github.com/shrimpyuk/bor@v0.2.15-0.20220224151350-fb4ec6020bae/eth/sync.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package eth
    18  
    19  import (
    20  	"math/big"
    21  	"sync/atomic"
    22  	"time"
    23  
    24  	"github.com/ethereum/go-ethereum/common"
    25  	"github.com/ethereum/go-ethereum/core/rawdb"
    26  	"github.com/ethereum/go-ethereum/core/types"
    27  	"github.com/ethereum/go-ethereum/eth/downloader"
    28  	"github.com/ethereum/go-ethereum/eth/protocols/eth"
    29  	"github.com/ethereum/go-ethereum/log"
    30  )
    31  
    32  const (
    33  	forceSyncCycle      = 10 * time.Second // Time interval to force syncs, even if few peers are available
    34  	defaultMinSyncPeers = 5                // Amount of peers desired to start syncing
    35  )
    36  
    37  // syncTransactions starts sending all currently pending transactions to the given peer.
    38  func (h *handler) syncTransactions(p *eth.Peer) {
    39  	// Assemble the set of transaction to broadcast or announce to the remote
    40  	// peer. Fun fact, this is quite an expensive operation as it needs to sort
    41  	// the transactions if the sorting is not cached yet. However, with a random
    42  	// order, insertions could overflow the non-executable queues and get dropped.
    43  	//
    44  	// TODO(karalabe): Figure out if we could get away with random order somehow
    45  	var txs types.Transactions
    46  	pending := h.txpool.Pending(false)
    47  	for _, batch := range pending {
    48  		txs = append(txs, batch...)
    49  	}
    50  	if len(txs) == 0 {
    51  		return
    52  	}
    53  	// The eth/65 protocol introduces proper transaction announcements, so instead
    54  	// of dripping transactions across multiple peers, just send the entire list as
    55  	// an announcement and let the remote side decide what they need (likely nothing).
    56  	hashes := make([]common.Hash, len(txs))
    57  	for i, tx := range txs {
    58  		hashes[i] = tx.Hash()
    59  	}
    60  	p.AsyncSendPooledTransactionHashes(hashes)
    61  }
    62  
    63  // chainSyncer coordinates blockchain sync components.
    64  type chainSyncer struct {
    65  	handler     *handler
    66  	force       *time.Timer
    67  	forced      bool // true when force timer fired
    68  	peerEventCh chan struct{}
    69  	doneCh      chan error // non-nil when sync is running
    70  }
    71  
    72  // chainSyncOp is a scheduled sync operation.
    73  type chainSyncOp struct {
    74  	mode downloader.SyncMode
    75  	peer *eth.Peer
    76  	td   *big.Int
    77  	head common.Hash
    78  }
    79  
    80  // newChainSyncer creates a chainSyncer.
    81  func newChainSyncer(handler *handler) *chainSyncer {
    82  	return &chainSyncer{
    83  		handler:     handler,
    84  		peerEventCh: make(chan struct{}),
    85  	}
    86  }
    87  
    88  // handlePeerEvent notifies the syncer about a change in the peer set.
    89  // This is called for new peers and every time a peer announces a new
    90  // chain head.
    91  func (cs *chainSyncer) handlePeerEvent(peer *eth.Peer) bool {
    92  	select {
    93  	case cs.peerEventCh <- struct{}{}:
    94  		return true
    95  	case <-cs.handler.quitSync:
    96  		return false
    97  	}
    98  }
    99  
   100  // loop runs in its own goroutine and launches the sync when necessary.
   101  func (cs *chainSyncer) loop() {
   102  	defer cs.handler.wg.Done()
   103  
   104  	cs.handler.blockFetcher.Start()
   105  	cs.handler.txFetcher.Start()
   106  	defer cs.handler.blockFetcher.Stop()
   107  	defer cs.handler.txFetcher.Stop()
   108  	defer cs.handler.downloader.Terminate()
   109  
   110  	// The force timer lowers the peer count threshold down to one when it fires.
   111  	// This ensures we'll always start sync even if there aren't enough peers.
   112  	cs.force = time.NewTimer(forceSyncCycle)
   113  	defer cs.force.Stop()
   114  
   115  	for {
   116  		if op := cs.nextSyncOp(); op != nil {
   117  			cs.startSync(op)
   118  		}
   119  		select {
   120  		case <-cs.peerEventCh:
   121  			// Peer information changed, recheck.
   122  		case <-cs.doneCh:
   123  			cs.doneCh = nil
   124  			cs.force.Reset(forceSyncCycle)
   125  			cs.forced = false
   126  		case <-cs.force.C:
   127  			cs.forced = true
   128  
   129  		case <-cs.handler.quitSync:
   130  			// Disable all insertion on the blockchain. This needs to happen before
   131  			// terminating the downloader because the downloader waits for blockchain
   132  			// inserts, and these can take a long time to finish.
   133  			cs.handler.chain.StopInsert()
   134  			cs.handler.downloader.Terminate()
   135  			if cs.doneCh != nil {
   136  				<-cs.doneCh
   137  			}
   138  			return
   139  		}
   140  	}
   141  }
   142  
   143  // nextSyncOp determines whether sync is required at this time.
   144  func (cs *chainSyncer) nextSyncOp() *chainSyncOp {
   145  	if cs.doneCh != nil {
   146  		return nil // Sync already running.
   147  	}
   148  
   149  	// Ensure we're at minimum peer count.
   150  	minPeers := defaultMinSyncPeers
   151  	if cs.forced {
   152  		minPeers = 1
   153  	} else if minPeers > cs.handler.maxPeers {
   154  		minPeers = cs.handler.maxPeers
   155  	}
   156  	if cs.handler.peers.len() < minPeers {
   157  		return nil
   158  	}
   159  	// We have enough peers, check TD
   160  	peer := cs.handler.peers.peerWithHighestTD()
   161  	if peer == nil {
   162  		return nil
   163  	}
   164  	mode, ourTD := cs.modeAndLocalHead()
   165  	if mode == downloader.FastSync && atomic.LoadUint32(&cs.handler.snapSync) == 1 {
   166  		// Fast sync via the snap protocol
   167  		mode = downloader.SnapSync
   168  	}
   169  	op := peerToSyncOp(mode, peer)
   170  	if op.td.Cmp(ourTD) <= 0 {
   171  		return nil // We're in sync.
   172  	}
   173  	return op
   174  }
   175  
   176  func peerToSyncOp(mode downloader.SyncMode, p *eth.Peer) *chainSyncOp {
   177  	peerHead, peerTD := p.Head()
   178  	return &chainSyncOp{mode: mode, peer: p, td: peerTD, head: peerHead}
   179  }
   180  
   181  func (cs *chainSyncer) modeAndLocalHead() (downloader.SyncMode, *big.Int) {
   182  	// If we're in fast sync mode, return that directly
   183  	if atomic.LoadUint32(&cs.handler.fastSync) == 1 {
   184  		block := cs.handler.chain.CurrentFastBlock()
   185  		td := cs.handler.chain.GetTd(block.Hash(), block.NumberU64())
   186  		return downloader.FastSync, td
   187  	}
   188  	// We are probably in full sync, but we might have rewound to before the
   189  	// fast sync pivot, check if we should reenable
   190  	if pivot := rawdb.ReadLastPivotNumber(cs.handler.database); pivot != nil {
   191  		if head := cs.handler.chain.CurrentBlock(); head.NumberU64() < *pivot {
   192  			block := cs.handler.chain.CurrentFastBlock()
   193  			td := cs.handler.chain.GetTd(block.Hash(), block.NumberU64())
   194  			return downloader.FastSync, td
   195  		}
   196  	}
   197  	// Nope, we're really full syncing
   198  	head := cs.handler.chain.CurrentBlock()
   199  	td := cs.handler.chain.GetTd(head.Hash(), head.NumberU64())
   200  	return downloader.FullSync, td
   201  }
   202  
   203  // startSync launches doSync in a new goroutine.
   204  func (cs *chainSyncer) startSync(op *chainSyncOp) {
   205  	cs.doneCh = make(chan error, 1)
   206  	go func() { cs.doneCh <- cs.handler.doSync(op) }()
   207  }
   208  
   209  // doSync synchronizes the local blockchain with a remote peer.
   210  func (h *handler) doSync(op *chainSyncOp) error {
   211  	if op.mode == downloader.FastSync || op.mode == downloader.SnapSync {
   212  		// Before launch the fast sync, we have to ensure user uses the same
   213  		// txlookup limit.
   214  		// The main concern here is: during the fast sync Geth won't index the
   215  		// block(generate tx indices) before the HEAD-limit. But if user changes
   216  		// the limit in the next fast sync(e.g. user kill Geth manually and
   217  		// restart) then it will be hard for Geth to figure out the oldest block
   218  		// has been indexed. So here for the user-experience wise, it's non-optimal
   219  		// that user can't change limit during the fast sync. If changed, Geth
   220  		// will just blindly use the original one.
   221  		limit := h.chain.TxLookupLimit()
   222  		if stored := rawdb.ReadFastTxLookupLimit(h.database); stored == nil {
   223  			rawdb.WriteFastTxLookupLimit(h.database, limit)
   224  		} else if *stored != limit {
   225  			h.chain.SetTxLookupLimit(*stored)
   226  			log.Warn("Update txLookup limit", "provided", limit, "updated", *stored)
   227  		}
   228  	}
   229  	// Run the sync cycle, and disable fast sync if we're past the pivot block
   230  	err := h.downloader.Synchronise(op.peer.ID(), op.head, op.td, op.mode)
   231  	if err != nil {
   232  		return err
   233  	}
   234  	if atomic.LoadUint32(&h.fastSync) == 1 {
   235  		log.Info("Fast sync complete, auto disabling")
   236  		atomic.StoreUint32(&h.fastSync, 0)
   237  	}
   238  	if atomic.LoadUint32(&h.snapSync) == 1 {
   239  		log.Info("Snap sync complete, auto disabling")
   240  		atomic.StoreUint32(&h.snapSync, 0)
   241  	}
   242  	// If we've successfully finished a sync cycle and passed any required checkpoint,
   243  	// enable accepting transactions from the network.
   244  	head := h.chain.CurrentBlock()
   245  	if head.NumberU64() >= h.checkpointNumber {
   246  		// Checkpoint passed, sanity check the timestamp to have a fallback mechanism
   247  		// for non-checkpointed (number = 0) private networks.
   248  		if head.Time() >= uint64(time.Now().AddDate(0, -1, 0).Unix()) {
   249  			atomic.StoreUint32(&h.acceptTxs, 1)
   250  		}
   251  	}
   252  	if head.NumberU64() > 0 {
   253  		// We've completed a sync cycle, notify all peers of new state. This path is
   254  		// essential in star-topology networks where a gateway node needs to notify
   255  		// all its out-of-date peers of the availability of a new block. This failure
   256  		// scenario will most often crop up in private and hackathon networks with
   257  		// degenerate connectivity, but it should be healthy for the mainnet too to
   258  		// more reliably update peers or the local TD state.
   259  		h.BroadcastBlock(head, false)
   260  	}
   261  	return nil
   262  }