines for the block's statements and its closing "}". 1495 // 1496 func (p *printer) adjBlock(headerSize int, sep whiteSpace, b *ast.BlockStmt) { 1497 if b == nil { 1498 return 1499 } 1500 1501 const maxSize = 100 1502 if headerSize+p.bodySize(b, maxSize) <= maxSize { 1503 p.print(sep, b.Lbrace, token.LBRACE) 1504 if len(b.List) > 0 { 1505 p.print(blank) 1506 for i, s := range b.List { 1507 if i > 0 { 1508 p.print(token.SEMICOLON, blank) 1509 } 1510 p.stmt(s, i == len(b.List)-1) 1511 } 1512 p.print(blank) 1513 } 1514 p.print(noExtraLinebreak, b.Rbrace, token.RBRACE, noExtraLinebreak) 1515 return 1516 } 1517 1518 if sep != ignore { 1519 p.print(blank) // always use blank 1520 } 1521 p.block(b, 1) 1522 } 1523 1524 // distanceFrom returns the column difference between from and p.pos (the current 1525 // estimated position) if both are on the same line; if they are on different lines 1526 // (or unknown) the result is infinity. 1527 func (p *printer) distanceFrom(from token.Pos) int { 1528 if from.IsValid() && p.pos.IsValid() { 1529 if f := p.posFor(from); f.Line == p.pos.Line { 1530 return p.pos.Column - f.Column 1531 } 1532 } 1533 return infinity 1534 } 1535 1536 func (p *printer) funcDecl(d *ast.FuncDecl) { 1537 p.setComment(d.Doc) 1538 p.print(d.Pos(), token.FUNC, blank) 1539 if d.Recv != nil { 1540 p.parameters(d.Recv) // method: print receiver 1541 p.print(blank) 1542 } 1543 p.expr(d.Name) 1544 p.signature(d.Type.Params, d.Type.Results) 1545 p.adjBlock(p.distanceFrom(d.Pos()), vtab, d.Body) 1546 } 1547 1548 func (p *printer) decl(decl ast.Decl) { 1549 switch d := decl.(type) { 1550 case *ast.BadDecl: 1551 p.print(d.Pos(), "BadDecl") 1552 case *ast.GenDecl: 1553 p.genDecl(d) 1554 case *ast.FuncDecl: 1555 p.funcDecl(d) 1556 default: 1557 panic("unreachable") 1558 } 1559 } 1560 1561 // ---------------------------------------------------------------------------- 1562 // Files 1563 1564 func declToken(decl ast.Decl) (tok token.Token) { 1565 tok = token.ILLEGAL 1566 switch d := decl.(type) { 1567 case *ast.GenDecl: 1568 tok = d.Tok 1569 case *ast.FuncDecl: 1570 tok = token.FUNC 1571 } 1572 return 1573 } 1574 1575 func (p *printer) declList(list []ast.Decl) { 1576 tok := token.ILLEGAL 1577 for _, d := range list { 1578 prev := tok 1579 tok = declToken(d) 1580 // If the declaration token changed (e.g., from CONST to TYPE) 1581 // or the next declaration has documentation associated with it, 1582 // print an empty line between top-level declarations. 1583 // (because p.linebreak is called with the position of d, which 1584 // is past any documentation, the minimum requirement is satisfied 1585 // even w/o the extra getDoc(d) nil-check - leave it in case the 1586 // linebreak logic improves - there's already a TODO). 1587 if len(p.output) > 0 { 1588 // only print line break if we are not at the beginning of the output 1589 // (i.e., we are not printing only a partial program) 1590 min := 1 1591 if prev != tok || getDoc(d) != nil { 1592 min = 2 1593 } 1594 p.linebreak(p.lineFor(d.Pos()), min, ignore, false) 1595 } 1596 p.decl(d) 1597 } 1598 } 1599 1600 func (p *printer) file(src *ast.File) { 1601 p.setComment(src.Doc) 1602 p.print(src.Pos(), token.PACKAGE, blank) 1603 p.expr(src.Name) 1604 p.declList(src.Decls) 1605 p.print(newline) 1606 }