github.com/shijuvar/go@v0.0.0-20141209052335-e8f13700b70c/src/strings/strings.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate strings.
     6  package strings
     7  
     8  import (
     9  	"unicode"
    10  	"unicode/utf8"
    11  )
    12  
    13  // explode splits s into an array of UTF-8 sequences, one per Unicode character (still strings) up to a maximum of n (n < 0 means no limit).
    14  // Invalid UTF-8 sequences become correct encodings of U+FFF8.
    15  func explode(s string, n int) []string {
    16  	if n == 0 {
    17  		return nil
    18  	}
    19  	l := utf8.RuneCountInString(s)
    20  	if n <= 0 || n > l {
    21  		n = l
    22  	}
    23  	a := make([]string, n)
    24  	var size int
    25  	var ch rune
    26  	i, cur := 0, 0
    27  	for ; i+1 < n; i++ {
    28  		ch, size = utf8.DecodeRuneInString(s[cur:])
    29  		if ch == utf8.RuneError {
    30  			a[i] = string(utf8.RuneError)
    31  		} else {
    32  			a[i] = s[cur : cur+size]
    33  		}
    34  		cur += size
    35  	}
    36  	// add the rest, if there is any
    37  	if cur < len(s) {
    38  		a[i] = s[cur:]
    39  	}
    40  	return a
    41  }
    42  
    43  // primeRK is the prime base used in Rabin-Karp algorithm.
    44  const primeRK = 16777619
    45  
    46  // hashStr returns the hash and the appropriate multiplicative
    47  // factor for use in Rabin-Karp algorithm.
    48  func hashStr(sep string) (uint32, uint32) {
    49  	hash := uint32(0)
    50  	for i := 0; i < len(sep); i++ {
    51  		hash = hash*primeRK + uint32(sep[i])
    52  	}
    53  	var pow, sq uint32 = 1, primeRK
    54  	for i := len(sep); i > 0; i >>= 1 {
    55  		if i&1 != 0 {
    56  			pow *= sq
    57  		}
    58  		sq *= sq
    59  	}
    60  	return hash, pow
    61  }
    62  
    63  // hashStrRev returns the hash of the reverse of sep and the
    64  // appropriate multiplicative factor for use in Rabin-Karp algorithm.
    65  func hashStrRev(sep string) (uint32, uint32) {
    66  	hash := uint32(0)
    67  	for i := len(sep) - 1; i >= 0; i-- {
    68  		hash = hash*primeRK + uint32(sep[i])
    69  	}
    70  	var pow, sq uint32 = 1, primeRK
    71  	for i := len(sep); i > 0; i >>= 1 {
    72  		if i&1 != 0 {
    73  			pow *= sq
    74  		}
    75  		sq *= sq
    76  	}
    77  	return hash, pow
    78  }
    79  
    80  // Count counts the number of non-overlapping instances of sep in s.
    81  func Count(s, sep string) int {
    82  	n := 0
    83  	// special cases
    84  	switch {
    85  	case len(sep) == 0:
    86  		return utf8.RuneCountInString(s) + 1
    87  	case len(sep) == 1:
    88  		// special case worth making fast
    89  		c := sep[0]
    90  		for i := 0; i < len(s); i++ {
    91  			if s[i] == c {
    92  				n++
    93  			}
    94  		}
    95  		return n
    96  	case len(sep) > len(s):
    97  		return 0
    98  	case len(sep) == len(s):
    99  		if sep == s {
   100  			return 1
   101  		}
   102  		return 0
   103  	}
   104  	// Rabin-Karp search
   105  	hashsep, pow := hashStr(sep)
   106  	h := uint32(0)
   107  	for i := 0; i < len(sep); i++ {
   108  		h = h*primeRK + uint32(s[i])
   109  	}
   110  	lastmatch := 0
   111  	if h == hashsep && s[:len(sep)] == sep {
   112  		n++
   113  		lastmatch = len(sep)
   114  	}
   115  	for i := len(sep); i < len(s); {
   116  		h *= primeRK
   117  		h += uint32(s[i])
   118  		h -= pow * uint32(s[i-len(sep)])
   119  		i++
   120  		if h == hashsep && lastmatch <= i-len(sep) && s[i-len(sep):i] == sep {
   121  			n++
   122  			lastmatch = i
   123  		}
   124  	}
   125  	return n
   126  }
   127  
   128  // Contains returns true if substr is within s.
   129  func Contains(s, substr string) bool {
   130  	return Index(s, substr) >= 0
   131  }
   132  
   133  // ContainsAny returns true if any Unicode code points in chars are within s.
   134  func ContainsAny(s, chars string) bool {
   135  	return IndexAny(s, chars) >= 0
   136  }
   137  
   138  // ContainsRune returns true if the Unicode code point r is within s.
   139  func ContainsRune(s string, r rune) bool {
   140  	return IndexRune(s, r) >= 0
   141  }
   142  
   143  // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s.
   144  func Index(s, sep string) int {
   145  	n := len(sep)
   146  	switch {
   147  	case n == 0:
   148  		return 0
   149  	case n == 1:
   150  		return IndexByte(s, sep[0])
   151  	case n == len(s):
   152  		if sep == s {
   153  			return 0
   154  		}
   155  		return -1
   156  	case n > len(s):
   157  		return -1
   158  	}
   159  	// Rabin-Karp search
   160  	hashsep, pow := hashStr(sep)
   161  	var h uint32
   162  	for i := 0; i < n; i++ {
   163  		h = h*primeRK + uint32(s[i])
   164  	}
   165  	if h == hashsep && s[:n] == sep {
   166  		return 0
   167  	}
   168  	for i := n; i < len(s); {
   169  		h *= primeRK
   170  		h += uint32(s[i])
   171  		h -= pow * uint32(s[i-n])
   172  		i++
   173  		if h == hashsep && s[i-n:i] == sep {
   174  			return i - n
   175  		}
   176  	}
   177  	return -1
   178  }
   179  
   180  // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s.
   181  func LastIndex(s, sep string) int {
   182  	n := len(sep)
   183  	switch {
   184  	case n == 0:
   185  		return len(s)
   186  	case n == 1:
   187  		// special case worth making fast
   188  		c := sep[0]
   189  		for i := len(s) - 1; i >= 0; i-- {
   190  			if s[i] == c {
   191  				return i
   192  			}
   193  		}
   194  		return -1
   195  	case n == len(s):
   196  		if sep == s {
   197  			return 0
   198  		}
   199  		return -1
   200  	case n > len(s):
   201  		return -1
   202  	}
   203  	// Rabin-Karp search from the end of the string
   204  	hashsep, pow := hashStrRev(sep)
   205  	last := len(s) - n
   206  	var h uint32
   207  	for i := len(s) - 1; i >= last; i-- {
   208  		h = h*primeRK + uint32(s[i])
   209  	}
   210  	if h == hashsep && s[last:] == sep {
   211  		return last
   212  	}
   213  	for i := last - 1; i >= 0; i-- {
   214  		h *= primeRK
   215  		h += uint32(s[i])
   216  		h -= pow * uint32(s[i+n])
   217  		if h == hashsep && s[i:i+n] == sep {
   218  			return i
   219  		}
   220  	}
   221  	return -1
   222  }
   223  
   224  // IndexRune returns the index of the first instance of the Unicode code point
   225  // r, or -1 if rune is not present in s.
   226  func IndexRune(s string, r rune) int {
   227  	switch {
   228  	case r < utf8.RuneSelf:
   229  		return IndexByte(s, byte(r))
   230  	default:
   231  		for i, c := range s {
   232  			if c == r {
   233  				return i
   234  			}
   235  		}
   236  	}
   237  	return -1
   238  }
   239  
   240  // IndexAny returns the index of the first instance of any Unicode code point
   241  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   242  func IndexAny(s, chars string) int {
   243  	if len(chars) > 0 {
   244  		for i, c := range s {
   245  			for _, m := range chars {
   246  				if c == m {
   247  					return i
   248  				}
   249  			}
   250  		}
   251  	}
   252  	return -1
   253  }
   254  
   255  // LastIndexAny returns the index of the last instance of any Unicode code
   256  // point from chars in s, or -1 if no Unicode code point from chars is
   257  // present in s.
   258  func LastIndexAny(s, chars string) int {
   259  	if len(chars) > 0 {
   260  		for i := len(s); i > 0; {
   261  			rune, size := utf8.DecodeLastRuneInString(s[0:i])
   262  			i -= size
   263  			for _, m := range chars {
   264  				if rune == m {
   265  					return i
   266  				}
   267  			}
   268  		}
   269  	}
   270  	return -1
   271  }
   272  
   273  // Generic split: splits after each instance of sep,
   274  // including sepSave bytes of sep in the subarrays.
   275  func genSplit(s, sep string, sepSave, n int) []string {
   276  	if n == 0 {
   277  		return nil
   278  	}
   279  	if sep == "" {
   280  		return explode(s, n)
   281  	}
   282  	if n < 0 {
   283  		n = Count(s, sep) + 1
   284  	}
   285  	c := sep[0]
   286  	start := 0
   287  	a := make([]string, n)
   288  	na := 0
   289  	for i := 0; i+len(sep) <= len(s) && na+1 < n; i++ {
   290  		if s[i] == c && (len(sep) == 1 || s[i:i+len(sep)] == sep) {
   291  			a[na] = s[start : i+sepSave]
   292  			na++
   293  			start = i + len(sep)
   294  			i += len(sep) - 1
   295  		}
   296  	}
   297  	a[na] = s[start:]
   298  	return a[0 : na+1]
   299  }
   300  
   301  // SplitN slices s into substrings separated by sep and returns a slice of
   302  // the substrings between those separators.
   303  // If sep is empty, SplitN splits after each UTF-8 sequence.
   304  // The count determines the number of substrings to return:
   305  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   306  //   n == 0: the result is nil (zero substrings)
   307  //   n < 0: all substrings
   308  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   309  
   310  // SplitAfterN slices s into substrings after each instance of sep and
   311  // returns a slice of those substrings.
   312  // If sep is empty, SplitAfterN splits after each UTF-8 sequence.
   313  // The count determines the number of substrings to return:
   314  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   315  //   n == 0: the result is nil (zero substrings)
   316  //   n < 0: all substrings
   317  func SplitAfterN(s, sep string, n int) []string {
   318  	return genSplit(s, sep, len(sep), n)
   319  }
   320  
   321  // Split slices s into all substrings separated by sep and returns a slice of
   322  // the substrings between those separators.
   323  // If sep is empty, Split splits after each UTF-8 sequence.
   324  // It is equivalent to SplitN with a count of -1.
   325  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   326  
   327  // SplitAfter slices s into all substrings after each instance of sep and
   328  // returns a slice of those substrings.
   329  // If sep is empty, SplitAfter splits after each UTF-8 sequence.
   330  // It is equivalent to SplitAfterN with a count of -1.
   331  func SplitAfter(s, sep string) []string {
   332  	return genSplit(s, sep, len(sep), -1)
   333  }
   334  
   335  // Fields splits the string s around each instance of one or more consecutive white space
   336  // characters, as defined by unicode.IsSpace, returning an array of substrings of s or an
   337  // empty list if s contains only white space.
   338  func Fields(s string) []string {
   339  	return FieldsFunc(s, unicode.IsSpace)
   340  }
   341  
   342  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   343  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   344  // string is empty, an empty slice is returned.
   345  // FieldsFunc makes no guarantees about the order in which it calls f(c).
   346  // If f does not return consistent results for a given c, FieldsFunc may crash.
   347  func FieldsFunc(s string, f func(rune) bool) []string {
   348  	// First count the fields.
   349  	n := 0
   350  	inField := false
   351  	for _, rune := range s {
   352  		wasInField := inField
   353  		inField = !f(rune)
   354  		if inField && !wasInField {
   355  			n++
   356  		}
   357  	}
   358  
   359  	// Now create them.
   360  	a := make([]string, n)
   361  	na := 0
   362  	fieldStart := -1 // Set to -1 when looking for start of field.
   363  	for i, rune := range s {
   364  		if f(rune) {
   365  			if fieldStart >= 0 {
   366  				a[na] = s[fieldStart:i]
   367  				na++
   368  				fieldStart = -1
   369  			}
   370  		} else if fieldStart == -1 {
   371  			fieldStart = i
   372  		}
   373  	}
   374  	if fieldStart >= 0 { // Last field might end at EOF.
   375  		a[na] = s[fieldStart:]
   376  	}
   377  	return a
   378  }
   379  
   380  // Join concatenates the elements of a to create a single string.   The separator string
   381  // sep is placed between elements in the resulting string.
   382  func Join(a []string, sep string) string {
   383  	if len(a) == 0 {
   384  		return ""
   385  	}
   386  	if len(a) == 1 {
   387  		return a[0]
   388  	}
   389  	n := len(sep) * (len(a) - 1)
   390  	for i := 0; i < len(a); i++ {
   391  		n += len(a[i])
   392  	}
   393  
   394  	b := make([]byte, n)
   395  	bp := copy(b, a[0])
   396  	for _, s := range a[1:] {
   397  		bp += copy(b[bp:], sep)
   398  		bp += copy(b[bp:], s)
   399  	}
   400  	return string(b)
   401  }
   402  
   403  // HasPrefix tests whether the string s begins with prefix.
   404  func HasPrefix(s, prefix string) bool {
   405  	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
   406  }
   407  
   408  // HasSuffix tests whether the string s ends with suffix.
   409  func HasSuffix(s, suffix string) bool {
   410  	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
   411  }
   412  
   413  // Map returns a copy of the string s with all its characters modified
   414  // according to the mapping function. If mapping returns a negative value, the character is
   415  // dropped from the string with no replacement.
   416  func Map(mapping func(rune) rune, s string) string {
   417  	// In the worst case, the string can grow when mapped, making
   418  	// things unpleasant.  But it's so rare we barge in assuming it's
   419  	// fine.  It could also shrink but that falls out naturally.
   420  	maxbytes := len(s) // length of b
   421  	nbytes := 0        // number of bytes encoded in b
   422  	// The output buffer b is initialized on demand, the first
   423  	// time a character differs.
   424  	var b []byte
   425  
   426  	for i, c := range s {
   427  		r := mapping(c)
   428  		if b == nil {
   429  			if r == c {
   430  				continue
   431  			}
   432  			b = make([]byte, maxbytes)
   433  			nbytes = copy(b, s[:i])
   434  		}
   435  		if r >= 0 {
   436  			wid := 1
   437  			if r >= utf8.RuneSelf {
   438  				wid = utf8.RuneLen(r)
   439  			}
   440  			if nbytes+wid > maxbytes {
   441  				// Grow the buffer.
   442  				maxbytes = maxbytes*2 + utf8.UTFMax
   443  				nb := make([]byte, maxbytes)
   444  				copy(nb, b[0:nbytes])
   445  				b = nb
   446  			}
   447  			nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r)
   448  		}
   449  	}
   450  	if b == nil {
   451  		return s
   452  	}
   453  	return string(b[0:nbytes])
   454  }
   455  
   456  // Repeat returns a new string consisting of count copies of the string s.
   457  func Repeat(s string, count int) string {
   458  	b := make([]byte, len(s)*count)
   459  	bp := copy(b, s)
   460  	for bp < len(b) {
   461  		copy(b[bp:], b[:bp])
   462  		bp *= 2
   463  	}
   464  	return string(b)
   465  }
   466  
   467  // ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
   468  func ToUpper(s string) string { return Map(unicode.ToUpper, s) }
   469  
   470  // ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
   471  func ToLower(s string) string { return Map(unicode.ToLower, s) }
   472  
   473  // ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
   474  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   475  
   476  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   477  // upper case, giving priority to the special casing rules.
   478  func ToUpperSpecial(_case unicode.SpecialCase, s string) string {
   479  	return Map(func(r rune) rune { return _case.ToUpper(r) }, s)
   480  }
   481  
   482  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   483  // lower case, giving priority to the special casing rules.
   484  func ToLowerSpecial(_case unicode.SpecialCase, s string) string {
   485  	return Map(func(r rune) rune { return _case.ToLower(r) }, s)
   486  }
   487  
   488  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   489  // title case, giving priority to the special casing rules.
   490  func ToTitleSpecial(_case unicode.SpecialCase, s string) string {
   491  	return Map(func(r rune) rune { return _case.ToTitle(r) }, s)
   492  }
   493  
   494  // isSeparator reports whether the rune could mark a word boundary.
   495  // TODO: update when package unicode captures more of the properties.
   496  func isSeparator(r rune) bool {
   497  	// ASCII alphanumerics and underscore are not separators
   498  	if r <= 0x7F {
   499  		switch {
   500  		case '0' <= r && r <= '9':
   501  			return false
   502  		case 'a' <= r && r <= 'z':
   503  			return false
   504  		case 'A' <= r && r <= 'Z':
   505  			return false
   506  		case r == '_':
   507  			return false
   508  		}
   509  		return true
   510  	}
   511  	// Letters and digits are not separators
   512  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   513  		return false
   514  	}
   515  	// Otherwise, all we can do for now is treat spaces as separators.
   516  	return unicode.IsSpace(r)
   517  }
   518  
   519  // Title returns a copy of the string s with all Unicode letters that begin words
   520  // mapped to their title case.
   521  //
   522  // BUG: The rule Title uses for word boundaries does not handle Unicode punctuation properly.
   523  func Title(s string) string {
   524  	// Use a closure here to remember state.
   525  	// Hackish but effective. Depends on Map scanning in order and calling
   526  	// the closure once per rune.
   527  	prev := ' '
   528  	return Map(
   529  		func(r rune) rune {
   530  			if isSeparator(prev) {
   531  				prev = r
   532  				return unicode.ToTitle(r)
   533  			}
   534  			prev = r
   535  			return r
   536  		},
   537  		s)
   538  }
   539  
   540  // TrimLeftFunc returns a slice of the string s with all leading
   541  // Unicode code points c satisfying f(c) removed.
   542  func TrimLeftFunc(s string, f func(rune) bool) string {
   543  	i := indexFunc(s, f, false)
   544  	if i == -1 {
   545  		return ""
   546  	}
   547  	return s[i:]
   548  }
   549  
   550  // TrimRightFunc returns a slice of the string s with all trailing
   551  // Unicode code points c satisfying f(c) removed.
   552  func TrimRightFunc(s string, f func(rune) bool) string {
   553  	i := lastIndexFunc(s, f, false)
   554  	if i >= 0 && s[i] >= utf8.RuneSelf {
   555  		_, wid := utf8.DecodeRuneInString(s[i:])
   556  		i += wid
   557  	} else {
   558  		i++
   559  	}
   560  	return s[0:i]
   561  }
   562  
   563  // TrimFunc returns a slice of the string s with all leading
   564  // and trailing Unicode code points c satisfying f(c) removed.
   565  func TrimFunc(s string, f func(rune) bool) string {
   566  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   567  }
   568  
   569  // IndexFunc returns the index into s of the first Unicode
   570  // code point satisfying f(c), or -1 if none do.
   571  func IndexFunc(s string, f func(rune) bool) int {
   572  	return indexFunc(s, f, true)
   573  }
   574  
   575  // LastIndexFunc returns the index into s of the last
   576  // Unicode code point satisfying f(c), or -1 if none do.
   577  func LastIndexFunc(s string, f func(rune) bool) int {
   578  	return lastIndexFunc(s, f, true)
   579  }
   580  
   581  // indexFunc is the same as IndexFunc except that if
   582  // truth==false, the sense of the predicate function is
   583  // inverted.
   584  func indexFunc(s string, f func(rune) bool, truth bool) int {
   585  	start := 0
   586  	for start < len(s) {
   587  		wid := 1
   588  		r := rune(s[start])
   589  		if r >= utf8.RuneSelf {
   590  			r, wid = utf8.DecodeRuneInString(s[start:])
   591  		}
   592  		if f(r) == truth {
   593  			return start
   594  		}
   595  		start += wid
   596  	}
   597  	return -1
   598  }
   599  
   600  // lastIndexFunc is the same as LastIndexFunc except that if
   601  // truth==false, the sense of the predicate function is
   602  // inverted.
   603  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   604  	for i := len(s); i > 0; {
   605  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   606  		i -= size
   607  		if f(r) == truth {
   608  			return i
   609  		}
   610  	}
   611  	return -1
   612  }
   613  
   614  func makeCutsetFunc(cutset string) func(rune) bool {
   615  	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
   616  }
   617  
   618  // Trim returns a slice of the string s with all leading and
   619  // trailing Unicode code points contained in cutset removed.
   620  func Trim(s string, cutset string) string {
   621  	if s == "" || cutset == "" {
   622  		return s
   623  	}
   624  	return TrimFunc(s, makeCutsetFunc(cutset))
   625  }
   626  
   627  // TrimLeft returns a slice of the string s with all leading
   628  // Unicode code points contained in cutset removed.
   629  func TrimLeft(s string, cutset string) string {
   630  	if s == "" || cutset == "" {
   631  		return s
   632  	}
   633  	return TrimLeftFunc(s, makeCutsetFunc(cutset))
   634  }
   635  
   636  // TrimRight returns a slice of the string s, with all trailing
   637  // Unicode code points contained in cutset removed.
   638  func TrimRight(s string, cutset string) string {
   639  	if s == "" || cutset == "" {
   640  		return s
   641  	}
   642  	return TrimRightFunc(s, makeCutsetFunc(cutset))
   643  }
   644  
   645  // TrimSpace returns a slice of the string s, with all leading
   646  // and trailing white space removed, as defined by Unicode.
   647  func TrimSpace(s string) string {
   648  	return TrimFunc(s, unicode.IsSpace)
   649  }
   650  
   651  // TrimPrefix returns s without the provided leading prefix string.
   652  // If s doesn't start with prefix, s is returned unchanged.
   653  func TrimPrefix(s, prefix string) string {
   654  	if HasPrefix(s, prefix) {
   655  		return s[len(prefix):]
   656  	}
   657  	return s
   658  }
   659  
   660  // TrimSuffix returns s without the provided trailing suffix string.
   661  // If s doesn't end with suffix, s is returned unchanged.
   662  func TrimSuffix(s, suffix string) string {
   663  	if HasSuffix(s, suffix) {
   664  		return s[:len(s)-len(suffix)]
   665  	}
   666  	return s
   667  }
   668  
   669  // Replace returns a copy of the string s with the first n
   670  // non-overlapping instances of old replaced by new.
   671  // If old is empty, it matches at the beginning of the string
   672  // and after each UTF-8 sequence, yielding up to k+1 replacements
   673  // for a k-rune string.
   674  // If n < 0, there is no limit on the number of replacements.
   675  func Replace(s, old, new string, n int) string {
   676  	if old == new || n == 0 {
   677  		return s // avoid allocation
   678  	}
   679  
   680  	// Compute number of replacements.
   681  	if m := Count(s, old); m == 0 {
   682  		return s // avoid allocation
   683  	} else if n < 0 || m < n {
   684  		n = m
   685  	}
   686  
   687  	// Apply replacements to buffer.
   688  	t := make([]byte, len(s)+n*(len(new)-len(old)))
   689  	w := 0
   690  	start := 0
   691  	for i := 0; i < n; i++ {
   692  		j := start
   693  		if len(old) == 0 {
   694  			if i > 0 {
   695  				_, wid := utf8.DecodeRuneInString(s[start:])
   696  				j += wid
   697  			}
   698  		} else {
   699  			j += Index(s[start:], old)
   700  		}
   701  		w += copy(t[w:], s[start:j])
   702  		w += copy(t[w:], new)
   703  		start = j + len(old)
   704  	}
   705  	w += copy(t[w:], s[start:])
   706  	return string(t[0:w])
   707  }
   708  
   709  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
   710  // are equal under Unicode case-folding.
   711  func EqualFold(s, t string) bool {
   712  	for s != "" && t != "" {
   713  		// Extract first rune from each string.
   714  		var sr, tr rune
   715  		if s[0] < utf8.RuneSelf {
   716  			sr, s = rune(s[0]), s[1:]
   717  		} else {
   718  			r, size := utf8.DecodeRuneInString(s)
   719  			sr, s = r, s[size:]
   720  		}
   721  		if t[0] < utf8.RuneSelf {
   722  			tr, t = rune(t[0]), t[1:]
   723  		} else {
   724  			r, size := utf8.DecodeRuneInString(t)
   725  			tr, t = r, t[size:]
   726  		}
   727  
   728  		// If they match, keep going; if not, return false.
   729  
   730  		// Easy case.
   731  		if tr == sr {
   732  			continue
   733  		}
   734  
   735  		// Make sr < tr to simplify what follows.
   736  		if tr < sr {
   737  			tr, sr = sr, tr
   738  		}
   739  		// Fast check for ASCII.
   740  		if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' {
   741  			// ASCII, and sr is upper case.  tr must be lower case.
   742  			if tr == sr+'a'-'A' {
   743  				continue
   744  			}
   745  			return false
   746  		}
   747  
   748  		// General case.  SimpleFold(x) returns the next equivalent rune > x
   749  		// or wraps around to smaller values.
   750  		r := unicode.SimpleFold(sr)
   751  		for r != sr && r < tr {
   752  			r = unicode.SimpleFold(r)
   753  		}
   754  		if r == tr {
   755  			continue
   756  		}
   757  		return false
   758  	}
   759  
   760  	// One string is empty.  Are both?
   761  	return s == t
   762  }