github.com/shogo82148/std@v1.22.1-0.20240327122250-4e474527810c/cmd/compile/internal/ssa/regalloc.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Register allocation. 6 // 7 // We use a version of a linear scan register allocator. We treat the 8 // whole function as a single long basic block and run through 9 // it using a greedy register allocator. Then all merge edges 10 // (those targeting a block with len(Preds)>1) are processed to 11 // shuffle data into the place that the target of the edge expects. 12 // 13 // The greedy allocator moves values into registers just before they 14 // are used, spills registers only when necessary, and spills the 15 // value whose next use is farthest in the future. 16 // 17 // The register allocator requires that a block is not scheduled until 18 // at least one of its predecessors have been scheduled. The most recent 19 // such predecessor provides the starting register state for a block. 20 // 21 // It also requires that there are no critical edges (critical = 22 // comes from a block with >1 successor and goes to a block with >1 23 // predecessor). This makes it easy to add fixup code on merge edges - 24 // the source of a merge edge has only one successor, so we can add 25 // fixup code to the end of that block. 26 27 // Spilling 28 // 29 // During the normal course of the allocator, we might throw a still-live 30 // value out of all registers. When that value is subsequently used, we must 31 // load it from a slot on the stack. We must also issue an instruction to 32 // initialize that stack location with a copy of v. 33 // 34 // pre-regalloc: 35 // (1) v = Op ... 36 // (2) x = Op ... 37 // (3) ... = Op v ... 38 // 39 // post-regalloc: 40 // (1) v = Op ... : AX // computes v, store result in AX 41 // s = StoreReg v // spill v to a stack slot 42 // (2) x = Op ... : AX // some other op uses AX 43 // c = LoadReg s : CX // restore v from stack slot 44 // (3) ... = Op c ... // use the restored value 45 // 46 // Allocation occurs normally until we reach (3) and we realize we have 47 // a use of v and it isn't in any register. At that point, we allocate 48 // a spill (a StoreReg) for v. We can't determine the correct place for 49 // the spill at this point, so we allocate the spill as blockless initially. 50 // The restore is then generated to load v back into a register so it can 51 // be used. Subsequent uses of v will use the restored value c instead. 52 // 53 // What remains is the question of where to schedule the spill. 54 // During allocation, we keep track of the dominator of all restores of v. 55 // The spill of v must dominate that block. The spill must also be issued at 56 // a point where v is still in a register. 57 // 58 // To find the right place, start at b, the block which dominates all restores. 59 // - If b is v.Block, then issue the spill right after v. 60 // It is known to be in a register at that point, and dominates any restores. 61 // - Otherwise, if v is in a register at the start of b, 62 // put the spill of v at the start of b. 63 // - Otherwise, set b = immediate dominator of b, and repeat. 64 // 65 // Phi values are special, as always. We define two kinds of phis, those 66 // where the merge happens in a register (a "register" phi) and those where 67 // the merge happens in a stack location (a "stack" phi). 68 // 69 // A register phi must have the phi and all of its inputs allocated to the 70 // same register. Register phis are spilled similarly to regular ops. 71 // 72 // A stack phi must have the phi and all of its inputs allocated to the same 73 // stack location. Stack phis start out life already spilled - each phi 74 // input must be a store (using StoreReg) at the end of the corresponding 75 // predecessor block. 76 // b1: y = ... : AX b2: z = ... : BX 77 // y2 = StoreReg y z2 = StoreReg z 78 // goto b3 goto b3 79 // b3: x = phi(y2, z2) 80 // The stack allocator knows that StoreReg args of stack-allocated phis 81 // must be allocated to the same stack slot as the phi that uses them. 82 // x is now a spilled value and a restore must appear before its first use. 83 84 // TODO 85 86 // Use an affinity graph to mark two values which should use the 87 // same register. This affinity graph will be used to prefer certain 88 // registers for allocation. This affinity helps eliminate moves that 89 // are required for phi implementations and helps generate allocations 90 // for 2-register architectures. 91 92 // Note: regalloc generates a not-quite-SSA output. If we have: 93 // 94 // b1: x = ... : AX 95 // x2 = StoreReg x 96 // ... AX gets reused for something else ... 97 // if ... goto b3 else b4 98 // 99 // b3: x3 = LoadReg x2 : BX b4: x4 = LoadReg x2 : CX 100 // ... use x3 ... ... use x4 ... 101 // 102 // b2: ... use x3 ... 103 // 104 // If b3 is the primary predecessor of b2, then we use x3 in b2 and 105 // add a x4:CX->BX copy at the end of b4. 106 // But the definition of x3 doesn't dominate b2. We should really 107 // insert an extra phi at the start of b2 (x5=phi(x3,x4):BX) to keep 108 // SSA form. For now, we ignore this problem as remaining in strict 109 // SSA form isn't needed after regalloc. We'll just leave the use 110 // of x3 not dominated by the definition of x3, and the CX->BX copy 111 // will have no use (so don't run deadcode after regalloc!). 112 // TODO: maybe we should introduce these extra phis? 113 114 package ssa